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(a)

true:

I(X ; Y ) = H(X) − H(X |Y )

If I(X ; Y ) = 0 then H(X) = H(X |Y ). We can write:

I(X ; Y ) = D( Px,y(x, y) || Px(x)Py(y) ) = 0

D(Q||P ) = 0 iff Px(x) = Qx(x) ∀x, therefore Px,y(x, y) = Px(x)Py(y) for every
x, y and as result X ⊥ Y .

(b)

false: If p(x|y) ⊥ p(y|z) then H(X |Y ) and (Y |Z) have any ratio between them.

(c)

true:
Using the concave property of the divergence function:

D (λP + (1 − λ)Q || Q) ≤ λD(P || Q) + (1 − λ)D(Q || Q)

Assigning λ = 1
2 , and since D(Q||Q) = 0:

D

(
1

2
P +

1

2
Q || Q

)

≤
1

2
D(P ||Q)

(d)

false:
We have proven the inequality H(g(Z)) ≤ H(Z) on homework. This time Z is
a random variable with the joint distribution Px,y. Therefore:

H(X + Y ) ≤ H(X, Y )

(e)

true:
Note: In general, I(X ; Y |Z) can be larger than I(X ; Y ) and therefore I(X ; Y )−
I(X ; Y |Z) can be less then zero.

|I(X ; Y ) − I(X ; Y |Z)| = max {[I(X ; Y ) − I(X ; Y |Z)], [I(X ; Y |Z) − I(X ; Y )]}
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The first expression is:

I(X ; Y ) − I(X ; Y |Z) = H(X) − H(X |Y ) − [H(X |Z) − H(X |Y, Z)]

= H(X) − H(X |Z)
︸ ︷︷ ︸

I(X;Z)

− [H(X |Y ) − H(X |Y, Z)]
︸ ︷︷ ︸

≥0

≤ I(X ; Z)

= H(Z) − H(Z|X)
︸ ︷︷ ︸

≥0

≤ H(Z)

The second expression is:

I(X ; Y |Z) − I(X ; Y ) = H(X |Z) − H(X |Y, Z)− [H(X) − H(X |Y )]

= H(X |Y ) − H(X |Y, Z) − [H(X) − H(X |Z)]

= I(X ; Z|Y ) − I(X ; Z)

≤ I(X ; Z|Y )

= H(Z|Y ) − H(Z|X, Y )

≤ H(Z|Y )

≤ H(Z)

Therefore

|I(X ; Y ) − I(X ; Y |Z)| ≤ max {H(Z), H(Z)} = H(Z)

(f)

false:
We know that 1

n
log |An| ≥ H(X) − ε for n sufficiently large (theorem 3.3.1

in the text book and as proved in class). Since limn→∞ Pr (An) = 1 and
limn→∞ Pr (Bn) = 1 we can say that also limn→∞ Pr (An ∩ Bn) = 1 (it was
also shown in class) and therefore:

lim
n→∞

1

n
log |An ∩ Bn| ≥ H(X) − ε

But since ε is as small as we like, we cannot say that:

lim
n→∞

1

n
log |An ∩ Bn| < H(X)

(g)

false:
Assuming that the file is already optimally compressed, it cannot be compressed
any further. Also, if the entropy rate of the bits in the file is 1 for some reason,
it cannot be compressed.

For example, if the bits in the file are Bernoulli(1
2 ) distributed, the file

cannot be compressed anymore.
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(h)

true:
Using theorem 8.4.1 and example 8.5.1 in the text book:

h(X1, X2, . . . , X2) =
1

2
log[(2πe)n|K|]

Using the identity:

h(Y |X) = h(X, Y ) − h(Y )

Assigning:

h(X, Y ) =
1

2
log[(2πe)2(σ4 − σ4ρ2)]

And:

h(Y ) =
1

2
log(2πeσ2)

Therefore:

h(X, Y ) − h(Y ) =
1

2
log[2πeσ2(1 − ρ2)]

(i)

false:
Using the answer of the last question:

h(Y |X) =
1

2
log[2πeσ2(1 − ρ2)]

If σ2 ≤ 2πe then log[2πeσ2(1 − ρ2)] ≤ 0, and:

h(Y |X) ≤ 0

(j)

true:
Increasing the distortion allows rate reduction.

(k)

true:

R(D) ≤ I(X ; X̂) = H(X) − H(X |X̂) = H(X̂) − H(X̂ |X)
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Therefore R(D) ≤ H(X) and R(D) ≤ H(X̂). And we can say that:

R(D) ≤ min(H(X), H(X̂))

Using theorem 2.6.4 (H(X) ≤ log |X |):

R(D) ≤ min(log |X |, log |X̂ |)

Since log is a non descending function:

R(D) ≤ log(min(|X |, |X̂ |))
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(a)

Huffman code:
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0
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011
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0011

0010

0001

0000

Figure 1: Huffman

(b)

Huffman code is optimal code and achieves the entropy for dyadic distribution.
If the distribution of the digits is not Bernoulli(1

2 ) you can compress it further.
The binary digits of the data would be equally distributed after applying the
Huffman code and therefore p0 = p1 = 1

2 .
The expected length would be:

E[l] =
1

2
· 1 +

1

8
· 3 +

1

8
· 3 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 = 2.25

Therefore, the expected length of 1000 symbols would be 2250 bits.
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3

(a)

Y = h1X1 + h2X2 + Z

The mutual information is:

I(X1, X2; Y ) = h(Y ) − h(Y |X1, X2)

= h(Y ) − h(Z)

Since h(z) is constant, we need to find the maximum of h(Y ), the second moment
of Y is:

E[Y 2] = E[(h1X1 + h2X2 + Z)2]

(i)
= E[(h1X1 + h2X2)

2] + E[Z2]

= h2
1[X

2
1 ] + h2

2[X
2
2 ] + 2h1h2E[X1X2] + σ2

Z

≤ h2
1P1 + h2

2P2 + 2h1h2E[X1X2] + σ2
Z

(ii)

≤ h2
1P1 + h2

2P2 + 2h1h2

√

E[X2
1 ]E[X2

2 ] + σ2
Z

≤ h2
1P1 + h2

2P2 + 2h1h2

√

P1P2 + σ2
Z

= (h1

√

P1 + h2

√

P2)
2 + σ2

Z

(i) - Z is independent of X1, X2.

(ii) - Cauchy-Schwarz inequality. Where X1 = αX2,
(
X1

X2

)
∼ N (0, K) and K =

(
P1

√
P1P2√

P1P2 P2

)
will result with equality and bring the mutual information to

a maximum.

Therefore, the mutual information is bounded by:

I(X1, X2; Y ) ≤ 1

2
log

(

1 +
(h1

√
P1 + h2

√
P2)

2

σ2
Z

)

(b)

The capacity of the system is:

C = max
Px1,x2

I(X1, X2; Y ) =
1

2
log

(

1 +
(h1

√
P1 + h2

√
P2)

2

σ2
Z

)
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(c)

i

For h1 = 1 and h2 = 1 the capacity of the system would be:

C =
1

2
log

(

1 +
(
√

P1 +
√

P2)
2

σ2
Z

)

=
1

2
log

(

1 +
P1 + 2

√
P1P2 + P2

σ2
Z

)

ii

For h1 = 1 and h2 = 0 the capacity of the system would be:

C =
1

2
log

(

1 +
P1

σ2
Z

)

iii

For h1 = 0 and h2 = 0 the capacity of the system would be:

C =
1

2
log (1) = 0

We can see that having 2 channels both increase the signal level and provides
redundancy.
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4

(a)

Since the noise is not know to both sides, the total noise is σ2
1 + σ2

2 and the
capacity is:

C =
1

2
log

(

1 +
P

σ2
1 + σ2

2

)

(b)+(C)

Once Z2 is known to the receiver, we can add a subtraction unit in the decoder
that subtract Z2 and therefore the noise is only Z1. And the capacity is:

C =
1

2
log

(

1 +
P

σ2
1

)
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