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Supervised Learning in a Nutshell

handwritten digit recognition (MNIST: 70,000 images)
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Supervised Learning in a Nutshell
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How to choose fy(y)? Deep feed-forward neural networks

How to optimize § = {W®M ... . W® M . p®}? Deep learning
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Machine Learning for Physical-Layer Communications
. encoder, communication equalization,
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Machine Learning for Physical-Layer Communications

parameterized RX

communication

data out
channel

data in

[Shen and Lau, 2011], Fiber nonlinearity compensation using extreme learning machine for DSP-based . .., (OECC)

[Giacoumidis et al., 2015], Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based ..., (Opt. Lett.)
[Zibar et al., 2016], Machine learning techniques in optical communication, (J. Lightw. Technol.)
[Kamalov et al., 2018], Evolution from 8gam live traffic to ps 64-gam with neural-network based

ity compensation .. ., (OFC)
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[O’Shea and Hoydis, 2017], An introduction to deep learning for the physical layer, (IEEE Trans. Cogn. Commun. Netw.)
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[Jones et al., 2018], Deep learning of geometric constellation shaping including fiber nonlinearities, (ECOC)

[Li et al., 2018], Achievable information rates for nonlinear fiber communication via end-to-end autoencoder learning, (ECOC)
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[Ye et al., 2018], Channel agnostic end-to-end learning based communication systems with conditional GAN, (arXiv)
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[m———————— end-to-end learning [O'Shea and Hoydis, 2017] — — — — — — — — — —
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Using neural networks for Ty, Ry, Co
@ How to choose network architecture (#layers, activation function)?
How to initialize parameters?

9
9@ How to interpret solutions? Can we gain insight?
9
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[m———————— end-to-end learning [O'Shea and Hoydis, 2017] — — — — — — — — — —

parameterized TX

v

parameterized RX

\

communication
data out

channel

surrogate channel

Using neural networks for Ty, Ry, Co

@ How to choose network architecture (#layers, activation function)? X
9 How to initialize parameters? X

9@ How to interpret solutions? Can we gain insight? X

...

Model-based learning: sparse signal recovery [Gregor and Lecun, 2010], [Borgerding and Schniter, 2016], neural
belief propagation [Nachmani et al., 2016], radio transformer networks [0’Shea and Hoydis, 2017], . . .
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From Multi-layer to Multi-step

Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]
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Multi-layer neural networks: impressive performance, countless applications
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Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]
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[Nakashima et al., 2017] [Nachmani et al., 2016]

Multi-step methods: propagation equations in fiber-optics, belief propagation decoding of codes
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@ Q: Why study machine learning for communications?
o Human learning has already produced many effective approaches

@ But, it is interesting to explore the limits of generic approaches
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@ But, it is interesting to explore the limits of generic approaches

@ Human learning + optimization can be quite good
@ For channel coding over long blocks, optimized LDPC codes are quite effective
o For magnetic recording, partial-response equalization is quite effective

@ But, it's time consuming to explore trade-offs between performance, complexity, robustness

@ Model-based MLCOM == less human learning + more optimization
@ Given a standard approach, one can parameterize and optimize
@ This tends to increase complexity, performance, and robustness
@ But, the resulting model can also be pruned to reduce complexity

@ The key gain is to explore a wider range of complexity versus performance

@ Two examples are considered: digital backpropagation and neural belief propagation

7/31



e Model-Based Machine Learning for Fiber-Optic Systems
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Fiber-Optic Communications

Fiber-optic systems transmit data over very long distances connecting cities, countries, and continents.

@ Dispersion: different wavelengths travel at different speeds (linear)

@ Kerr effect: refractive index changes with signal intensity (nonlinear)

Material in this section can be found in [Higer and Pfister, ISIT 2018] 9/31
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Channel Modeling
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@ Split-step method with M steps (6 = L/M):
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Channel Modeling
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Parameterizing the Split-Step Method

multi-layer activation functlon
neural network:
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Parameterizing the Split-Step Method

multi-layer activation function
neural network: ,ﬁ
(1) 2) )
b b
ERA -
—D— _>_
—— ——
split-step
method: PR PR
_D_ _D_
~EHE

o(x

'

) = ze

7v8) 2|2

b (350

ST e
>
-

—CHEE

o(z) = zedv8lz1?

11/31



Parameterizing the Split-Step Method

multi-layer activation function

neural network: ,ﬁ

(1) 2) () o)

b b b
LA ST
X 2 I
—— —— ——

split-step

method: PR PR PR
T

&

o(z) = pedV8lzl? o(z) = zedV8lz1? o(z) = zedv8lz1?

~

@ Parameterized model fp with 6 = {A® ... AG®D}

[Hager & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Hager & Pfister, 2018], Deep Learning of the Nonlinear Schrédinger Equation in Fiber-Optic Communications, (ISIT)
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Natural Applications

parameterized TX

pre-distortion [Essiambre and Winzer, 2005],
[Roberts et al., 2006], split nonlinear
equalization [Lavery et al., 2016]

repeat several times

amplifier

- data out
optical fiber

nonlinear equalization (our focus)

surrogate channel

fine-tune with experimental data, reduce simulation time
[Leibrich and Rosenkranz, 2003], [Li et al., 2005]
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Natural Applications

repeat several times

parameterized TX amplifier

pre-distortion [Essiambre and Winzer, 2005],
[Roberts et al., 2006], split nonlinear
equalization [Lavery et al., 2016]

data out

optical fiber

nonlinear equalization (our focus)

surrogate channel

fine-tune with experimental data, reduce simulation time
[Leibrich and Rosenkranz, 2003], [Li et al., 2005]

Model-based learning approaches

@ How to choose network architecture (#layers, activation function)? v/
@ How to initialize parameters? v’

@ How to interpret solutions? Can we gain insight? v

12 /31



e Nonlinear Equalization: Learned Digital Backpropagation

13 /31



Digital Backpropagation
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Digital Backpropagation
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Digital Backpropagation

e e
== o5(z) = ze? V(" OIPIT Kerr effect

282 (Z5)w2 . . . )
Hp =¢' 2 k  group velocity dispersion (all-pass filter)

@ Fiber with negated parameters (82 — —f2, v — —7) would perform perfect channel inversion
[Paré et al., 1996] (ignoring attenuation)
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Digital Backpropagation

Yy ~x
= O— o5(x) = 2?21 Kerr effect
I
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Hp =¢' 2 k  group velocity dispersion (all-pass filter)

@ Fiber with negated parameters (82 — —f2, v — —7) would perform perfect channel inversion
[Paré et al., 1996] (ignoring attenuation)

@ Digital backpropagation: invert a partial differential equation in real time [Essiambre and Winzer, 2005],
[Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]
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Digital Backpropagation

Yy ~x
= O— o5(x) = 2?21 Kerr effect
I
)
Jﬁ_2(,,s)w2 . . .
Hp =¢' 2 k  group velocity dispersion (all-pass filter)

@ Fiber with negated parameters (82 — —f2, v — —7) would perform perfect channel inversion
[Paré et al., 1996] (ignoring attenuation)

@ Digital backpropagation: invert a partial differential equation in real time [Essiambre and Winzer, 2005],
[Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]

@ Widely considered to be impractical (too complex): linear equalization is already one of the most
power-hungry DSP blocks in coherent receivers
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Learned Digital Backpropagation

Neural implementation of the computation graph fo(y):

oi(z) = 3veﬂllﬂclz oa(z) = 16]72‘1‘2 om(z) = we]’vM\z\Q
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Neural implementation of the computation graph fo(y):

R
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Deep learning of parameters 6 = {h(l), e h(M)}:
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Learned Digital Backpropagation

Neural implementation of the computation graph fo(y):

o1(z) = we”llzlz oa(x) = 16772‘1‘2 om(z) = a:e]"’M‘z‘2

Deep learning of parameters 6 = {h(l), e h(M)}:

mmZLoss Foly ), zD) 2 g(0)  using Ors1 = Ok — AVg(6k)

mean squared error Adam optimizer, fixed learning rate

Initialize to long filters with accurate responses
Iteratively prune (set to 0) outermost filter taps during gradient descent
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Performance Comparison with [Ip and Kahn, 2008]

25
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2 samples/symbol processing

effective SNR [dB]

single channel, single pol.

: : : Linear EQ (75 total taps)
-10 -8 —6 —4 -2 0 2 4
transmit power P [dBm]

@ > 1000 total taps (70 taps/step) = > 100x complexity of linear EQ
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@ > 1000 total taps (70 taps/step) = > 100x complexity of linear EQ

@ Learned approach uses only 77 total taps: alternate 5 and 3 taps/step
and use different filter coefficients in all steps [Hager and Pfister, 2018a]
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Performance Comparison with [Ip and Kahn, 2008]

25

Y S R ST L R
23 b Ideal DBP, 1 step per span
(frequency-domain)

22
21

20 ¢ : Learned DBP
19} LTS (77 total taps)

Parameters similar to [Ip and Kahn, 2008]:

25 x 80 km SSFM
Gaussian modulation

effective SNR [dB]

18 f-vvven- RRC pulses (0.1 roll-off)
17} 10.7 Gbaud
16 2 samples/symbol processing

single channel, single pol.

: : R ar EQ (75 total taps) :
—-10 -8 -6 —4 -2 0 2 4
transmit power P [dBm]

@ > 1000 total taps (70 taps/step) = > 100x complexity of linear EQ

@ Learned approach uses only 77 total taps: alternate 5 and 3 taps/step
and use different filter coefficients in all steps [Hager and Pfister, 2018a]

@ Can even outperform “ideal DBP" in the nonlinear regime [Higer and Pfister, 2018b] 16 /31



Why Does Learning Reduce the Complexity So Much?

Previous work: design a single filter or filter pair and use it repeatedly.

—> Good overall response only possible with very long filters.

. individual filter responses overall response
g 20 g 20

3 3
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From [lp and Kahn, 2009]:

@ “We also note that [...] 70 taps, is much larger than expected”
@ “This is due to amplitude ringing in the frequency domain”

@ “Since backpropagation requires multiple iterations of the linear filter, amplitude distortion due to
ringing accumulates (Goldfarb & Li, 2009)"
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Previous work: design a single filter or filter pair and use it repeatedly.

—> Good overall response only possible with very long filters.

individual filter responses overall response

g 20 g 20

3 3

215 2 1.5

z 8

B e _§ 1.0

=05 205

? 2

8 07 0 ™ 2 07 0 ™

w w

From [lp and Kahn, 2009]:

@ “We also note that [...] 70 taps, is much larger than expected”
@ “This is due to amplitude ringing in the frequency domain”

@ “Since backpropagation requires multiple iterations of the linear filter, amplitude distortion due to
ringing accumulates (Goldfarb & Li, 2009)"

The learning approach uncovered that there is no such requirement!
[Lian, Hager, Pfister, 2018], What can machine learning teach us about communications? (/ITW)
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y Does Learning Reduce the Complexity So

ch?

Previous work: design a single filter or filter pair and use it repeatedly.

—> Good overall response only possible with very long filters.

individual filter responses

4
o

==
o &
magnitude response

o
=

magnitude response

o

0 T
w

|
3

overall response

o = = N
@m o w o

12

w

U 0 77

Sacrifice individual filter accuracy, but allow different response per step.

= Good overall response even with very short filters by joint optimization.
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© Model-Based Decoding: Neural Belief Propagation
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Belief Propagation Decoding (1)

BLER
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T T T 1717
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@ Achieving near-ML performance for algebraic
codes such as Reed-Muller or BCH codes is
computationally complex

Curves shown for (32,16) Reed—Muller code

Material in this section from [Buchberger et al., ISIT 2020]
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Belief Propagation Decoding (1)

BLER
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@ Achieving near-ML performance for algebraic
codes such as Reed-Muller or BCH codes is
computationally complex
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Belief propagation decoding offers low
complexity and good performance for sparse
graph codes
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L]
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@ For dense parity-check matrices, belief
propagation decoding without modifications
is not competitive

T T T T
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Curves shown for (32,16) Reed—Muller code

Ep/No in dB Material in this section from [Buchberger et al., ISIT 2020]

19 /31



Belief Propagation Decoding (2)

Ach,ll )\ch,Zl )\ch,Sl Ach,4 , , @ Parity-check matrix shown as Tanner graph
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Belief Propagation Decoding (2)

)\ch,ll )\ch,Zl )\ch,Si Ach,4 , , @ Parity-check matrix shown as Tanner graph

@ lterative decoding by passing extrinsic
messages along the edges

@ Instead of iterating between the nodes, one

. o— can unroll the graph
O O
, \\ ,) '\\ ,) \
A«Q\;‘?}Q@‘;}x.z\
O
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Neural Belief Propagation Decoding

@ Channel LLRs A.
@ Variable node output LLRs X

E. Nachmani, Y. Be'ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. Annu. Allerton Conf. Commun.,
Control, Comput., Allerton, IL, USA, Sep. 2016, pp. 341-346.
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Neural Belief Propagation Decoding

@ Channel LLRs A.
@ Variable node output LLRs X

2 2
w  wi

@ Augment edges @
by weights w W ch —*

E. Nachmani, Y. Be'ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. Annu. Allerton Conf. Commun.,
Control, Comput., Allerton, IL, USA, Sep. 2016, pp. 341-346.
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Neural Belief Propagation Decoding

@ Channel LLRs A.
@ Variable node output LLRs X

@ Augment edges @
by weights w W ch —*

@ Define a loss function and optimize the
weights using gradient descent.

E. Nachmani, Y. Be'ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. Annu. Allerton Conf. Commun.,
Control, Comput., Allerton, IL, USA, Sep. 2016, pp. 341-346.
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Performance of Neural Belief Propagation

BLER

10—4
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|
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Ey/Np in dB

6.5

@ Neural belief propagation decoding improves
upon conventional belief propagation
decoding since the weights compensate for
cycles in the Tanner graph
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‘ T. Hehn, J. Huber, O. Milenkovic, and S. Laendner, “Multiple-bases
belief-propagation decoding of high-density cyclic codes,” |EEE Trans.
4 4.5 5 5.5 6 6.5 Commun., vol. 58, no. 1, pp. 1-8, Jan. 2010.
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Performance of Neural Belief Propagation

@ Neural belief propagation decoding improves
upon conventional belief propagation
decoding since the weights compensate for
cycles in the Tanner graph

@ It does not account for the fact that the
parity-check matrix may be ill suited for
belief propagation decoding

BLER

@ Decode multiple parity-check matrices in
parallel and choose the best result - multiple
bases belief propagation

Lol

T. Hehn, J. Huber, O. Milenkovic, and S. Laendner, “Multiple-bases
1074 * belief-propagation decoding of high-density cyclic codes,” IEEE Trans.
4 4.5 5 5.5 6 6.5 Commun., vol. 58, no. 1, pp. 1-8, Jan. 2010.

Ep/No in dB
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Pruning the Neural Belief Propagation Decoder

@ Starting with the neural belief propagation decoder

o A method is introduced to optimize the parity-check matrix based on pruning

o For Reed-Muller and LDPC codes, this approach outperforms conventional and neural belief
propagation decoding with lower complexity

@ Main Idea: Start with large overcomplete parity-check matrix and prune down
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Pruning the Neural Belief Propagation Decoder

@ Start with large overcomplete parity-check
matrix
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Pruning the Neural Belief Propagation Decoder

@ Start with large overcomplete parity-check
matrix

@ Tie the weights at each check node
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Variations of the Pruned Decoder

Use the result from the optimization directly Hopt and Wopt
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Variations of the Pruned Decoder

Decoder D;

Use the result from the optimization directly Hopt and Wopt

Use the optimized set of parity-check matrices Hopt but set all weights to one and ignore Wept

Decoder D3

Use optimized set of parity-check matrices Hopt but re-optimize untied weights over all iterations/edges
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The Reed-Muller Code RM(2, 5)
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6 E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D.
Burshtein, and Y. Be'ery, “Deep learning methods for im-
proved decoding of linear codes,” IEEE J. Sel. Topics Signal
Process., vol. 12, no. 1, pp. 119-131, Feb. 2018.
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The Reed-Muller Code RM(2, 5)
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The Reed-Muller Code RM(2, 5)

Fraction of CNs

0.4

0.3

0.2

0.1

Decoding iteration

@ n =32, k=16, 6 iterations

@ Overcomplete parity-check matrix:
All 620 minimum-weight codewords
of the dual code

@ MBBP: 15 randomly chosen
parity-check matrices with 6
iterations

@ Number of CN evaluations:

o Dy, D2, D3, random pruning:
620-6-0.31 = 1170

o WBP, RNN H: 6206 = 3720
¢ MBBP: 15-6-16 = 1440
o WBP H: 16-6 =96

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D.
Burshtein, and Y. Be'ery, “Deep learning methods for im-
proved decoding of linear codes,” IEEE J. Sel. Topics Signal
Process., vol. 12, no. 1, pp. 119-131, Feb. 2018.
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The Reed-Muller Code RM(3,7)
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The Reed-Muller Code RM(3,7)

1071 -
F ML 1 e n=128 k=064
I ---.MBBP y . .
| D i @ 6 iterations
—0—-"D1
Mo —="D2 @ Overcomplete parity-check matrix:
1072 | Ds E All 94488 minimum-weight
"""" ;VI\]?I\I; g"c . codewords of the dual code
——— oc |
%Jﬁ

BLER

@ MBBP: 60 randomly chosen
parity-check matrices with six
iterations

103

Lol

T T T TT1TTT

4
L

10—4
0 2.5 3 3.5 4 4.5 5

Ey,/No in dB

20 /31



The Reed-Muller Code RM(3,7)

1071 -
F ML 1 e n=128 k=064
I ---.MBBP y . .
| D i @ 6 iterations
—0—-"D1
Mo —="D2 @ Overcomplete parity-check matrix:
1072 | Ds E All 94488 minimum-weight
"""" ;VI\]?I\I; g"c . codewords of the dual code
——— oc |
%Jﬁ

BLER
©

MBBP: 60 randomly chosen
parity-check matrices with six

1

1073 |- - iterations
I n @ Number of CN evaluations:
[ i @ D1, Ds, D3:
L ~ i 94488 -6 - 0.03 = 19842
\ R o WBP, RNN Hoc:
10755 3 3.5 4 45 5 94488 -6 = 566928

o MBBP [2]: 60-6-64 = 23440
Ey/Ny in dB
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A Short LDPC Code
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A Short LDPC Code
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Conclusions

@ Model-Based Machine Learning for Communications

o Optimizes parameterized versions of known algorithms
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Conclusions

@ Model-Based Machine Learning for Communications
o Optimizes parameterized versions of known algorithms
@ Results can provide insight about these algorithms

9 Pruning Learned Models

@ Allows the exploration of performance vs complexity
o Considered example show significant complexity reductions

@ Little or no performance penalty

Thanks for your attention!
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