## Final Exam

Total time for the exam: 3 hours!

## 1. True or False (55 points)

Let $X, Y, Z$ be discrete random variable. Copy each relation to your notebook and write true or false. If it's true, prove it. If it is false give a counterexample or prove that the opposite is true.
For instance:

- $H(X) \geq H(X \mid Y)$ is true. Proof: In the class we showed that $I(X ; Y)>0$, hence $H(X)-H(X \mid Y)>0$.
- $H(X)+H(Y) \leq H(X, Y)$ is false. Actually the opposite is true, i.e., $H(X)+H(Y) \geq H(X, Y)$ since $I(X ; Y)=H(X)+H(Y)-$ $H(X, Y) \geq 0$.
(a) If $H(X \mid Y)=H(X)$ if and only if $X$ and $Y$ are independent.
(b) If $X, Y, Z$ form the Markov chain, $X-Y-Z$, then $H(X \mid Y) \leq$ $H(Y \mid Z)$.
(c) For any two probability mass functions (pmf) $P, Q$,

$$
D\left(\frac{P+Q}{2} \| Q\right) \leq \frac{1}{2} D(P \| Q)
$$

where $D(\|)$ is a divergence between two pmfs.
(d) Let $X$ and $Y$ be two independent random variables. Then

$$
H(X, Y) \leq H(X+Y)
$$

(e) $|I(X ; Y)-I(X ; Y \mid Z)| \leq H(Z)$
(f) Let $X^{n}$ be i.i.d $\sim P_{X}$. Let $A_{n}$ and $B_{n}$ be two sets of sequences $X^{n}$ such that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)=1$ and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(B_{n}\right)=1$. For instance, $A_{n}$ could be the typical set with parameter $\epsilon$, i.e., $A_{n}=$
$\left\{x^{n}:\left|\frac{1}{n} \log P\left(x^{n}\right)-H(X)\right| \leq \epsilon\right\}$. Then, there might be a case where

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|A_{n} \cap B_{n}\right|<H(X),
$$

namely the normalized $\log$ of the cardinality of $A_{n} \cap B_{n}$ could be less than $H(X)$.
(g) There exists a compression software, that whenever we apply it on any file it compresses by $50 \%$ the file.
(h) Let $X, Y$ be two random variables, jointly Gaussian, with mean zero and $E\left[X^{2}\right]=E\left[Y^{2}\right]=\sigma^{2}$ and $E[X Y]=\rho \sigma^{2}$, where $|\rho| \leq 1$. Then,

$$
h(Y \mid X)=\frac{1}{2} \log 2 \pi e \sigma^{2}\left(1-\rho^{2}\right)
$$

(i) Let $X, Y$ be two random variables with continuous alphabet and density distribution $f_{X, Y}$. Then,

$$
0 \leq h(Y \mid X)
$$

where $h(Y \mid X)$ is differential entropy of $Y$ given $X$.
(j) Let $R(D)$ be a rate distortion function. $R(D)$ is nonincreasing in $D$. I.e., if $D_{1} \geq D_{2}$ then $R\left(D_{1}\right) \leq R\left(D_{2}\right)$.
(k) Let $R(D)$ be a rate distortion function where the source is memoryless $X$ and the reconstruction is $\hat{X}$. For any distortion we have

$$
R(D) \leq \log (\min (|\hat{\mathcal{X}}|,|\mathcal{X}|))
$$

where $|\hat{\mathcal{X}}|$ and $|\mathcal{X}|$ are the cardinality of the alphabets $\hat{X}$ and $X$, respectively.
2. Compression (15 points)
(a) Give a Huffman encoding into an alphabet of size $\mathrm{D}=2$ of the following probability mass function:

$$
\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}\right)
$$

(b) Assume you have a file of size 1,000 symbols where the symbols are distributed i.i.d. according to the pmf above. After applying the Huffman code, what would be the pmf of the compressed binary file $(P(0)=$ ? and $P(1)=$ ?) and what would be the expected length?
3. Diversity System (15 points)

For the following system, a message $W \in\left\{1,2, \ldots, 2^{n R}\right\}$ is encoded into two symbol blocks $X_{1}^{n}=\left(X_{1,1}, X_{1,2}, \ldots, X_{1, n}\right)$ and $X_{2}^{n}=\left(X_{2,1}, X_{2,2}, \ldots, X_{2, n}\right)$ that are being transmitted over a channel. The average power constrain on the inputs are $\frac{1}{n} E\left[\sum_{i=1}^{n} X_{1, i}^{2}\right] \leq P_{1}$ and $\frac{1}{n} E\left[\sum_{i=1}^{n} X_{2, i}^{2}\right] \leq P_{2}$. The channel has a multiplying effect on $X_{1}, X_{2}$ by factor $h_{1}, h_{2}$, respectively, i.e., $Y=h_{1} X_{1}+h_{2} X_{2}+Z$, where $Z$ is a white Gaussian noise $Z \sim N\left(0, \sigma^{2}\right)$.
(a) Find the joint distribution of $X_{1}$ and $X_{2}$ that bring the mutual information $I\left(Y ; X_{1}, X_{2}\right)$ to a maximum? (You need to find $\left.\arg \max P_{X_{1}, X_{2}} I\left(X_{1}, X_{2} ; Y\right).\right)$


Figure 1: The communication model
(b) What is the capacity of the system ?
(c) Express the capacity for the following cases:
i. $h_{1}=1, h_{2}=1$ ?
ii. $h_{1}=1, h_{2}=0$ ?
iii. $h_{1}=0, h_{2}=0$ ?

## 4. AWGN with two noises(15 points)

Figure 2 depicts a communication system with an AWGN (Additive white noise Gaussian) channel whith two i.i.d. noises $Z_{1} \sim N\left(0, \sigma_{1}^{2}\right)$, $Z_{2} \sim N\left(0, \sigma_{2}^{2}\right)$ that are independent of each other and are added to the signal $X$, i.e., $Y=X+Z_{1}+Z_{2}$. The average power constrain on the input is $P$, i.e., $\frac{1}{n} E\left[\sum_{i=1}^{n} X_{i}^{2}\right] \leq P$. In the sub-questions below we consider the cases where the noise $Z_{2}$ may or may not be known to the encoder and decoder.


Figure 2: Two noise sources
(a) Find the channel capacity for the case in which the noise in not known to either sides (lines 1 and 2 are disconnected from the encoder and the decoder).
(b) Find the capacity for the case that the noise $Z_{2}$ is known to the encoder and decoder (lines 1 and 2 are connected to both the encoder and decoder). This means that the codeword $X^{n}$ may depend on the message $W$ and the noise $Z_{2}^{n}$ and the decoder decision $\hat{W}$ may depend on the output $Y^{n}$ and the noise $Z_{2}^{n}$. (Hint: Could the capacity be lager than $\frac{1}{2} \log \left(1+\frac{P}{\sigma_{1}^{2}}\right)$ ?)
(c) Find the capacity for the case that the noise $Z_{2}$ is known only to the decoder. (line 1 is disconnected from the encoder and line 2
is connected to the decoder). This means that the codewords $X^{n}$ may depend only on the message $W$ and the decoder decision $\hat{W}$ may depend on the output $Y^{n}$ and the noise $Z_{2}^{n}$.

