
EE 376A/Stat 376A Handout #31
Information Theory Thursday, March 17, 2005
Prof. T. Cover

Solutions to Final Examinations

1. (20 points) Cookies.
Let

Vn =
n∏

i=1

Xi,

where Xi are i.i.d.

Xi =

{
1/8, probability 1/2,
1/2, probability 1/2.

Presumably, Xi is the fraction remaining after a single mouse bite.

(a) Let
V ′n = αn.

Find the value of α such that Vn and V ′n decrease at the same rate.

For parts (b) and (c), we mix Vn and V ′n as follows. Let

Yi = λα + (1− λ)Xi,

where λ ∈ (0, 1). Let

V ′′n =
n∏

i=1

Yi.

(b) Is the growth rate of V ′′n larger or smaller than logα ?

(c) What is the growth rate of V ′′n for λ = 1/2 ?

Solution: Cookies.

(a) Since
1

n
log Vn → E logX1 = −2 w.p.1,

we need α = 2−2 = 1/4 to have the same growth (or decay) rate.
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(b) The growth rate of V ′′n is larger than logα. Indeed, by Jensen’s inequality,

log(λα + (1− λ)Xi) ≥ λ logα + (1− λ) logXi,

so that
E log Yi ≥ λ logα + (1− λ)E logXi = logα.

(c) Since

Yi =

{
3/16, probability 1/2,
3/8, probability 1/2,

the growth rate is given by

E log Yi = log

(
3

8
√

2

)
,

which is larger than log(1/4).

2. (20 points) Huffman code.
Find the binary Huffman encoding for

X ∼ p =

(
19

40
,

8

40
,

3

40
,

3

40
,

3

40
,

2

40
,

2

40

)
.

Solution: Huffman code.

Codeword
1 x1 19 19 19 19 19 21 40
01 x2 8 8 8 8 13 19
0001 x3 3 4 6 7 8
0010 x4 3 3 4 6
0011 x5 3 3 3
00001 x6 2 3
00000 x7 2
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3. (20 points) Good codes.
Which of the following codes are possible Huffman codes?

(a) {0,00,01}
(b) {0,10,11}
(c) {0,10}

Solution: Good codes.

Only (b) can be a Huffman code; it represents a complete binary tree. (a) is not prefix
free; (c) can be improved by replacing the codeword 10 with 1.

4. (20 points) Errors and erasures.
Consider a binary symmetric channel (BSC) with crossover probability p.
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A helpful genie who knows the locations of all bit flips offers to convert flipped bits
into erasures. In other words, the genie can transform the BSC into a binary erasure
channel. Would you use his power? Be specific.

Solution: Errors and erasures.

Although it is very tempting to accept the genie’s offer, on a second thought, one
realizes that it is disadvantageous to convert the bit flips into erasures when p is large.
For example, when p = 1, the original BSC is noiseless, while the “helpful” genie will
erase every single bit coming out from the channel.

The capacity C1(p) of the binary symmetric channel with crossover probability p is
1−H(p) while the capacity C2(p) of the binary erasure channel with erasure probability
p is 1 − p. One would convert the BSC into a BEC only if C1(p) ≤ C2(p), that is,
p ≤ p∗ = .7729. (See Figure 1.)
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5. (40 points) Random walks.
Consider the following graph with three nodes:

{Xi} t t t
1 2 3

(a) What is the entropy rate H(X ) of the random walk {Xi}∞i=1 on this graph?

Now consider a derived process

Yi =

{
0, if Xi = 1 or 3,
1, if Xi = 2.

(b) Is it Markov?

(c) Find the entropy rate H(Y) of {Yi}∞i=1.

Now consider another derived process

Zi =

{
0, if Xi = 1 or 2,
1, if Xi = 3.

(d) Is it Markov?

(e) Find the entropy rate H(Z) of {Zi}∞i=1.

For parts (f), (g), and (h), consider the following graph with three nodes:

{Ui}
�
�
�
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T
T
T
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(f) What is the entropy rate H(U) of the random walk {Ui}∞i=1 on this graph?

Now consider a derived process

Vi =

{
0, if Ui = 1 or 2,
1, if Ui = 3.

(g) Is it Markov?

(h) Find the entropy rate H(V) of {Vi}∞i=1.

Solution: Random walks.

(a) It is easy to see that the stationary distribution is given by µ = (1/4, 1/2, 1/4).
The entropy rate is

∑
j H(Xn+1|Xn = j)µj = 1/2.

(b) Yes, it is Markov. If Yn = 0, then Yn+1 = 1 w.p.1, and vice versa.

(c) Since the process evolves deterministically, the entropy rate H(Y) is 0.

(d) No, it is not Markov. For example, it is easy to check that P (Zn+1 = 1|Zn =
0, Zn−1 = 1) = 1/2, while P (Zn+1 = 1|Zn = 0) = 2/3.

(e) Although the process is not Markov, as in Problem 6 in midterm, knowing
(X1, Z1, . . . , Zn−1) is equivalent to knowing (X1, . . . , Xn−1). Thus we have

H(Zn|X1, Z
n−1) = H(Zn|Xn−1) = H(Zn|Xn−1) = 1/2,

and hence
H(Z) = lim

n→∞
H(Zn|X1, Z

n−1) = 1/2.

(f) Given Un, Un+1 takes two values with equal probability. Hence, H(U) = 1.

(g) Yes, it is Markov with the following transition probability:

{Vi} ��
��

�
	

�
t t0 1

1/2 1

1/2

(h) The stationary distribution is µ = (2/3, 1/3), so that

H(V) =
∑

j

H(Vn+1|Vn = j)µj = 2/3.
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6. (20 points) Code constraint.
What is the capacity of a BSC(p) under the constraint that each of the codewords has
a proportion of 1’s less than or equal to α, i.e.,

1

n

n∑

i=1

Xi(w) ≤ α, for w ∈ {1, 2, . . . , 2nR}.

(Pay attention when α > 1/2.)

Solution: Code constraint.

Using the similar argument for the capacity of Gaussian channels under the power
constraint P , we find that the capacity C of a BSC(p) under the proportion constraint
α is

C = max
p(x):EX≤α

I(X;Y ).

Now under the Bernoulli(π) input distribution with π ≤ α, we have

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(Z|X)

= H(Y )−H(Z)

= H(π ∗ p)−H(p), (1)

where π ∗ p = (1− π)p+ π(1− p). (Breaking I(X;Y ) = H(X)−H(X|Y ) = H(X)−
H(Z|Y ) is way more complicated since Z and Y are correlated.) Now when α > 1/2,
we have

max
π

H(π ∗ p)−H(p) = 1−H(p),

with the capacity-achieving π∗ = 1/2. On the other hand, when α ≤ 1/2, π∗ = α
achieves the maximum of (1); hence

C = H(α ∗ p)−H(p).

7. (20 points) Typicality.
Let (X,Y ) have joint probability mass function p(x, y) given as

@
@
@@X

Y
0 1

0 .1 .3

1 .4 .2
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(a) Find H(X), H(Y ), and I(X;Y ). (Don’t bother to compute the actual numerical
values.)

(b) Suppose {Xi} is independent and identically distributed (i.i.d.) according to
Bern(.4), {Yi} is i.i.d. Bern(1/2), and Xn and Y n are independent. Find (to
first order in the exponent) the probability that (Xn, Y n) is jointly typical (with
respect to the joint distribution p(x, y).

Solution: Typicality.

(a)

H(X) = H(.4),

H(Y ) = H(1/2) = 1,

I(X;Y ) = H(Y )−H(Y |X) = 1− .4H(1/4)− .6H(1/3).

(b) From the joint AEP, the probability (Xn, Y n) is jointly typical w.r.t. p(x, y) is
.
= 2−n(I(X;Y )±ε).

8. (20 points) Partition.
Let (X,Y ) denote height and weight. Let [Y ] be Y rounded off to the nearest pound.

(a) Which is greater I(X;Y ) or I(X; [Y ]) ?

(b) Why?

Solution: Partition.

(a) I(X;Y ) ≥ I(X; [Y ]).

(b) Data processing inequality.

9. (20 points) Amplify and forward.
We cascade two Gaussian channels by feeding the (scaled) output of the first channel
into the second.
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X1

P

X2

P

Y1 Y2

Z1 ∼ N(0, N) α Z2 ∼ N(0, N)

Thus noises Z1 and Z2 are independent and identically distributed according toN(0, N),

EX2
1 = EX2

2 = P,

Y1 = X1 + Z1,

Y2 = X2 + Z2,

and

X2 = αY1,

where the scaling factor α is chosen to satisfy the power constraint EX 2
2 = P .

(a) (5 points) What scaling factor α satisfies the power constraint?

(b) (10 points) Find
C = max

p(x1)
I(X1;Y2).

(c) (5 points) Is the cascade capacity C greater or less than 1
2

log
(
1 + P

N

)
?

Solution: Amplify and forward.

(a) We want α2EY 2
1 = α2(P +N) = P. Hence α =

√
P

P+N
.

(b) Since Y2 = X2 + Z2 = αY1 + Z2 = αX1 + (αZ1 + Z2), the channel from X1 to
Y2 is a Gaussian channel with signal-to-noise ratio α2P : (α2N +N). Hence, the
capacity is

C =
1

2
log

(
1 +

α2P

(α2 + 1)N

)
=

1

2
log

(
1 +

P 2

(2P +N)N

)
=

1

2
log

(
(P +N)2

(2P +N)N

)
.

(c) The cascade capacity C is less than 1
2

log
(
1 + P

N

)
, which can be shown by data

processing inequality. Adding an extra noise wouldn’t increase the capacity.
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