Final Examination

1. (20 points) Cookies.

Let

$$
V_{n}=\prod_{i=1}^{n} X_{i}
$$

where X_{i} are i.i.d.

$$
X_{i}= \begin{cases}1 / 8, & \text { probability } 1 / 2 \\ 1 / 2, & \text { probability } 1 / 2\end{cases}
$$

Presumably, X_{i} is the fraction remaining after a single mouse bite.
(a) Let

$$
V_{n}^{\prime}=\alpha^{n} .
$$

Find the value of α such that V_{n} and V_{n}^{\prime} decrease at the same rate.

For parts (b) and (c), we mix V_{n} and V_{n}^{\prime} as follows. Let

$$
Y_{i}=\lambda \alpha+(1-\lambda) X_{i}
$$

where $\lambda \in(0,1)$. Let

$$
V_{n}^{\prime \prime}=\prod_{i=1}^{n} Y_{i}
$$

(b) Is the growth rate of $V_{n}^{\prime \prime}$ larger or smaller than $\log \alpha$?
(c) What is the growth rate of $V_{n}^{\prime \prime}$ for $\lambda=1 / 2$?
2. (20 points) Huffman code.

Find the binary Huffman encoding for

$$
X \sim \mathbf{p}=\left(\frac{19}{40}, \frac{8}{40}, \frac{3}{40}, \frac{3}{40}, \frac{3}{40}, \frac{2}{40}, \frac{2}{40}\right) .
$$

3. (20 points) Good codes.

Which of the following codes are possible Huffman codes?
(a) $\{0,00,01\}$
(b) $\{0,10,11\}$
(c) $\{0,10\}$

4. (20 points) Errors and erasures.

Consider a binary symmetric channel (BSC) with crossover probability p.

A helpful genie who knows the locations of all bit flips offers to convert flipped bits into erasures. In other words, the genie can transform the BSC into a binary erasure channel. Would you use his power? Be specific.

5. (40 points) Random walks.

Consider the following graph with three nodes:

(a) What is the entropy rate $H(\mathcal{X})$ of the random walk $\left\{X_{i}\right\}_{i=1}^{\infty}$ on this graph?

Now consider a derived process

$$
Y_{i}= \begin{cases}0, & \text { if } X_{i}=1 \text { or } 3 \\ 1, & \text { if } X_{i}=2\end{cases}
$$

(b) Is it Markov?
(c) Find the entropy rate $H(\mathcal{Y})$ of $\left\{Y_{i}\right\}_{i=1}^{\infty}$.

Now consider another derived process

$$
Z_{i}= \begin{cases}0, & \text { if } X_{i}=1 \text { or } 2 \\ 1, & \text { if } X_{i}=3\end{cases}
$$

(d) Is it Markov?
(e) Find the entropy rate $H(\mathcal{Z})$ of $\left\{Z_{i}\right\}_{i=1}^{\infty}$.

For parts (f), (g), and (h), consider the following graph with three nodes:

(f) What is the entropy rate $H(\mathcal{U})$ of the random walk $\left\{U_{i}\right\}_{i=1}^{\infty}$ on this graph?

Now consider a derived process

$$
V_{i}= \begin{cases}0, & \text { if } U_{i}=1 \text { or } 2 \\ 1, & \text { if } U_{i}=3\end{cases}
$$

(g) Is it Markov?
(h) Find the entropy rate $H(\mathcal{V})$ of $\left\{V_{i}\right\}_{i=1}^{\infty}$.

6. (20 points) Code constraint.

What is the capacity of a $\operatorname{BSC}(p)$ under the constraint that each of the codewords has a proportion of 1 's less than or equal to α, i.e.,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}(w) \leq \alpha, \quad \text { for } w \in\left\{1,2, \ldots, 2^{n R}\right\}
$$

(Pay attention when $\alpha>1 / 2$.)
7. (20 points) Typicality.

Let (X, Y) have joint probability mass function $p(x, y)$ given as

X	Y	
	0	1
0	.1	.3
1	.4	.2

(a) Find $H(X), H(Y)$, and $I(X ; Y)$. (Don't bother to compute the actual numerical values.)
(b) Suppose $\left\{X_{i}\right\}$ is independent and identically distributed (i.i.d.) according to $\operatorname{Bern}(.4),\left\{Y_{i}\right\}$ is i.i.d. $\operatorname{Bern}(1 / 2)$, and X^{n} and Y^{n} are independent. Find (to first order in the exponent) the probability that $\left(X^{n}, Y^{n}\right)$ is jointly typical (with respect to the joint distribution $p(x, y)$.
8. (20 points) Partition.

Let (X, Y) denote height and weight. Let $[Y]$ be Y rounded off to the nearest pound.
(a) Which is greater $I(X ; Y)$ or $I(X ;[Y])$?
(b) Why?
9. (20 points) Amplify and forward.

We cascade two Gaussian channels by feeding the (scaled) output of the first channel into the second.

Thus noises Z_{1} and Z_{2} are independent and identically distributed according to $N(0, N)$,

$$
\begin{gathered}
E X_{1}^{2}=E X_{2}^{2}=P, \\
Y_{1}=X_{1}+Z_{1} \\
Y_{2}=X_{2}+Z_{2}
\end{gathered}
$$

and

$$
X_{2}=\alpha Y_{1},
$$

where the scaling factor α is chosen to satisfy the power constraint $E X_{2}^{2}=P$.
(a) (5 points) What scaling factor α satisfies the power constraint?
(b) (10 points) Find

$$
C=\max _{p\left(x_{1}\right)} I\left(X_{1} ; Y_{2}\right) .
$$

(c) (5 points) Is the cascade capacity C greater or less than $\frac{1}{2} \log \left(1+\frac{P}{N}\right)$?

