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What is x?



The vision - data
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The vision - data

5



What does it mean?
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Your work requires you to retrieve data 

The data resides across 
different domains and 
locations

Local data may be necessary

Storage,
communications 
are inseparable



The vision - computation
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§ Side information problem (Wyner-
Ziv)

§ Depth one trees (Slepian-Wolf)
– Can be generalized to trees

§ General Networks (Ho et al) 
– Multicast
– Random Linear Network Coding
– Error exponents via method of types 

generalize Csiszar error exponents (.)



What does it mean?

9

Your work requires you to exploit data 

The data resides across 
different domains and 
locations

For reasons of dimensioning, scaling, security
Computation needs to occur in network

Local data may be necessary

Computation
storage,
communications 
are inseparable
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§ Side Information Problem 
(Orlitsky and Roche, Ortlitsky and Alon)

§ Depth One Trees (Doshi et al.)
– Characterizing the rate region
– A necessary and sufficient condition 

for achievability 

§ General Trees (Feizi and Médard)
– Rate lower bounds for a general case
– For independent sources: optimal coding 

schemes
– Polynomial time (practical) coding 

schemes for some conditions
– Feedback can improve rate bounds

V. Doshi, Shah, D., Médard, M., and Effros, M., “Functional Compression Through Graph Coloring”, IEEE Transactions on Information 
Theory, Vol. 56, No. 8, Aug. 2010 
S. Feizi, and Médard, M., “On Network Functional Compression”, Transactions on Information Theory, vol. 60, no. 9, Sept.2014.



Characteristic Graph
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§ Example: X1 is a RV with uniform 
distribution over {0,1,2,3,4}. X2 is a RV 
such  that we have the following graph 
for         . 

§ To make characteristic graph of X12, we 
connect two vertices if at least one of 
coordinates are connected in         .

§ X12 can take 25 values {00,01,…,44}.
Characteristic graph:

– Vertices are different 
sample values

– Two vertices are 
connected if they 
should be 
distinguished
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Power Graph Example

§ One can color this graph by using 8 colors.

Fully Connected



General Trees
§ Intermediate nodes are allowed to compute 

some functions.

§ Rate lower bounds by using cut-set 
bounds on graph entropies:

f(.)
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§ For independent sources, functions to be computed at intermediate 
nodes are coloring functions. 

§ Unlike regular entropy, chain rule does not hold for graph entropies 
in general:

§ Theorem
      When sources are independent, these bounds are tight. 
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Rate region for distributed functional 
compression

Exploit Körner’s graph entropy to compute the true 
rate region for distributed functional compression. 



Functional Compression versus Slepian-Wolf
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Entropic Surjectivity
Defn. Entropic surjectivity of a function  is how well                                 
can be compressed wrt the compression rate of its domain :

A minimal representation of function f, e.g. if coloring is 
used [DSME, 10], [FM, 14]:

A non-surjective function 
has less redundancy vs 
surjective function:
 

For surjective functions 0

D. Malak, A. Cohen and M. Médard, "How to Distribute Computation in Networks," 
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,



Compression and Communication
Distributed source compression [Slepian and Wolf, 73], [Pradhan and 
Ramchandran, 13], [Coleman et al, 06], [Wyner and Ziv, 76]
Rate region and graph entropy [Körner, 73 ], [Alon and Orlitsky, 96], 
[Orlitsky and Roche, 01], [Doshi et al, 10], [Feizi and Médard, 14], [Feng 
et al, 04], [Gallager, 88], [Kamath and D. Manjunath, 08], [Shah et al, 13]
Network coding and linear functions [Ho et al, 06], [Kowshik and 
Kumar, 10, 12], [Appuswamy and M. Franceschetti, 14], [Koetter et al, 
04], [Koetter and Médard, 03], [Huang et al, 18], [Li et al, 03]
Coding for computation/communications [Li et al, 18], [Kamran et al, 
19], [Yu, Maddah-Ali, and Avestimehr, 18]
Functions with special structures [Shen et al, 18], [Giridhar and Kumar, 
05], [Gorodilova, 19]

17

OUR GOAL: Use underlying redundancy both in data 
and functions, and recover a sparse representation, 

or labeling, at the destination.
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How to Manage Functions

Task manager decides how to distribute the 
task/computation accordingly (by looking at the routing 

information). 
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Architecture
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Routing for Computing

For tractability, consider each node in isolation, i.e quasi-
reversible or product form as in a Jackson network [Walrand 

83]. 



21

Arrivals routed 
from other nodes

Original 
arrivals

Total arrival 
rate

Total generated 
rate

Arrivals routed to 
other nodes

c: type of 
computational 
flow 

Network is in product form. Hence, nodes 
(servers) can be considered in isolation.

Routing for Computing
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Average Delay (per node)
The total delay of computation and communications for 
processing functions of type            at node

        is the long-term average number of packets waiting for service. 

time complexity 
of computing 

time complexity 
of communicating
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Cost change with surjectivity

 

The normalized MinCost versus      . 



What about neural networks?
• Point-to-point NN-based joint source-channel coding 

• Images [Bourtsoulatze, Kurka, and Gündüz 2019]
• Text [Farsad, Rao, and Goldsmith 2018]

Neural network coding: 
• No assumption on sources.
• Joint source-network coding scheme.
• Practical decoders.
• Applicable to arbitrary network topology
• Applicable to arbitrary power constraints.

L. Liu, A. Solomon, S. Salamatian and M. 
Médard, "Neural Network Coding," ICC 2020 - 
2020 IEEE International Conference on 
Communications (ICC)



Performance Evaluation
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• Reconstruction metric



Performance Evaluation
High SNR on all links
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Performance Evaluation
One destination node with weak receiver 
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Performance Evaluation
One source node with weak sender
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Performance Evaluation
One weak link

link w/ low 
SNR
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Performance Evaluation
All links equally strong

Water-fillingPower-Distortion Tradeoff
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Performance Evaluation 
Comparison with Analog Network 
Coding

• No source compression 
• All distortion from 

   channel noise
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What is x?



Low influence functions

• Real valued function
• Low influence functions: No coordinate has too much
• control on the function.
• Well behaved random variable: Conditions on x.

Rafael G. L. D'Oliveira, Salim El Rouayheb, Muriel Médard:, ”The Computational Wiretap Channel”. Allerton 2018. 



Where to?
• Computation, networking and communication are 

increasingly united
• Information theory has tools to study an exploit this 

unification
• Further work:

• Implementation: ongoing work with Alejandro Cohen, Manya 
Ghobadi, Benoît Pit-Claudel, Ganesh Ananthanarayanan 
(Microsoft), Derya Malak (RPI)

• Characterize low influence functions
• Multiterminal computational wiretap.


