# Inventing Communication Algorithms via Deep Learning

### **Pramod Viswanath**

University of Illinois

# **Deep Learning is part of daily life.**





#### natural language processing

## **Model Complexity**

- Models are complicated
  - for both NLP and CV

- Data is hard to model
  - Inference problems hard to model

- Deep learning learns efficient models
  - inherently empirical and human-validated

## **Algorithmic Complexity**

- In many problems models are simple
  - unlimited training data
  - mathematical performance metrics

Challenge: space of algorithms very large

- Success of Deep learning: AlphaZero
  - Chess, Go, Protein Folding

## **Communication Algorithms**

- Simple models: AWGN channel
  - unlimited training data
  - precise performance metrics

Challenge: space of algorithms very large

 Information Theory, Communication Theory, Coding Theory

### **AWGN Channel**

- Sporadic Progress:
  - individual human ingenuity



Huge practical impact



## Vision

- Discovery of codes
  - human eureka moments

- Automate Progress:
  - use deep learning to search for codes

## **Two Goals**

- New (deep learning) tools for classical problems
  - New state of the art
  - Inherent practical value

- Insight into deep learning methods
  - No overfitting
  - Interpretability



Scalability

Train on small settings

• Test on much larger (100x) settings

### Codes

- Encoders and Decoders
  - end-to-end training
  - gradients have to pass through decoder

- Structure is essential
  - traditional: linearity
  - neural networks are nonlinear

## **Two Deep Learning Components**

- Recurrent Neural Networks
  - in-built recursion capability

- Gated recurrent units
  - GRU, LSTM, Attention

## **Inventing Codes**

#### AWGN channel

- Very well studied; high bar
- Already close to information theoretic limits

- New codes
- IP protection
- robust/adaptive data driven decoders
- Scientific curiosity

### Learning Approach



## **Code Structure**

#### • Linear codes

Coding+modulation

#### Neural Networks

- Directly map bits to real valued outputs
- nonlinear
- Still need a structure

## **Reed Muller Codes**

#### Classical

- Muller, 1954
- Efficient decoder by Reed, 1954

- Recent Interest
  - Polar codes
  - RM codes are capacity achieving (proved for BEC)

## **RM Codes: Algebraic Construction**

• RM (m,r)

 Codeword is the evaluation of a polynomial of degree utmost r on the vertices of m-dimensional binary hypercube

• RM(m,0) is simply the repetition code

-  $2^m$  dimensional codeword

#### **Plotkin construction**



#### **RM Codes via Plotkin construction**



#### **Neural Plotkin Construction**



## **Dumer Decoding**



First Decode  $\mathcal{U}$ LLR<sub>u</sub>, LLR<sub> $u \oplus v$ </sub>

Next Decode  ${\mathcal U}$ 

Dumer, 2004-06

#### **Neural Dumer Decoding**



Dumer, 2004-06

### **Neural Plotkin-Dumer Codes**

Generalize Plotkin construction via neural networks

Generalize Dumer decoding via neural networks

#### **Neural Plotkin-Dumer Codes**



## **RM Codes (4,1)**



#### **RM vs Neural Plotkin-Dumer Codes**



## **RM Codes (8,1)**



#### **RM vs Neural Plotkin-Dumer Codes**



#### **Pairwise Codeword Distances**



## **Reed (ML) Decoding**



#### Reed, 1954

#### **Neural Plotkin Codes**



#### RM (6,1) vs Neural Plotkin Codes



#### **Pairwise Codeword Distances**



## **Ongoing Work**

- Extension to longer block lengths
- Higher order RM codes
  - Decoding gets complex
  - Long conjectured to be efficient
  - Abbe-Ye RPA decoding

- Neural Polar codes
  - Soft polarization

## Long Block lengths: Learning to Decode

- Fix encoding
  - convolutional codes
- Deep Learning decoders
  - learn Viterbi and BCJR algorithms
  - dynamic programming
- Learning an Algorithm: strong generalization
  - across block lengths
  - across SNR

## **Sequential Encoding**

- Fixed encoders
  - convolutional codes
- Optimal decoders
  - Viterbi (block error)
  - BCJR (bit error)
  - dynamic programming
- Formulaic and generalize readily
  - across block lengths
  - across SNR

## **Deep Sequential Decoding**

- Neural network decoders
- Sequential decoders
  - Recurrent neural networks (RNN)
- Representation capability
  - can encode Viterbi/BCJR in principle
- Key question:
  - Can SGD learn the optimal rules?



• Supervised training:

Rate 0.5 convolutional code

- Neural Network Architecture
  - Two layer Bi-GRU RNN; sigmoidal output

# Training: Zoom in

- Training:
  - L2 loss function
  - Block length 100

• 10K training examples

- Choice of SNR:
  - training = test SNR?
  - a variety of SNRs during training?

#### **Not Quite There**



### **Hardest Training Examples**



#### **SGD Learns Viterbi and BCJR**





Train: block length = 100

Test: block length = 100K

## **Decoding Turbo Codes**

- Training:
  - L2 loss function
  - Block length 100
  - 10K training examples

Retain iterative decoding structure

Use neural convolutional decoders as modules

## **Decoding Turbo Codes**



Train: block length = 1000

Test: block length = 100K

## **Typical Error Analysis**

- Standard Information Theoretic tool
  - nuanced understanding of decoders
  - Statistics of noise that cause most error

- Classical result for ML decoder:
  - dominant error due to large noise vector magnitude
  - not true for turbo decoder

• Finding: neural decoder similar to ML decoder

#### Robustness



Fixed Decoder; change noise to T-distribution

#### **Adaptivity: Bursty Noise**



Retrain decoder with bursty noise

## **Typical Error Analysis**

Feedback neural encoder/decoder:

dominant error due to noise amplitude being large

Robustness to non-Gaussian noise

## **Inventing Codes**

- AWGN channel
  - very well studied; high bar

- Network Information Theory
  - AWGN channel with feedback
  - relay channel
  - interference channel

## **Communication with Feedback**

- Joint encoding and decoding
- AWGN channel with feedback
  - noisy feedback
- Deep Learning methods
  - beat Schalkwijk-Kailath scheme
  - even with noiseless feedback
- Robustness to noisy feedback
  - generalization: block lengths; SNR

### **AWGN Channel with Feedback**



Key challenge: how to combine b with feedback

## Literature

- Noiseless feedback
  - Schalkwijk-Kailath, '66
  - posterior matching
  - improved reliability

- Noisy feedback
  - Kim-Lapidoth-Weissman, '07
  - Linear codes very bad
  - Negative result
- Opportunity to test deep learning approach

## **Sequential Neural Architecture**

Encoder and Decoder: RNN

- Several Innovations
  - systematic bits
  - parity bits use feedback
  - power allocation to bits
  - "correct" concatenations

Training: end-to-end

#### **Noiseless Feedback**

**SNR** 



• Rate 1/3, blocklength = 50

### **Noisy Feedback**





**Feedback Noise** 

## **Generalization: Blocklength**





SNR

#### **Improved Error Exponents**



Blocklength

## **Properties of the Feedback Code**

- Nonlinear convolutional code
  - Maps information bits directly to real numbers

- Dynamic memory
  - Feedback influences the memory

- Gated RNNs
  - Can capture long term and short term memory

## **Theoretical Agenda**

#### Gated Recurrent Neural Networks

- Nonlinear dynamical systems
- Switched linear systems

- Learning Theory meets Switched Dynamical Systems
  - Many open questions (AISTATS '19,'20, ICML '19)
  - Basic theoretical/mathematical value

### **Defense Against the Dark Arts**

# <u>deepcomm.github.io</u>

- Instructional material
- Social networking

#### **Collaborators**









RM Codes: V. Jamali, X. Liu, A. Makkuva, H. Mahdavifar