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(a)

true:

I(X ; Y ) = H(X) − H(X |Y )

If I(X ; Y ) = 0 then H(X) = H(X |Y ). We can write:

I(X ; Y ) = D( Px,y(x, y) || Px(x)Py(y) ) = 0

D(Q||P ) = 0 iff Px(x) = Qx(x) ∀x, therefore Px,y(x, y) = Px(x)Py(y) for every
x, y and as result X ⊥ Y .

(b)

true:

X − Y − Z ⇒ I(X ; Y ) ≥ I(X ; Z)

As result:

H(X) − H(X |Y ) ≥ H(X) − H(X |Z) ⇒ H(X |Y ) ≤ H(X |Z)

(c)

true:
Using the concave property of the divergence function:

D (λP + (1 − λ)Q || Q) ≤ λD(P || Q) + (1 − λ)D(Q || Q)

Assigning λ = 1
2 , and since D(Q||Q) = 0:

D

(
1

2
P +

1

2
Q || Q

)

≤
1

2
D(P ||Q)

(d)

true:

H(X + Y ) ≥ H(X + Y |Y )
(a)
= H(X)

(a) - since X is independent of Y.
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(e)

true:

I(X ; Y ) − I(X ; Y |Z) = H(X) − H(X |Y ) − [H(X |Z) − H(X |Y, Z)]

= H(X) − H(X |Z)
︸ ︷︷ ︸

I(X;Z)

− [H(X |Y ) − H(X |Y, Z)]
︸ ︷︷ ︸

≥0

≤ I(X ; Z)

= H(Z) − H(Z|X)
︸ ︷︷ ︸

≥0

≤ H(Z)

(f)

false:
We know that 1

n
log |An| ≥ H(X) − ε for n sufficiently large (theorem 3.3.1

in the text book and as proved in class). Since limn→∞ Pr (An) = 1 and
limn→∞ Pr (Bn) = 1 we can say that also limn→∞ Pr (An ∩ Bn) = 1 (it was
also shown in class) and therefore:

lim
n→∞

1

n
log |An ∩ Bn| ≥ H(X) − ε

But since ε is as small as we like, we cannot say that:

lim
n→∞

1

n
log |An ∩ Bn| < H(X)

(g)

false:
Assuming that the file is already optimally compressed, it cannot be compressed
any further. Also, if the entropy rate of the bits in the file is 1 for some reason,
it cannot be compressed.

For example, if the bits in the file are Bernoulli(1
2 ) distributed, the file

cannot be compressed anymore.

(h)

true:
It has shown in class that RX ≤ H(X)+ 1, RX|Y ≤ H(X |Y )+ 1 and therefore:

RX − RX|Y ≤ I(X ; Y ) + 1

(i)

true:
If X ⊥ Y then p(x) = p(x|y) and RX = RX|Y .
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(j)

true:
Increasing the distortion allows rate reduction.

(k)

true:

log |X̂ |
(a)

≥ H(X̂) ≥ H(X̂) − H(X̂|X) = I(X̂ ; X)
(b)

≥ R(D)

(a) - equality if X̂ is equally distributed.
(b) - equality if p(x̂|x) brings the mutual information into minimum under dis-
tortion constraint
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(a)

Huffman code:
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Figure 1: Huffman

(b)

Huffman code is optimal code and achieves the entropy for dyadic distribution.
If the distribution of the digits is not Bernoulli(1

2 ) you can compress it further.
The binary digits of the data would be equally distributed after applying the
Huffman code and therefore p0 = p1 = 1

2 .
The expected length would be:

E[l] =
1

2
· 1 +

1

8
· 3 +

1

8
· 3 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 = 2.25

Therefore, the expected length of 1000 symbols would be 2250 bits.
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3

(a)

We can use the solution of the home work:

C = log
(
2C1 + 2C2 + 2C3

)

Now we need to calculate the capacity of each channel:

C1 = max
p(x)

I(X ; Y ) = H(Y ) − H(Y |X) = 0 − 0 = 0

C2 = max
p(x)

I(X ; Y ) = H(Y ) − H(Y |X) = 1 − 1 = 0

C3 = max
p(x)

I(X ; Y ) = max
p(x)

{H(Y ) − H(Y |X)}

= max
p(x)

[

−
1

2
p2 log

(
1

2
p2

)

−

(
1

2
p2 + p3

)

log

(
1

2
p2 + p3

)]

− p2

Assigning p3 = 1 − p2 and derive against p2:

dI(X ; Y )

dp2
= −

p2

2
·
1

2
·

1
p2

2

−
1

2
log
(p2

2

)

+
2 − p2

2
·
1

2
·

1
2−p2

2

+
1

2
log

(
2 − p2

2

)

− 1 = 0

And as result p2 = 2
5 :

C3 ≈ 0.322

And, finally:

C = log(20 + 20 + 20.322) ≈ 1.7

(b)

(b)

Encoding: You just use ternary representation of the message and send using
0,1,2 but no 3 (or 0,1,3 but no 2) of the input channel.
Decoding: map the ternary output into the message.
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4

(a)+(b)

We can simplify those two schemes to a system in which:

Zi ∼ N(0, σ2)

Now we can write that:

I(X ; Y ) = h(Y ) − h(Y |X)

Where:

h(Y ) ≤
1

2
log(2πeE[Y 2])

And:

E[Y 2] = E





(
K∑

i=1

(X + Zi)

)2




(a)
= K2E[X2] + KE[Z2

i ]

≤ K2P + Kσ2

(a) - Zi i.i.d

As a result we have:

h(Y ) ≤
1

2
log[2πe(K2P + Kσ2)]

And the conditional entropy would be (since Y is sum of K independent Gaus-
sian noises):

h(Y |X) =
1

2
log(2πeKσ2)

Therefore:

I(X ; Y ) ≤
1

2
log[2πe(K2P + Kσ2)] −

1

2
log(2πeKσ2)

=
1

2
log

(
K2P + Kσ2

Kσ2

)

=
1

2
log

(

1 +
KP

σ2

)

And the capacity would be:

C =
1

2
log

(

1 +
KP

σ2

)
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(c)

This time:

E[Y 2] = E
[

(X + Z)
2
]

= E[X2] + E[Z2
i ]

≤ KP + σ2

And:

h(Y ) ≤
1

2
log[2πe(KP + σ2)]

h(Y |X) =
1

2
log(2πeσ2)

As a result:

I(X ; Y ) ≤
1

2
log

(

1 +
KP

σ2

)

And the capacity would be:

C =
1

2
log

(

1 +
KP

σ2

)

It seems that spatial diversity and time diversity are just like increasing the
transmitted signal power.
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