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What is x?

3. Find x.

memecanter.com



The vision - data

",
/—-—-\ ‘;\ central s
. e
. -, - -
. : o
: \.____} S
core router - f—\
T
.‘r

origin content
server/website

small L i
/el mobile user
o

base station [~
e dow",
| termlnal
; [}

k@_//



The vision - data

; a
origin content E I
serverfwebsite cmtent:'delivery

server
-

ol e

small

base statlun 'd"_'"

i

i Ak maobile user

do

i IQT@ it

\




What does it mean?

Your work requires you to retrieve data

DATA
X4
40|
A

DATA

g I |

MOBILE CACHE
Xy XY Storage,

communications
are inseparable

DATA

T l Local data may be necessary

The data resides across
different domains and
locations



The vision - computation

r . ypernet
- wireless cloud n <
., controller 4

& 5 A e [
‘03‘«'—““?\ A\ " ——— p'.'" -‘|-’
| W - : conventional
base station f—ﬁ core router

controller global cloud
,‘IIIIIIIIIIIIIIII CTRTTTRTTTNTS 'b_ L'-._l -.?]IIIIIIIIIIIII iRERRRERE LTI
Cache-Enabled storage unit : ) 1
Base Stations for caching : : x
: small cet“ c: E'-._u* fronthaul link database
base station ; e H ] H
: *a, = -z i Big Data
- - 1 ., i  cluster computing e Platform
L'Illi B i‘mllllllllllilllllilil IIIIIIIIIIIIiIi#I:IIIIIIIIIIIIIIiII‘S ‘b.‘ t’ -E CLETRTRTNT] IIIIIIIIIIIII::-I-: CETRIR TR TR TR IR L
& 1& cache-enabled
wireless virtual /_’ T l mobile phone
[ | reality device - i @ [} [



Data

= Side information problem (Wyner-
Ziv)

= Depth one trees (Slepian-Wolf)

— Can be generalized to trees

= General Networks (Ho et al)
— Multicast
— Random Linear Network Coding

— Error exponents via method of types
generalize Csiszar error exponents




What does it mean?

Your work requires you to exploit data

DATA
X1
HER
A MOBILE CACHE )
DATA F(X g0 X ) Computation
) IIII storage,
communications

are inseparable

11l
i

The data resides across For reasons of dimensioning, scaling, security

different domains and Computation needs to occur in network
locations

Local data may be necessary




Functions

= Side Information Problem X X, X
(Orlitsky and Roche, Ortlitsky and Alon) 1 ? ) 13/\2
X,

= Depth One Trees (Doshi et al.)
— Characterizing the rate region XE\.D_,
— A necessary and sufficient condition f(X,,X,
X

for achievability )

* General Trees (Feizi and Médard)

— Rate lower bounds for a general case X
— For independent sources: optimal coding
schemes X
— Polynomial time (practical) coding X f(.)

schemes for some conditions

— Feedback can improve rate bounds X,

V. Doshi, Shah, D., Médard, M., and Effros, M., “Functional Compression Through Graph Coloring”, IEEE Transactions on Information

Theory, Vol. 56, No. 8, Aug. 2010
S. Feizi, and Médard, M., “On Network Functional Compression”, Transactions on Information Theory, vol. 60, no. 9, Sept.2014.




C

aracteristic Grap

Example: X, is a RV with uniform
distribution over {0,1,2,3,4}. X, is a RV C4
?uch that we have the following graph G x;
or
c, c,
CGXl — {Cla C2, 63}-

P(c1) = P(e) =2/5 P(e3) =1/5
H(Cle) ~ 1.52 [ (]

X% can take 25 values {00,01,...,44}.

To make characteristic graph of X;?, we
connect two vertices if at least one of
coordinates are connected in Gy

Characteristic graph:

sample values

— Two vertices are
connected if they

should be
distinguished

— Vertices are different



Power GrapE Example

= One can color this graph by using 8 colors.

1
§H(CG§(1) ~ 1.48 < H(cgy, ) = 1.52




General Trees

* Intermediate nodes are allowed to compute X%

some functions. TR R,
= Rate lower bounds by using cut-set X2 R2 f(.)
. 3
bounds on graph entropies: R
X,1 R4

Ry + Ry + Ry + Ry > Hoy ., Gx,,0x, (X1, X2, X3, Xy)

Ri+ Ry > Hey, y, (X1, Xo| X3, X4)
Rs + Ro > He o . v, (X1, Xo, X3, X0, .

Gxq,X, (

= For independent sources, functions to be computed at intermediate
nodes are coloring functions.

= Unlike regular entropy, chain rule does not hold for graph entropies
n general: HGXI,GXQ (Xl, X2) # HGXI,XQ (le XQ)
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Rate region for distributed functional
compression

R
f (X) X>HGX(X)
R, +R,>H Xq)+H Xo| X
f (X4 ,X5) xR Gx(11) GX(22I 7
> HGX1GX(X1’ X2)

2

Exploit Koérner’s graph entropy to compute the true

rate region for distributed functional compression.



Functional Compression versus Slepian-Wolf

| Slepian-Wolf =

H(Xy)
2 _ . Achievable rate region

"o X(sz) I A s e N

H(X,X,) [ S N R

HGX(2X2 | X4)




Entropic Surjectivity

Defn. Entropic surjectivity of a function is how well
can be compressed wrt the compression rate of its domain :

H(/,(Y)
L) =Te= =15

A minimal representation of function f, e.g. if coloring is
used [DSME, 10], [FM, 14]:

H(f(X))=Hcy (X)

A non-surjective function

has less redundancy vs H(/e(X) ~ 0
- . H(X)

surjective function:

D. Malak, A. Cohen and M. Médard, "How to Distribute Computation in Networks,"
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,



Compression and Communication

Distributed source compression [Slepian and Wolf, 73], [Pradhan and
Ramchandran, 13], [Coleman et al, 06], [Wyner and Ziv, 76]

Rate region and graph entropy [Korner, 73 ], [Alon and Orlitsky, 96],
[Orlitsky and Roche, 01], [Doshi et al, 10], [Feizi and Médard, 14], [Feng
et al, 04], [Gallager, 88], [Kamath and D. Manjunath, 08], [Shah et al, 13]

Network coding and linear functions [Ho et al, 06], [Kowshik and
Kumar, 10, 12], [Appuswamy and M. Franceschetti, 14], [Koetter et al,

04], [Koetter and Médard, 03], [Huang et al, 18], [Li et al, 03]

Coding for computation/communications [Li et al, 18], [Kamran et al,
19], [Yu, Maddah-Ali, and Avestimehr, 18]

Functions with special structures [Shen et al, 18], [Giridhar and Kumar,
05], [Gorodilova, 19]

OUR GOAL: Use underlying redundancy both in data

and functions, and recover a sparse representation,
or labeling, at the destination.




How to Manage Functions

/—TaSk f119 Sl
Task f12% SZ = Task f219 Sl = Task f319 S7
¢< Task f332 Ss x| Task f22S, 8 | Task 302 Sq
Task f149 S7 _ Task f23% SS - _ f
\_Task 152 Sg Functionf, unctionts
Function f,

Task manager decides how to distribute the

task/computation accordingly (by looking at the routing
information).




Architecture
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(b) Function Manager

(a) Physical topology of the network (c) Logical topology of workload distribution



Routing for Computing
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Routing for Computing

Comp.
Queue

Task f,,

\ /
1] Comm.

Queue

rou
Vi( Ay )p v (C) et Vi( AL ) pm“ (c)
Arrivals routed 1
Arrivals routed to
from other nodes " Q’ L other nodes
T k f
K s c: type of

Srl;l%gizl computational
)\V Vf( )\V flow

Total arrival Total generated

Network is in product form. Hence, nodes

(servers) can be considered in isolation.



Average Delay (per node)

The total delay of computation and communications for
processing functions of typec € C at nade

Ws=0C; +C°

v,comp v,comm
time complexity time complexity
of computing of communicating
C C c
Cv .comp )\c df (M ) C{’v,comm

O(log(M¢)), Search,

dy(My) = § O(M?), MapReduce,

O(exp(M¢)), Classification.

\

v
M is the long-term average number of packets waiting for service.



Cost change with surjectivity
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What about neural networks?

- Point-to-point NN-based joint source-channel coding

- Images [Bourtsoulatze, Kurka, and Giindtiz 2019] |
- Text [Farsad, Rao, and Goldsmith 2018]

Neural network coding:

* No assumption on sources.

* Joint source-network coding scheme.
* Practical decoders.

* Applicable to arbitrary network topology OO
* Applicable to arbitrary power constraints. O

(a)

Noisy

Channel | VK

L. Liu, A. Solomon, S. Salamatian and M. O
Medard, "Neural Network Coding," /ICC 2020 - Ol
2020 IEEE International Conference on O%=

Communications (ICC)




Performance Evaluation

+ Reconstruction metric

max{X;}?

pSNR = ].U ].Oglo( = =
E[(X - X)?]
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Performance Evaluation
High SNR on all links
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Performance Evaluation

One destination node with weak receiver

incoming
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Performance Evaluation

One source node with weak sender
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Performance Evaluation

One weak link

link w/ low
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Performance Evaluation

All links equally strong

Power-Distortion Tradeotf Water-filling
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Performance Evaluation

Comparison with Analog Network

Coding
- No source compression 25- e
/
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What is x?

3. Find x.
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Low influence functions

IN
f(x h(x +N =
= vicel— %) Tgap ). ~ o Alice —— @) ————| Bob -
l _ N
Eve o
Eve —

e Real valued function f,g: {-1,1}" >R

Low influence functions: No coordinate has too much
e control on the function.

Well behaved random variable: Conditions on x.

Rafael G. L. D'Oliveira, Salim El Rouayheb, Muriel Médard:, "The Computational Wiretap Channel”. Allerton 2018.



L
Where to?

+ Computation, networking and communication are
increasingly united

- Information theory has tools to study an exploit this
unification

- Further work:

+ Implementation: ongoing work with Alejandro Cohen, Manya
Ghobadi, Benoit Pit-Claudel, Ganesh Ananthanarayanan
(Microsoft), Derya Malak (RPI)

« Characterize low influence functions
 Multiterminal computational wiretap.



