Some Practice question for the Final

1. Huffman code

Give a Huffman encoding into an alphabet of size $D=4$ of the following probability mass function:

$$
\mathbf{p}=\left(\frac{8}{36}, \frac{7}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}\right)
$$

2. Ternary Huffman word lengths

Which of the following sequences of word lengths cannot be the word lengths of a 3 -ary Huffman code and which can?
(a) $\mathbf{L}=(1,1,2,2,3,3,3)$
(b) $\mathbf{L}=(1,1,2,2,3,3)$
(c) $\mathbf{L}=(1,1,2,2,3)$
(d) $\mathbf{L}=(1,2,2,2,2,2,2)$
(e) $\mathbf{L}=(1,2,2,2,2)$

3. Cascade

Consider the two discrete memoryless channels $\left(\mathcal{X}, p_{1}(y \mid x), \mathcal{Y}\right)$ and $\left(\mathcal{Y}, p_{2}(z \mid y), \mathcal{Z}\right)$. Let the channel transition matrices for the cascade channels in the previous problem be
\(\left.\begin{array}{c|ccc}X \backslash Y \& 1 \& e \& 0

\hline 1 \& 0 \& 1 \& 0

e \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1\end{array} \quad $$
\begin{array}{c}Y \backslash Z\end{array}
$$\right) 1\)| | e |
| :---: | :---: |
| 1 | 1 |
| 0 | 0 |
| $p_{1}(y \mid x)$ | |

(a) What is the capacity C_{1} of $p_{1}(y \mid x)$?
(b) What is the capacity C_{2} of $p_{2}(z \mid y)$?
(c) We now cascade these channels. Thus $p_{3}(z \mid x)=\sum_{y} p_{1}(y \mid x) p_{2}(z \mid y)$. What is the capacity C_{3} of $p_{3}(z \mid x)$?
(d) Now let us actively intervene between channels 1 and 2, rather than passively transmit y^{n}. What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output y^{n} of channel 1 and then reencode it as \tilde{y}^{n} for transmission over channel 2? (Think $\left.W \longrightarrow x^{n}(W) \longrightarrow y^{n} \longrightarrow \tilde{y}^{n}\left(y^{n}\right) \longrightarrow z^{n} \longrightarrow \hat{W}.\right)$
(e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z ?

4. Noisy typewriter

Find the capacity of th m-input channel in which $Y=X+Z(\bmod m)$, where $X \in\{0,1,2, \ldots, m-1\}$ and

$$
Z= \begin{cases}1, & \text { w.p. } \frac{3}{4} \\ 0, & \text { w.p. } \frac{1}{4}\end{cases}
$$

5. Several BSC's

(a) What is the capacity of the 6 -input, 6 -output channel:

(b) What is the capacity if $p_{1}=p_{2}=p_{3}=0$?
(c) What is the capacity if $p_{1}=p_{2}=p_{3}=\frac{1}{2}$?

