(a)
true:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

If $I(X ; Y)=0$ then $H(X)=H(X \mid Y)$. We can write:

$$
I(X ; Y)=D\left(P_{x, y}(x, y) \| P_{x}(x) P_{y}(y)\right)=0
$$

$D(Q \| P)=0$ iff $P_{x}(x)=Q_{x}(x) \forall x$, therefore $P_{x, y}(x, y)=P_{x}(x) P_{y}(y)$ for every x, y and as result $X \perp Y$.
(b)
true:

$$
X-Y-Z \Rightarrow I(X ; Y) \geq I(X ; Z)
$$

As result:

$$
H(X)-H(X \mid Y) \geq H(X)-H(X \mid Z) \Rightarrow H(X \mid Y) \leq H(X \mid Z)
$$

(c)
true:
Using the concave property of the divergence function:

$$
D(\lambda P+(1-\lambda) Q \| Q) \leq \lambda D(P \| Q)+(1-\lambda) D(Q \| Q)
$$

Assigning $\lambda=\frac{1}{2}$, and since $D(Q \| Q)=0$:

$$
D\left(\frac{1}{2} P+\frac{1}{2} Q \| Q\right) \leq \frac{1}{2} D(P \| Q)
$$

(d)
true:

$$
H(X+Y) \geq H(X+Y \mid Y) \stackrel{(a)}{=} H(X)
$$

(a) - since X is independent of Y.
(e)
true:

$$
\begin{aligned}
I(X ; Y)-I(X ; Y \mid Z) & =H(X)-H(X \mid Y)-[H(X \mid Z)-H(X \mid Y, Z)] \\
& =\underbrace{H(X)-H(X \mid Z)}_{I(X ; Z)}-\underbrace{[H(X \mid Y)-H(X \mid Y, Z)]}_{\geq 0} \\
& \leq I(X ; Z) \\
& =H(Z)-\underbrace{H(Z \mid X)}_{\geq 0} \\
& \leq H(Z)
\end{aligned}
$$

(f)

false:

We know that $\frac{1}{n} \log \left|A_{n}\right| \geq H(X)-\varepsilon$ for n sufficiently large (theorem 3.3.1 in the text book and as proved in class). Since $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)=1$ and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(B_{n}\right)=1$ we can say that also $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n} \cap B_{n}\right)=1$ (it was also shown in class) and therefore:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|A_{n} \cap B_{n}\right| \geq H(X)-\varepsilon
$$

But since ε is as small as we like, we cannot say that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|A_{n} \cap B_{n}\right|<H(X)
$$

(g)

false:
Assuming that the file is already optimally compressed, it cannot be compressed any further. Also, if the entropy rate of the bits in the file is 1 for some reason, it cannot be compressed.

For example, if the bits in the file are $\operatorname{Bernoulli}\left(\frac{1}{2}\right)$ distributed, the file cannot be compressed anymore.
(h)
true:
It has shown in class that $R_{X} \leq H(X)+1, R_{X \mid Y} \leq H(X \mid Y)+1$ and therefore:

$$
R_{X}-R_{X \mid Y} \leq I(X ; Y)+1
$$

(i)

true:

If $X \perp Y$ then $p(x)=p(x \mid y)$ and $R_{X}=R_{X \mid Y}$.
(j)
true:
Increasing the distortion allows rate reduction.
(k)
true:

$$
\log |\hat{\mathcal{X}}| \stackrel{(a)}{\geq} H(\hat{X}) \geq H(\hat{X})-H(\hat{X} \mid X)=I(\hat{X} ; X) \stackrel{(b)}{\geq} R(D)
$$

(a) - equality if \hat{X} is equally distributed.
(b) - equality if $p(\hat{x} \mid x)$ brings the mutual information into minimum under distortion constraint

2

(a)

Huffman code:

Figure 1: Huffman
(b)

Huffman code is optimal code and achieves the entropy for dyadic distribution. If the distribution of the digits is not Bernoulli($\frac{1}{2}$) you can compress it further.
The binary digits of the data would be equally distributed after applying the Huffman code and therefore $p_{0}=p_{1}=\frac{1}{2}$.

The expected length would be:

$$
E[l]=\frac{1}{2} \cdot 1+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4+\frac{1}{16} \cdot 4=2.25
$$

Therefore, the expected length of 1000 symbols would be 2250 bits.

3

(a)

We can use the solution of the home work:

$$
C=\log \left(2^{C_{1}}+2^{C_{2}}+2^{C_{3}}\right)
$$

Now we need to calculate the capacity of each channel:

$$
\begin{gathered}
C_{1}=\max _{p(x)} I(X ; Y)=H(Y)-H(Y \mid X)=0-0=0 \\
C_{2}=\max _{p(x)} I(X ; Y)=H(Y)-H(Y \mid X)=1-1=0 \\
C_{3}=\max _{p(x)} I(X ; Y)=\max _{p(x)}\{H(Y)-H(Y \mid X)\} \\
=\max _{p(x)}\left[-\frac{1}{2} p_{2} \log \left(\frac{1}{2} p_{2}\right)-\left(\frac{1}{2} p_{2}+p_{3}\right) \log \left(\frac{1}{2} p_{2}+p_{3}\right)\right]-p_{2}
\end{gathered}
$$

Assigning $p_{3}=1-p_{2}$ and derive against p_{2} :
$\frac{d I(X ; Y)}{d p_{2}}=-\frac{p_{2}}{2} \cdot \frac{1}{2} \cdot \frac{1}{\frac{p_{2}}{2}}-\frac{1}{2} \log \left(\frac{p_{2}}{2}\right)+\frac{2-p_{2}}{2} \cdot \frac{1}{2} \cdot \frac{1}{\frac{2-p_{2}}{2}}+\frac{1}{2} \log \left(\frac{2-p_{2}}{2}\right)-1=0$
And as result $p_{2}=\frac{2}{5}$:

$$
C_{3} \approx 0.322
$$

And, finally:

$$
C=\log \left(2^{0}+2^{0}+2^{0.322}\right) \approx 1.7
$$

(b)
(b)

Encoding: You just use ternary representation of the message and send using

Decoding: map the ternary output into the message.

4

(a) $+(\mathrm{b})$

We can simplify those two schemes to a system in which:

$$
Z_{i} \sim N\left(0, \sigma^{2}\right)
$$

Now we can write that:

$$
I(X ; Y)=h(Y)-h(Y \mid X)
$$

Where:

$$
h(Y) \leq \frac{1}{2} \log \left(2 \pi e E\left[Y^{2}\right]\right)
$$

And:

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[\left(\sum_{i=1}^{K}\left(X+Z_{i}\right)\right)^{2}\right] \\
& \stackrel{(a)}{=} K^{2} E\left[X^{2}\right]+K E\left[Z_{i}^{2}\right] \\
& \leq K^{2} P+K \sigma^{2}
\end{aligned}
$$

(a) $-Z_{i}$ i.i.d

As a result we have:

$$
h(Y) \leq \frac{1}{2} \log \left[2 \pi e\left(K^{2} P+K \sigma^{2}\right)\right]
$$

And the conditional entropy would be (since Y is sum of K independent Gaussian noises):

$$
h(Y \mid X)=\frac{1}{2} \log \left(2 \pi e K \sigma^{2}\right)
$$

Therefore:

$$
\begin{aligned}
I(X ; Y) & \leq \frac{1}{2} \log \left[2 \pi e\left(K^{2} P+K \sigma^{2}\right)\right]-\frac{1}{2} \log \left(2 \pi e K \sigma^{2}\right) \\
& =\frac{1}{2} \log \left(\frac{K^{2} P+K \sigma^{2}}{K \sigma^{2}}\right) \\
& =\frac{1}{2} \log \left(1+\frac{K P}{\sigma^{2}}\right)
\end{aligned}
$$

And the capacity would be:

$$
C=\frac{1}{2} \log \left(1+\frac{K P}{\sigma^{2}}\right)
$$

(c)

This time:

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[(X+Z)^{2}\right] \\
& =E\left[X^{2}\right]+E\left[Z_{i}^{2}\right] \\
& \leq K P+\sigma^{2}
\end{aligned}
$$

And:

$$
\begin{gathered}
h(Y) \leq \frac{1}{2} \log \left[2 \pi e\left(K P+\sigma^{2}\right)\right] \\
h(Y \mid X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
\end{gathered}
$$

As a result:

$$
I(X ; Y) \leq \frac{1}{2} \log \left(1+\frac{K P}{\sigma^{2}}\right)
$$

And the capacity would be:

$$
C=\frac{1}{2} \log \left(1+\frac{K P}{\sigma^{2}}\right)
$$

It seems that spatial diversity and time diversity are just like increasing the transmitted signal power.

