## Some Practice question for the Final

## 1. Huffman code

Give a Huffman encoding into an alphabet of size D = 4 of the following probability mass function:

$$\mathbf{p} = \left(\frac{8}{36}, \frac{7}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}\right)$$

# 2. Ternary Huffman word lengths

Which of the following sequences of word lengths *cannot* be the word lengths of a 3-ary Huffman code and which *can*?

- (a)  $\mathbf{L} = (1, 1, 2, 2, 3, 3, 3)$
- (b)  $\mathbf{L} = (1, 1, 2, 2, 3, 3)$
- (c)  $\mathbf{L} = (1, 1, 2, 2, 3)$
- (d)  $\mathbf{L} = (1, 2, 2, 2, 2, 2, 2)$
- (e)  $\mathbf{L} = (1, 2, 2, 2, 2)$

# 3. Cascade

Consider the two discrete memoryless channels  $(\mathcal{X}, p_1(y|x), \mathcal{Y})$  and  $(\mathcal{Y}, p_2(z|y), \mathcal{Z})$ . Let the channel transition matrices for the cascade channels in the previous problem be

| $X \backslash Y$ | 1 | e | 0 | $Y \backslash Z$ | 1 | e | 0 |
|------------------|---|---|---|------------------|---|---|---|
| 1                | 0 | 1 | 0 | 1                | 1 | 0 | 0 |
| e                | 0 | 1 | 0 | e                | 0 | 1 | 0 |
| 0                | 0 | 0 | 1 | 0                | 0 | 1 | 0 |
| $p_1(y x)$       |   |   |   | $p_2(z y)$       |   |   |   |

- (a) What is the capacity  $C_1$  of  $p_1(y|x)$ ?
- (b) What is the capacity  $C_2$  of  $p_2(z|y)$ ?

- (c) We now cascade these channels. Thus  $p_3(z|x) = \sum_y p_1(y|x)p_2(z|y)$ . What is the capacity  $C_3$  of  $p_3(z|x)$ ?
- (d) Now let us actively intervene between channels 1 and 2, rather than passively transmit  $y^n$ . What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output  $y^n$  of channel 1 and then reencode it as  $\tilde{y}^n$  for transmission over channel 2? (Think  $W \longrightarrow x^n(W) \longrightarrow y^n \longrightarrow \tilde{y}^n(y^n) \longrightarrow z^n \longrightarrow \hat{W}$ .)
- (e) What is the capacity of the cascade in part c) if the receiver can view *both* Y and Z?

### 4. Noisy typewriter

Find the capacity of th *m*-input channel in which  $Y = X + Z \pmod{m}$ , where  $X \in \{0, 1, 2, \dots, m-1\}$  and

$$Z = \begin{cases} 1, & \text{w.p. } \frac{3}{4} \\ 0, & \text{w.p. } \frac{1}{4} \end{cases}$$

### 5. Several BSC's

(a) What is the capacity of the 6-input, 6-output channel:



(b) What is the capacity if  $p_1 = p_2 = p_3 = 0$ ?

(c) What is the capacity if  $p_1 = p_2 = p_3 = \frac{1}{2}$ ?