(a)

true:
I(X;Y)=H(X)-H(X|Y)
If I(X;Y) =0 then H(X) = H(X|Y). We can write:
I(X;Y) = D( Pay(a,y) || Pu()Py(y) ) =0

D(Q||P) = 0iff P(z) = Qu(z) Vz, therefore P, ,(x,y) = Py(x)Py,(y) for every
x,y and as result X 1L Y.

(b)
true:
X-Y-Z = I(X;Y)>I1I(X;2)
As result:
HX)-HX|Y)>HX)-H(X|Z)= HX|Y) < HX|Z)
(c)
true:

Using the concave property of the divergence function:
DAP+(1-NQ Q) <ADP [ Q)+ (1-N)D(Q [ Q)

Assigning A = 1, and since D(Q||Q) = 0:

D (3P +3Q1Q) < 30l
(d)

true:

HX+Y)>HX+Y|Y)Y H(X)

(a) - since X is independent of Y.



(e)

true:
I(X;Y) - I(X;Y|Z) = H(X)-HX|Y)-[H(X|Z2) - HX|Y, Z)]
H(X) - H(X|Z) - [H(X|Y) - H(X|Y, Z)]
1(X:2) >0
< I(X:2)
= H(Z)-H(Z|X)
——
>0
< H(Z)
(f)
false:
We know that 1 log|A,| > H(X) — e for n sufficiently large (theorem 3.3.1
in the text book and as proved in class). Since lim, o Pr(4,) = 1 and

lim, . Pr(B,) = 1 we can say that also lim, . Pr(4, N B,) = 1 (it was
also shown in class) and therefore:

1
lim —log|A,NB,| > H(X)—¢
n—oo N,
But since ¢ is as small as we like, we cannot say that:

1
lim —log|A, NB,| < H(X)
n—oo n,

(2)

false:
Assuming that the file is already optimally compressed, it cannot be compressed
any further. Also, if the entropy rate of the bits in the file is 1 for some reason,
it cannot be compressed.

For example, if the bits in the file are Bernoulli(3) distributed, the file
cannot be compressed anymore.

(h)
true:
It has shown in class that Ry < H(X)+1, Rxy < H(X|Y)+ 1 and therefore:

Rx—RX|y§I(X;Y)+1

(1)
true:
If X LY then p(z) = p(z|y) and Rx = Rx|y.



)
true:
Increasing the distortion allows rate reduction.

(k)

true:
. (a) .\ N . . (d)
log|X| > H(X) > H(X) — H(X[X) = I(X;X) > R(D)

(a) - equality if X is equally distributed.
(b) - equality if p(Z|z) brings the mutual information into minimum under dis-
tortion constraint



2
(a)

Huffman code:

1 3
011 %
1
010 z
0011 & 1
> 1
8 1
0010 1% 0 0
1
1
0001 i 1
1 0
8
0000 = 0
Figure 1: Huffman
(b)

Huffman code is optimal code and achieves the entropy for dyadic distribution.
If the distribution of the digits is not Bernoulli(%) you can compress it further.
The binary digits of the data would be equally distributed after applying the
Huffman code and therefore pg = p1 = %

The expected length would be:

1 1 1 1 1 1 1
Ell=2-1+2.34+2.34+ — 44+ — 44+ —.44+—.4=295
U 2 +8 +8 +16 +16 +16 +16

Therefore, the expected length of 1000 symbols would be 2250 bits.
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(a)
We can use the solution of the home work:
C =log (29 429 +2%)
Now we need to calculate the capacity of each channel:

Cy =maxI(X;Y)=H(Y)-H(Y|X)=0-0=0

p(z)

Co=maxI(X;Y)=HY)-HY|X)=1-1=0

p(x)

Cs = m(aicf(X;Y) = In(&);({H(Y) —H(Y|X)}
p(x p(x

= a ! lo 1 1 + lo 1 +
= max |—= —= —| = —= —
s 2p2 g 2p2 2p2 P3 g 2p2 p3 P2

Assigning p3 = 1 — po and derive against ps:

dI(X;Y 1 1 1 2 — 1 1 1 2 -
A(X;¥) bz log (]2> + P2 ( pz) -1=0

dps 2 2 I

2 2 2 2*%+51°g

And as result ps = %:

C3 ~0.322
And, finally:
C =log(2° +2° +203%2) ~ 1.7
(b)
(b)

Encoding: You just use ternary representation of the message and send using
0,1,2 but no 3 (or 0,1,3 but no 2) of the input channel.
Decoding: map the ternary output into the message.
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(a)+(b)

We can simplify those two schemes to a system in which:
Z; ~ N(0,0%)

Now we can write that:

Where:
h(Y) < %10g(27reE[Y2])
And:
K 2
ElY? = E (Z(X + Zi))
i=1
W K?B[X? + KE[22)
< K2?P+ Ko?
(a) - Z; iid

As a result we have:
1
h(Y) < 5 log[2me(K2P + Ko?)]

And the conditional entropy would be (since Y is sum of K independent Gaus-
sian noises):

1
h(Y|X) = 3 log(2reKo?)
Therefore:
1 1
I(X;Y) < 5 log[2me(K2P + Ko?%)] — 5 log(2meKo?)

1 <K2P+K02)
2

1 KP
§log 1+ —-

And the capacity would be:

1 KP
C:§log<1+?>



(c)

This time:
EY?Y = E {(X + 2)2}
= E[X?|+ E[Z]]
< KP+o?
And:
hY) < %log[Zﬂ'e(KP +02)]
1 2
MY |X) = 3 log(2meo®)
As a result:

1 KP

And the capacity would be:
1 KP
C = 5 10g <1 + 7)

It seems that spatial diversity and time diversity are just like increasing the
transmitted signal power.



