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Deep Learning is part of daily life.

natural language processing

Computer Vision



Model Complexity

• Models are complicated

• for both NLP and CV

• Data is hard to model

• Inference problems hard to model 

• Deep learning learns efficient models

• inherently empirical and human-validated



Algorithmic Complexity

• In many problems models are simple

• unlimited training data

• mathematical performance metrics

• Challenge:  space of algorithms very large 

• Success of Deep learning:  AlphaZero

• Chess, Go, Protein Folding



Communication Algorithms

• Simple models: AWGN channel

• unlimited training data

• precise performance metrics

• Challenge:  space of algorithms very large 

• Information Theory, Communication Theory, 

Coding Theory 



AWGN Channel

• Sporadic Progress:

• individual human ingenuity

• Huge practical impact



Vision

• Discovery of codes

• human eureka moments

• Automate Progress:

• use deep learning to search for codes



Two Goals

• New (deep learning) tools for classical problems

• New state of the art

• Inherent practical value

• Insight into deep learning methods

• No overfitting

• Interpretability



One Lens

• Scalability

• Train on small settings

• Test on much larger (100x) settings



Codes 

• Encoders and Decoders

• end-to-end training 

• gradients have to pass through decoder 

• Structure is essential

• traditional: linearity

• neural networks are nonlinear 



Two Deep Learning Components

• Recurrent Neural Networks

• in-built recursion capability

• Gated recurrent units

• GRU, LSTM, Attention



Inventing Codes

• AWGN channel 

• Very well studied; high bar

• Already close to information theoretic limits

• New codes

• IP protection

• robust/adaptive data driven decoders 

• Scientific curiosity
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Code Structure

• Linear codes

• Coding+modulation

• Neural Networks

• Directly map bits to real valued outputs

• nonlinear

• Still need a structure



Reed Muller Codes 

• Classical

• Muller, 1954

• Efficient decoder by Reed, 1954

• Recent Interest

• Polar codes

• RM codes are capacity achieving (proved for BEC)



RM Codes: Algebraic Construction

• RM (m,r)

• Codeword is the evaluation of a polynomial of 

degree utmost r on the vertices of m-dimensional 

binary hypercube

• RM(m,0) is simply the repetition code

• dimensional codeword



Plotkin construction

New Code

Code 2Code 1



RM Codes via Plotkin construction

RM(2,1)
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Neural Plotkin Construction

New Code

Code 2Code 1

g: neural network



Dumer Decoding

First Decode 

Dumer, 2004-06 

Next Decode 



Neural Dumer Decoding

First Decode 

Dumer, 2004-06 

Next Decode 

Neural network



Neural Plotkin-Dumer Codes 

• Generalize Plotkin construction via neural networks

• Generalize Dumer decoding via neural networks 



Neural Plotkin-Dumer Codes
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RM Codes (4,1)

RM (4,1)

RM (3,1)RM (3,0)

Information 
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RM vs Neural Plotkin-Dumer Codes



RM Codes (8,1)
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Information 
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RM vs Neural Plotkin-Dumer Codes



Pairwise Codeword Distances



Reed (ML) Decoding

Fast Hadamard 

Transform

Reed, 1954 

Efficient, first 

order RM codes



Neural Plotkin Codes
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RM (6,1) vs Neural Plotkin Codes



Pairwise Codeword Distances



Ongoing Work

• Extension to longer block lengths

• Higher order RM codes

• Decoding gets complex

• Long conjectured to be efficient

• Abbe-Ye RPA decoding

• Neural Polar codes

• Soft polarization



Long Block lengths: Learning to Decode

• Fix encoding

• convolutional codes 

• Deep Learning decoders

• learn Viterbi and BCJR algorithms 

• dynamic programming 

• Learning an Algorithm: strong generalization

• across block lengths

• across SNR



Sequential Encoding

• Fixed encoders 

• convolutional codes 

• Optimal decoders

• Viterbi (block error) 

• BCJR (bit error)

• dynamic programming 

• Formulaic and generalize readily

• across block lengths

• across SNR



Deep Sequential Decoding

• Neural network decoders 

• Sequential decoders

• Recurrent neural networks (RNN)

• Representation capability 

• can encode Viterbi/BCJR in principle

• Key question:

• Can SGD learn the optimal rules? 



Setting

• Supervised training:

• Rate 0.5 convolutional code 

• Neural Network Architecture

• Two layer Bi-GRU RNN; sigmoidal output



Training: Zoom in 

• Training:

• L2 loss function

• Block length 100

• 10K training examples

• Choice of SNR:

• training = test SNR? 

• a variety of SNRs during training? 



Not Quite There



Hardest Training Examples

Shannon 

limit

Rate

SNR*_train



SGD Learns Viterbi and BCJR

Train: block length = 100 Test: block length = 100K

SNR

BER



Decoding Turbo Codes

• Training:

• L2 loss function

• Block length 100

• 10K training examples

• Retain iterative decoding structure

• Use neural convolutional decoders as modules



Decoding Turbo Codes

Train: block length = 1000 Test: block length = 100K

SNR

BER

SNR



Typical Error Analysis

• Standard Information Theoretic tool

• nuanced understanding of decoders

• Statistics of noise that cause most error

• Classical result for ML decoder:

• dominant error due to large noise vector magnitude 

• not true for turbo decoder

• Finding: neural decoder  similar to ML decoder



Robustness

Fixed Decoder; change noise to T-distribution 



Adaptivity: Bursty Noise

Retrain decoder with bursty noise  



Typical Error Analysis

• Feedback neural encoder/decoder: 

dominant error due to noise amplitude being large

• Robustness to non-Gaussian noise



Inventing Codes

• AWGN channel 

• very well studied; high bar

• Network Information Theory

• AWGN channel with feedback

• relay channel

• interference channel 



Communication with Feedback

• Joint encoding and decoding 

• AWGN channel with feedback

• noisy feedback

• Deep Learning methods 

• beat Schalkwijk-Kailath scheme

• even with noiseless feedback 

• Robustness to noisy feedback

• generalization: block lengths; SNR



AWGN Channel with Feedback
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Literature

• Noiseless feedback 

• Schalkwijk-Kailath, '66

• posterior matching 

• improved reliability 

• Noisy feedback 

• Kim-Lapidoth-Weissman, ’07

• Linear codes very bad 

• Negative result

• Opportunity to test deep learning approach



Sequential Neural Architecture

• Encoder and Decoder: RNN

• Several Innovations

• systematic bits 

• parity bits use feedback

• power allocation to bits

• “correct” concatenations

• Training: end-to-end



Noiseless Feedback 

• Rate 1/3, blocklength = 50

SNR

BER



Noisy Feedback

Feedback Noise

BER



Generalization: Blocklength

SNR

BER



Improved Error Exponents

Blocklength

BER



Properties of the Feedback Code

• Nonlinear convolutional code 

• Maps information bits directly to real numbers

• Dynamic memory

• Feedback influences the memory

• Gated RNNs

• Can capture long term and short term memory



Theoretical Agenda

• Gated Recurrent Neural Networks

• Nonlinear dynamical systems

• Switched linear systems

• Learning Theory meets Switched Dynamical 

Systems

• Many open questions (AISTATS ‘19,’20, ICML ‘19)

• Basic theoretical/mathematical value



Defense Against the Dark Arts

• deepcomm.github.io

• Instructional material

• Social networking

http://deepcomm.github.io


Collaborators
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