Solutions to Final Examinations

1. (20 points) Cookies.

Let

$$
V_{n}=\prod_{i=1}^{n} X_{i}
$$

where X_{i} are i.i.d.

$$
X_{i}= \begin{cases}1 / 8, & \text { probability } 1 / 2 \\ 1 / 2, & \text { probability } 1 / 2\end{cases}
$$

Presumably, X_{i} is the fraction remaining after a single mouse bite.
(a) Let

$$
V_{n}^{\prime}=\alpha^{n} .
$$

Find the value of α such that V_{n} and V_{n}^{\prime} decrease at the same rate.

For parts (b) and (c), we mix V_{n} and V_{n}^{\prime} as follows. Let

$$
Y_{i}=\lambda \alpha+(1-\lambda) X_{i}
$$

where $\lambda \in(0,1)$. Let

$$
V_{n}^{\prime \prime}=\prod_{i=1}^{n} Y_{i}
$$

(b) Is the growth rate of $V_{n}^{\prime \prime}$ larger or smaller than $\log \alpha$?
(c) What is the growth rate of $V_{n}^{\prime \prime}$ for $\lambda=1 / 2$?

Solution: Cookies.

(a) Since

$$
\frac{1}{n} \log V_{n} \rightarrow E \log X_{1}=-2 \quad \text { w.p.1, }
$$

we need $\alpha=2^{-2}=1 / 4$ to have the same growth (or decay) rate.
(b) The growth rate of $V_{n}^{\prime \prime}$ is larger than $\log \alpha$. Indeed, by Jensen's inequality,

$$
\log \left(\lambda \alpha+(1-\lambda) X_{i}\right) \geq \lambda \log \alpha+(1-\lambda) \log X_{i}
$$

so that

$$
E \log Y_{i} \geq \lambda \log \alpha+(1-\lambda) E \log X_{i}=\log \alpha
$$

(c) Since

$$
Y_{i}= \begin{cases}3 / 16, & \text { probability } 1 / 2 \\ 3 / 8, & \text { probability } 1 / 2\end{cases}
$$

the growth rate is given by

$$
E \log Y_{i}=\log \left(\frac{3}{8 \sqrt{2}}\right),
$$

which is larger than $\log (1 / 4)$.
2. (20 points) Huffman code.

Find the binary Huffman encoding for

$$
X \sim \mathbf{p}=\left(\frac{19}{40}, \frac{8}{40}, \frac{3}{40}, \frac{3}{40}, \frac{3}{40}, \frac{2}{40}, \frac{2}{40}\right) .
$$

Solution: Huffman code.

Codeword

1	x_{1}	19	19	19	19	19	21	40
01	x_{2}	8	8	8	8	13	19	
0001	x_{3}	3	4	6	7	8		
0010	x_{4}	3	3	4	6			
0011	x_{5}	3	3	3				
00001	x_{6}	2	3					
00000	x_{7}	2						

3. (20 points) Good codes.

Which of the following codes are possible Huffman codes?
(a) $\{0,00,01\}$
(b) $\{0,10,11\}$
(c) $\{0,10\}$

Solution: Good codes.

Only (b) can be a Huffman code; it represents a complete binary tree. (a) is not prefix free; (c) can be improved by replacing the codeword 10 with 1.
4. (20 points) Errors and erasures.

Consider a binary symmetric channel (BSC) with crossover probability p.

A helpful genie who knows the locations of all bit flips offers to convert flipped bits into erasures. In other words, the genie can transform the BSC into a binary erasure channel. Would you use his power? Be specific.

Solution: Errors and erasures.

Although it is very tempting to accept the genie's offer, on a second thought, one realizes that it is disadvantageous to convert the bit flips into erasures when p is large. For example, when $p=1$, the original BSC is noiseless, while the "helpful" genie will erase every single bit coming out from the channel.
The capacity $C_{1}(p)$ of the binary symmetric channel with crossover probability p is $1-H(p)$ while the capacity $C_{2}(p)$ of the binary erasure channel with erasure probability p is $1-p$. One would convert the BSC into a BEC only if $C_{1}(p) \leq C_{2}(p)$, that is, $p \leq p^{*}=.7729$. (See Figure 1.)

5. (40 points) Random walks.

Consider the following graph with three nodes:

(a) What is the entropy rate $H(\mathcal{X})$ of the random walk $\left\{X_{i}\right\}_{i=1}^{\infty}$ on this graph?

Now consider a derived process

$$
Y_{i}= \begin{cases}0, & \text { if } X_{i}=1 \text { or } 3 \\ 1, & \text { if } X_{i}=2\end{cases}
$$

(b) Is it Markov?
(c) Find the entropy rate $H(\mathcal{Y})$ of $\left\{Y_{i}\right\}_{i=1}^{\infty}$.

Now consider another derived process

$$
Z_{i}= \begin{cases}0, & \text { if } X_{i}=1 \text { or } 2 \\ 1, & \text { if } X_{i}=3\end{cases}
$$

(d) Is it Markov?
(e) Find the entropy rate $H(\mathcal{Z})$ of $\left\{Z_{i}\right\}_{i=1}^{\infty}$.

For parts (f), (g), and (h), consider the following graph with three nodes:

(f) What is the entropy rate $H(\mathcal{U})$ of the random walk $\left\{U_{i}\right\}_{i=1}^{\infty}$ on this graph?

Now consider a derived process

$$
V_{i}= \begin{cases}0, & \text { if } U_{i}=1 \text { or } 2 \\ 1, & \text { if } U_{i}=3\end{cases}
$$

(g) Is it Markov?
(h) Find the entropy rate $H(\mathcal{V})$ of $\left\{V_{i}\right\}_{i=1}^{\infty}$.

Solution: Random walks.

(a) It is easy to see that the stationary distribution is given by $\mu=(1 / 4,1 / 2,1 / 4)$.

The entropy rate is $\sum_{j} H\left(X_{n+1} \mid X_{n}=j\right) \mu_{j}=1 / 2$.
(b) Yes, it is Markov. If $Y_{n}=0$, then $Y_{n+1}=1 \mathrm{w} . \mathrm{p} .1$, and vice versa.
(c) Since the process evolves deterministically, the entropy rate $H(\mathcal{Y})$ is 0 .
(d) No, it is not Markov. For example, it is easy to check that $P\left(Z_{n+1}=1 \mid Z_{n}=\right.$ $\left.0, Z_{n-1}=1\right)=1 / 2$, while $P\left(Z_{n+1}=1 \mid Z_{n}=0\right)=2 / 3$.
(e) Although the process is not Markov, as in Problem 6 in midterm, knowing $\left(X_{1}, Z_{1}, \ldots, Z_{n-1}\right)$ is equivalent to knowing $\left(X_{1}, \ldots, X_{n-1}\right)$. Thus we have

$$
H\left(Z_{n} \mid X_{1}, Z^{n-1}\right)=H\left(Z_{n} \mid X^{n-1}\right)=H\left(Z_{n} \mid X_{n-1}\right)=1 / 2
$$

and hence

$$
H(\mathcal{Z})=\lim _{n \rightarrow \infty} H\left(Z_{n} \mid X_{1}, Z^{n-1}\right)=1 / 2
$$

(f) Given U_{n}, U_{n+1} takes two values with equal probability. Hence, $H(\mathcal{U})=1$.
(g) Yes, it is Markov with the following transition probability:

(h) The stationary distribution is $\mu=(2 / 3,1 / 3)$, so that

$$
H(\mathcal{V})=\sum_{j} H\left(V_{n+1} \mid V_{n}=j\right) \mu_{j}=2 / 3
$$

6. (20 points) Code constraint.

What is the capacity of a $\operatorname{BSC}(p)$ under the constraint that each of the codewords has a proportion of 1's less than or equal to α, i.e.,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}(w) \leq \alpha, \quad \text { for } w \in\left\{1,2, \ldots, 2^{n R}\right\}
$$

(Pay attention when $\alpha>1 / 2$.)

Solution: Code constraint.

Using the similar argument for the capacity of Gaussian channels under the power constraint P, we find that the capacity C of a $\operatorname{BSC}(p)$ under the proportion constraint α is

$$
C=\max _{p(x): E X \leq \alpha} I(X ; Y)
$$

Now under the $\operatorname{Bernoulli}(\pi)$ input distribution with $\pi \leq \alpha$, we have

$$
\begin{align*}
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& =H(Y)-H(Z \mid X) \\
& =H(Y)-H(Z) \\
& =H(\pi * p)-H(p) \tag{1}
\end{align*}
$$

where $\pi * p=(1-\pi) p+\pi(1-p)$. (Breaking $I(X ; Y)=H(X)-H(X \mid Y)=H(X)-$ $H(Z \mid Y)$ is way more complicated since Z and Y are correlated.) Now when $\alpha>1 / 2$, we have

$$
\max _{\pi} H(\pi * p)-H(p)=1-H(p)
$$

with the capacity-achieving $\pi^{*}=1 / 2$. On the other hand, when $\alpha \leq 1 / 2, \pi^{*}=\alpha$ achieves the maximum of (1); hence

$$
C=H(\alpha * p)-H(p)
$$

7. (20 points) Typicality.

Let (X, Y) have joint probability mass function $p(x, y)$ given as

(a) Find $H(X), H(Y)$, and $I(X ; Y)$. (Don't bother to compute the actual numerical values.)
(b) Suppose $\left\{X_{i}\right\}$ is independent and identically distributed (i.i.d.) according to $\operatorname{Bern}(.4),\left\{Y_{i}\right\}$ is i.i.d. $\operatorname{Bern}(1 / 2)$, and X^{n} and Y^{n} are independent. Find (to first order in the exponent) the probability that $\left(X^{n}, Y^{n}\right)$ is jointly typical (with respect to the joint distribution $p(x, y)$.

Solution: Typicality.

(a)

$$
\begin{aligned}
H(X) & =H(.4) \\
H(Y) & =H(1 / 2)=1 \\
I(X ; Y) & =H(Y)-H(Y \mid X)=1-.4 H(1 / 4)-.6 H(1 / 3)
\end{aligned}
$$

(b) From the joint AEP, the probability $\left(X^{n}, Y^{n}\right)$ is jointly typical w.r.t. $p(x, y)$ is $\doteq 2^{-n(I(X ; Y) \pm \epsilon)}$.
8. (20 points) Partition.

Let (X, Y) denote height and weight. Let $[Y]$ be Y rounded off to the nearest pound.
(a) Which is greater $I(X ; Y)$ or $I(X ;[Y])$?
(b) Why?

Solution: Partition.

(a) $I(X ; Y) \geq I(X ;[Y])$.
(b) Data processing inequality.
9. (20 points) Amplify and forward.

We cascade two Gaussian channels by feeding the (scaled) output of the first channel into the second.

Thus noises Z_{1} and Z_{2} are independent and identically distributed according to $N(0, N)$,

$$
\begin{gathered}
E X_{1}^{2}=E X_{2}^{2}=P, \\
Y_{1}=X_{1}+Z_{1}, \\
Y_{2}=X_{2}+Z_{2},
\end{gathered}
$$

and

$$
X_{2}=\alpha Y_{1},
$$

where the scaling factor α is chosen to satisfy the power constraint $E X_{2}^{2}=P$.
(a) (5 points) What scaling factor α satisfies the power constraint?
(b) (10 points) Find

$$
C=\max _{p\left(x_{1}\right)} I\left(X_{1} ; Y_{2}\right) .
$$

(c) (5 points) Is the cascade capacity C greater or less than $\frac{1}{2} \log \left(1+\frac{P}{N}\right)$?

Solution: Amplify and forward.

(a) We want $\alpha^{2} E Y_{1}^{2}=\alpha^{2}(P+N)=P$. Hence $\alpha=\sqrt{\frac{P}{P+N}}$.
(b) Since $Y_{2}=X_{2}+Z_{2}=\alpha Y_{1}+Z_{2}=\alpha X_{1}+\left(\alpha Z_{1}+Z_{2}\right)$, the channel from X_{1} to Y_{2} is a Gaussian channel with signal-to-noise ratio $\alpha^{2} P:\left(\alpha^{2} N+N\right)$. Hence, the capacity is

$$
C=\frac{1}{2} \log \left(1+\frac{\alpha^{2} P}{\left(\alpha^{2}+1\right) N}\right)=\frac{1}{2} \log \left(1+\frac{P^{2}}{(2 P+N) N}\right)=\frac{1}{2} \log \left(\frac{(P+N)^{2}}{(2 P+N) N}\right) .
$$

(c) The cascade capacity C is less than $\frac{1}{2} \log \left(1+\frac{P}{N}\right)$, which can be shown by data processing inequality. Adding an extra noise wouldn't increase the capacity.

