(a)
true:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

If $I(X ; Y)=0$ then $H(X)=H(X \mid Y)$. We can write:

$$
I(X ; Y)=D\left(P_{x, y}(x, y) \| P_{x}(x) P_{y}(y)\right)=0
$$

$D(Q \| P)=0$ iff $P_{x}(x)=Q_{x}(x) \forall x$, therefore $P_{x, y}(x, y)=P_{x}(x) P_{y}(y)$ for every $x, y$ and as result $X \perp Y$.
(b)
false: If $p(x \mid y) \perp p(y \mid z)$ then $H(X \mid Y)$ and $(Y \mid Z)$ have any ratio between them.
(c)
true:
Using the concave property of the divergence function:

$$
D(\lambda P+(1-\lambda) Q \| Q) \leq \lambda D(P \| Q)+(1-\lambda) D(Q \| Q)
$$

Assigning $\lambda=\frac{1}{2}$, and since $D(Q \| Q)=0$ :

$$
D\left(\frac{1}{2} P+\frac{1}{2} Q \| Q\right) \leq \frac{1}{2} D(P \| Q)
$$

(d)
false:
We have proven the inequality $H(g(Z)) \leq H(Z)$ on homework. This time $Z$ is a random variable with the joint distribution $P_{x, y}$. Therefore:

$$
H(X+Y) \leq H(X, Y)
$$

(e)
true:
Note: In general, $I(X ; Y \mid Z)$ can be larger than $I(X ; Y)$ and therefore $I(X ; Y)-$ $I(X ; Y \mid Z)$ can be less then zero.
$|I(X ; Y)-I(X ; Y \mid Z)|=\max \{[I(X ; Y)-I(X ; Y \mid Z)],[I(X ; Y \mid Z)-I(X ; Y)]\}$

The first expression is:

$$
\begin{aligned}
I(X ; Y)-I(X ; Y \mid Z) & =H(X)-H(X \mid Y)-[H(X \mid Z)-H(X \mid Y, Z)] \\
& =\underbrace{H(X)-H(X \mid Z)}_{I(X ; Z)}-\underbrace{[H(X \mid Y)-H(X \mid Y, Z)]}_{\geq 0} \\
& \leq I(X ; Z) \\
& =H(Z)-\underbrace{H(Z \mid X)}_{\geq 0} \\
& \leq H(Z)
\end{aligned}
$$

The second expression is:

$$
\begin{aligned}
I(X ; Y \mid Z)-I(X ; Y) & =H(X \mid Z)-H(X \mid Y, Z)-[H(X)-H(X \mid Y)] \\
& =H(X \mid Y)-H(X \mid Y, Z)-[H(X)-H(X \mid Z)] \\
& =I(X ; Z \mid Y)-I(X ; Z) \\
& \leq I(X ; Z \mid Y) \\
& =H(Z \mid Y)-H(Z \mid X, Y) \\
& \leq H(Z \mid Y) \\
& \leq H(Z)
\end{aligned}
$$

Therefore

$$
|I(X ; Y)-I(X ; Y \mid Z)| \leq \max \{H(Z), H(Z)\}=H(Z)
$$

## (f)

false:
We know that $\frac{1}{n} \log \left|A_{n}\right| \geq H(X)-\varepsilon$ for $n$ sufficiently large (theorem 3.3.1 in the text book and as proved in class). Since $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)=1$ and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(B_{n}\right)=1$ we can say that also $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n} \cap B_{n}\right)=1$ (it was also shown in class) and therefore:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|A_{n} \cap B_{n}\right| \geq H(X)-\varepsilon
$$

But since $\varepsilon$ is as small as we like, we cannot say that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|A_{n} \cap B_{n}\right|<H(X)
$$

## (g)

false:
Assuming that the file is already optimally compressed, it cannot be compressed any further. Also, if the entropy rate of the bits in the file is 1 for some reason, it cannot be compressed.

For example, if the bits in the file are Bernoulli $\left(\frac{1}{2}\right)$ distributed, the file cannot be compressed anymore.
(h)
true:
Using theorem 8.4.1 and example 8.5.1 in the text book:

$$
h\left(X_{1}, X_{2}, \ldots, X_{2}\right)=\frac{1}{2} \log \left[(2 \pi e)^{n}|K|\right]
$$

Using the identity:

$$
h(Y \mid X)=h(X, Y)-h(Y)
$$

Assigning:

$$
h(X, Y)=\frac{1}{2} \log \left[(2 \pi e)^{2}\left(\sigma^{4}-\sigma^{4} \rho^{2}\right)\right]
$$

And:

$$
h(Y)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

Therefore:

$$
h(X, Y)-h(Y)=\frac{1}{2} \log \left[2 \pi e \sigma^{2}\left(1-\rho^{2}\right)\right]
$$

(i)
false:
Using the answer of the last question:

$$
h(Y \mid X)=\frac{1}{2} \log \left[2 \pi e \sigma^{2}\left(1-\rho^{2}\right)\right]
$$

If $\sigma^{2} \leq 2 \pi e$ then $\log \left[2 \pi e \sigma^{2}\left(1-\rho^{2}\right)\right] \leq 0$, and:

$$
h(Y \mid X) \leq 0
$$

(j)
true:
Increasing the distortion allows rate reduction.
(k)
true:

$$
R(D) \leq I(X ; \hat{X})=H(X)-H(X \mid \hat{X})=H(\hat{X})-H(\hat{X} \mid X)
$$

Therefore $R(D) \leq H(X)$ and $R(D) \leq H(\hat{X})$. And we can say that:

$$
R(D) \leq \min (H(X), H(\hat{X}))
$$

Using theorem 2.6.4 $(H(X) \leq \log |\mathcal{X}|)$ :

$$
R(D) \leq \min (\log |\mathcal{X}|, \log |\hat{\mathcal{X}}|)
$$

Since $\log$ is a non descending function:

$$
R(D) \leq \log (\min (|\mathcal{X}|,|\hat{\mathcal{X}}|))
$$

## 2

(a)

Huffman code:


Figure 1: Huffman
(b)

Huffman code is optimal code and achieves the entropy for dyadic distribution. If the distribution of the digits is not Bernoulli( $\frac{1}{2}$ ) you can compress it further.
The binary digits of the data would be equally distributed after applying the Huffman code and therefore $p_{0}=p_{1}=\frac{1}{2}$.

The expected length would be:

$$
E[l]=\frac{1}{2} \cdot 1+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4=2.25
$$

Therefore, the expected length of 1000 symbols would be 2250 bits.

## 3

(a)

$$
Y=h_{1} X_{1}+h_{2} X_{2}+Z
$$

The mutual information is:

$$
\begin{aligned}
I\left(X_{1}, X_{2} ; Y\right) & =h(Y)-h\left(Y \mid X_{1}, X_{2}\right) \\
& =h(Y)-h(Z)
\end{aligned}
$$

Since $h(z)$ is constant, we need to find the maximum of $h(Y)$, the second moment of Y is:

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[\left(h_{1} X_{1}+h_{2} X_{2}+Z\right)^{2}\right] \\
& \stackrel{(i)}{=} E\left[\left(h_{1} X_{1}+h_{2} X_{2}\right)^{2}\right]+E\left[Z^{2}\right] \\
& =h_{1}^{2}\left[X_{1}^{2}\right]+h_{2}^{2}\left[X_{2}^{2}\right]+2 h_{1} h_{2} E\left[X_{1} X_{2}\right]+\sigma_{Z}^{2} \\
& \leq h_{1}^{2} P_{1}+h_{2}^{2} P_{2}+2 h_{1} h_{2} E\left[X_{1} X_{2}\right]+\sigma_{Z}^{2} \\
& \stackrel{(i i)}{\leq} h_{1}^{2} P_{1}+h_{2}^{2} P_{2}+2 h_{1} h_{2} \sqrt{E\left[X_{1}^{2}\right] E\left[X_{2}^{2}\right]}+\sigma_{Z}^{2} \\
& \leq h_{1}^{2} P_{1}+h_{2}^{2} P_{2}+2 h_{1} h_{2} \sqrt{P_{1} P_{2}}+\sigma_{Z}^{2} \\
& =\left(h_{1} \sqrt{P_{1}}+h_{2} \sqrt{P_{2}}\right)^{2}+\sigma_{Z}^{2}
\end{aligned}
$$

(i) - $Z$ is independent of $X_{1}, X_{2}$.
(ii) - Cauchy-Schwarz inequality. Where $X_{1}=\alpha X_{2},\binom{X_{1}}{X_{2}} \sim N(0, K)$ and $K=$ $\left(\begin{array}{cc}P_{1} & \sqrt{P_{1} P_{2}} \\ \sqrt{P_{1} P_{2}} & P_{2}\end{array}\right)$ will result with equality and bring the mutual information to a maximum.

Therefore, the mutual information is bounded by:

$$
I\left(X_{1}, X_{2} ; Y\right) \leq \frac{1}{2} \log \left(1+\frac{\left(h_{1} \sqrt{P_{1}}+h_{2} \sqrt{P_{2}}\right)^{2}}{\sigma_{Z}^{2}}\right)
$$

(b)

The capacity of the system is:

$$
C=\max _{P_{x_{1}, x_{2}}} I\left(X_{1}, X_{2} ; Y\right)=\frac{1}{2} \log \left(1+\frac{\left(h_{1} \sqrt{P_{1}}+h_{2} \sqrt{P_{2}}\right)^{2}}{\sigma_{Z}^{2}}\right)
$$

(c)
i
For $h_{1}=1$ and $h_{2}=1$ the capacity of the system would be:

$$
\begin{aligned}
C & =\frac{1}{2} \log \left(1+\frac{\left(\sqrt{P_{1}}+\sqrt{P_{2}}\right)^{2}}{\sigma_{Z}^{2}}\right) \\
& =\frac{1}{2} \log \left(1+\frac{P_{1}+2 \sqrt{P_{1} P_{2}}+P_{2}}{\sigma_{Z}^{2}}\right)
\end{aligned}
$$

ii
For $h_{1}=1$ and $h_{2}=0$ the capacity of the system would be:

$$
C=\frac{1}{2} \log \left(1+\frac{P_{1}}{\sigma_{Z}^{2}}\right)
$$

iii
For $h_{1}=0$ and $h_{2}=0$ the capacity of the system would be:

$$
C=\frac{1}{2} \log (1)=0
$$

We can see that having 2 channels both increase the signal level and provides redundancy.
(a)

Since the noise is not know to both sides, the total noise is $\sigma_{1}^{2}+\sigma_{2}^{2}$ and the capacity is:

$$
C=\frac{1}{2} \log \left(1+\frac{P}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)
$$

(b) $+(\mathrm{C})$

Once $Z_{2}$ is known to the receiver, we can add a subtraction unit in the decoder that subtract $Z_{2}$ and therefore the noise is only $Z_{1}$. And the capacity is:

$$
C=\frac{1}{2} \log \left(1+\frac{P}{\sigma_{1}^{2}}\right)
$$

