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Source Coding With a Side Information
“Vending Machine”
Haim H. Permuter and Tsachy Weissman

Abstract—We study source coding in the presence of side in-
formation, when the system can take actions that affect the avail-
ability, quality, or nature of the side information. We begin by ex-
tending the Wyner-Ziv problem of source coding with decoder side
information to the case where the decoder is allowed to choose
actions affecting the side information. We then consider the set-
ting where actions are taken by the encoder, based on its observa-
tion of the source. Actions may have costs that are commensurate
with the quality of the side information they yield, and an overall
per-symbol cost constraint may be imposed. We characterize the
achievable tradeoffs between rate, distortion, and cost in some of
these problem settings. Among our findings is the fact that even in
the absence of a cost constraint, greedily choosing the action asso-
ciated with the “best” side information is, in general, suboptimal.
A few examples are worked out.

Index Terms—Actions, data acquisition, rate distortion, side in-
formation, source coding, vending machine, Wyner-Ziv coding.

I. INTRODUCTION

T HE role and potential benefit of Side Information (S.I.) in
lossless and lossy data compression is a central theme in

information theory. In ways that are well understood for various
source coding systems, S.I. can be a valuable resource, resulting
in significant performance boosts relative to the case where it is
absent. In the problems studied thus far, the lack or availability
of the S.I., and its quality, are a given. But what if the system
can take actions that affect the availability, quality, or nature of
the S.I.?

Consider a source coding system where the S.I. is a sequence
of noisy measurements of the source sequence to be com-
pressed, each S.I. symbol acquired via a sensor. The quality
of each S.I. symbol may be commensurate with resources,
such as power or time expended by the sensor for obtaining it,
which are limited. Alternatively, or in addition, a sensor may
have freedom to choose, for each source symbol, how many
independent noisy measurements to observe, with a constraint
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Fig. 1. Rate distortion with a side information vender at the decoder. The
source� is i.i.d.�� , and � is the output of the side information channel
� in response to the pair of sequences � and � , where � is the
action sequence chosen by the decoder.

on the overall number of measurements. It is natural to wonder
how these resources, which may or may not be limited, should
best be used, and what would the corresponding optimum
performance be.

We abstract this problem by assuming a memoryless source
, a conditional distribution of the side information given the

source and an action , a function assigning costs to the
possible actions, and a distortion measure. The first scenario
we focus on is that depicted in Fig. 1, where the actions are
taken at the decoder: Based on its observation of the source se-
quence , which is i.i.d. , the encoder gives an index to
the decoder. Having received the index, the decoder chooses
the action sequence . Nature then generates the side infor-
mation sequence as the output of the memoryless channel

whose input is the pair . The reconstruction
sequence is then based on the index and on the side infor-
mation sequence.

The setting of Fig. 1 can be considered the source coding dual
of coding for channels with action-dependent states, where the
transmitter chooses an action sequence that affects the forma-
tion of the channel states, and then creates the channel input
sequence based on the state sequence, as considered in [11].
We characterize the achievable tradeoff between rate, distor-
tion, and cost in Section II. We demonstrate, by a few exam-
ples, that greedily choosing the action associated with the ‘best’
side information may be suboptimal even in the absence of a
cost constraint. Further, in the presence of a cost constraint,
time-sharing between schemes that are optimal for different cost
values is, in general, suboptimal. We also characterize the fun-
damental limits for the case where the reconstruction is con-
fined to causal dependence on the side information sequence,
and the case where the encoder observes a noisy observation of
the source rather than the source itself.

The second scenario we consider is that depicted in Fig. 2,
where actions are taken at the encoder: Based on its observation
of the source sequence , the encoder chooses a sequence of
actions . Nature then generates the side information sequence
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Fig. 2. Rate distortion with side information vender at the encoder, where the
side information is known at the decoder and may or may not be known to the
encoder. The source � is i.i.d.�� and side information is generated as the
output of the memoryless channel � in response to the input �� �� �,
where the action sequence � is chosen by the encoder.

as the output of the memoryless channel whose
input is the pair . The encoder now chooses the index
to be given to the decoder on the basis of the source and possibly
the side information sequence (according to whether or not the
switch is closed). The reconstruction sequence is then based
on the index and on the side information sequence. Though we
leave the general case open, in Section III we characterize the
achievable tradeoff between rate, distortion, and cost for three
important special cases: the (near) lossless case, the Gaussian
case (where , with and being independent
Gaussian random variables), and the case of the Markov relation

(i.e., when is of the form ). We end that
section with Subsection III-D, giving lower and upper bounds
on the achievable rates for the general case. We summarize the
paper and related open directions in Section IV.

The family of problems we consider in this work includes sce-
narios arising naturally in the coding or compression of sources
for which the S.I. arises from noisy measurements of the source
components. The acquisition, handling, processing and storage
of these measurements may require system resources that come
at a cost. This premise, that the acquisition of source measure-
ments may be costly and is to be done sparingly, is in fact cen-
tral in the emerging Compressed Sensing paradigm [1], [2], [5],
arising naturally in the study of an increasing array of sensing
problems. In many such problems, the system has the freedom to
choose how many sensors to deploy in each region of the phe-
nomenon it is trying to gauge, subject to an overall budget of
sensors. Assuming each sensor provides an independent mea-
surement of the source region in which it was deployed, this
setting corresponds to our model, with repre-
senting the number of sensors, repre-
senting independent measurements from the ‘sensor channel’

, and assuming all sensors are equally costly.
The cost constraint then corresponds to the budget of sensors
to deploy, in number of sensors per source region. We are not
aware of previous work on source coding for systems allowed
to take S.I.-affecting actions from a Shannon theoretic perspec-
tive. We refer to [7] and some references therein for other recent
Shannon theoretic studies of new problems involving source
coding in the presence of S.I.

II. SIDE INFORMATION VENDING MACHINE AT THE DECODER

Throughout the paper we let upper case, lower case, and cal-
ligraphic letters denote, respectively, random variables, specific
or deterministic values they may assume, and their alphabets.
For two jointly distributed random objects and , let

, and respectively denote the distribution of , the
joint distribution of , and the conditional distribution of
given . In particular, when and are discrete, repre-
sents the stochastic matrix whose elements are

. The term denotes the -tuple
when and the empty set otherwise. The

term is shorthand for , and stands for the
-tuple consisting of all the components of but .

A. The Setup

A source with action dependent decoder side information is
characterized by the source distribution and by the condi-
tional distribution of the side information given the source and
an action . The difference between this and previously
studied scenarios is that here, after receiving the index from the
encoder, the decoder may choose actions that will affect the na-
ture of the side information it will get to observe. Specifically,
a scheme in this setting for blocklength and rate is charac-
terized by an encoding function , an
action strategy , and a decoding func-
tion that operate as follows.

• The source -tuple is i.i.d.
• Encoding: based on give index to the

decoder
• Decoding:

— given the index, choose an action sequence ;
— the side information will be the output of the mem-

oryless channel whose input is ;
— let .

A triple is said to be achievable if for all
and sufficiently large there exists a scheme as above for block-
length and rate satisfying both

(1)

(2)

where and are, respectively, given distortion and cost func-
tions. The rate distortion (and cost) function is defined
as

(3)

B. The Rate-Distortion-Cost Tradeoff

Define

(4)

where the joint distribution of in (4) is of the form

(5)
and the minimization is over all under which

(6)
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where denotes the best estimate of based on
is an auxiliary random variable. We show below that

the cardinality of may be restricted to . Our
main result pertaining to is the following.

Theorem 1: The rate-distortion-cost function, as defined in
(3), is given by in (4), i.e.,

(7)

Remark: Write for the explicit depen-
dence of the Wyner-Ziv rate distortion function [15] on the dis-
tribution of the source and the conditional distribution of the
source given the side information. It is clear that we get (8),
as shown at the bottom of the page, since the right-hand side
can be achieved by letting the decoder take actions according to
a pre-specified sequence with the symbol fraction of
the time, and performing Wyner-Ziv coding at distortion level

separately on each subsequence associated with each action
symbol. It is natural to wonder whether the inequality in (8) can
be strict. We will see through some examples below that, in gen-
eral, it may very well be strict. Indeed, even in the absence of
a cost constraint, we give examples showing that greedily se-
lecting the action associated with the side information which
is best in the Wyner-Ziv sense, that is the action minimizing

, may be suboptimal.
The following lemma will be useful in proving Theorem 1.

Lemma 1: Properties of the expressions defining
:

1) For any fixed and , the set of distributions of
the form given in (5) is a convex set in .

2) For any fixed and , the expression
is convex in [assuming the joint

distribution given in (5)].
3) To exhaust , it is enough to restrict the alphabet

of to satisfy

(9)

4) It suffices to restrict the minimization in (4) to joint distri-
butions where is a deterministic function of , i.e., of
the form

(10)

Proof:
1) Since the set of conditional distributions is a

convex set, and since and are fixed, the set of
distributions of the form given in (5) is a convex
set.

2) Using the definition of mutual information, we have the
identity shown in (11), as found at the bottom of the page.
We show now that the right-hand part of (11) is convex
in for a fixed and . The expression

is convex in , hence it is also
convex in . For fixed and , the expres-
sion is linear in . Finally, we show that

is convex using the the log sum inequality that
states that for non negative number, and

(12)

Now let , where
and . Let us denote and , the
joint distribution and the conditional entropy induced by

and the fixed pmfs and for .
Consider (13), shown at the bottom of the page, where (a)
follows from the definition of and (b) follows from
the log sum inequality. Since (13) holds for any and
any , we obtain that is convex, i.e.,

(14)

It is also possible to prove the concavity of in
for fixed and through the fact that

where and
is independent of and defining for

.

(8)

(11)

(13)
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3) We invoke the support lemma [4, p. 310]. The support
lemma says that given conditions on a random vari-
able , where are
real-continuous functions there exists a random variable

with finite alphabet , with probabil-
ities , s.t.

for all .
First we have conditions to preserve ,
i.e., , for all
and but one since .
The structure of the pmf in (5) does not change and
since is preserved than is also preserved
which implies and are
also preserved. Two more conditions need to be pre-
served and
the distortion . Therefore there are

conditions to preserve, which implies by
the support lemma [4, p. 310] that the cardinality of
may be restricted to .

4) Note that it suffices to restrict the minimization in (4) to
joint distributions where is a deterministic function of

, i.e., of the form

(15)

in lieu of (5). To see the equivalence note that a distribution
of the form in (5) assumes the form in (10) by taking
as the auxiliary variable.

Proof of Theorem 1: Achievability: We briefly and infor-
mally outline the achievability part, which is based on standard
arguments: A code-book of size is generated with
codewords that are i.i.d. . For each such codeword, gen-
erate codewords according to . Distribute
these codewords uniformly at random into
bins. Given the source realization, bits are used
by the encoder to communicate the identity of a codeword from
the first codebook jointly typical with it (with high probability
there is at least one such codeword). The decoder now per-
forms the actions according to the action sequence conveyed to
it. The encoder now uses an additional
number of bits to describe the bin index of the codeword from
the second code-book which is jointly typical with the source
and the first codeword. With high probability there is at least one
such codeword (since more than such were gener-
ated), and it is the only codeword in its bin which is jointly typ-
ical with the first codeword (which the decoder already knows)
and the side information sequence that it has generated and is
observed at the decoder, since the size of each bin is no larger
than . For
the reconstruction, the decoder now employs the mapping
in a symbol-by-symbol fashion on the components of the pair
consisting of the second codeword and the side information
sequence.

Converse: For the converse part, fix a scheme of rate for
a block of length and consider (16), as shown at the bottom of
the page. Now we get (17)–(18), also shown on the page. Com-

(16)

(17)

(18)
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bining (16) and (18) yields (19), as shown at the bottom of the
page, where (a) follows by taking .
Noting that is a function of the pair ,
and the Markov relation , the proof is
now completed in the standard way upon considering the joint

distribution of ,
where is randomly generated uniformly at random from
the set , independent of ,
and noting (20)–(23), shown at the bottom of the page, where
the last inequality follows from item 2 in Lemma 1, which
states that is convex over the set of
distributions that satisfies (20).

It is natural to wonder whether the characterization above re-
mains valid when the choice of the actions is allowed to depend
on the side information symbols generated thus far, that is, for
the th action to be of the form . The con-
verse in the proof above does not carry over to this case since
the inequality , used
in (17), may no longer hold. Whether the best achievable rate
could, in general, be better (less) when allowing such schemes
remains open.

C. Actions Taken by the Decoder Before the Index is Seen

Consider the setting as in Fig. 1, where the actions are
taken by the decoder before the index is seen. In such a case

is independent of . For this case, the rate-distortion-cost
function is similar to defined in the previous sec-

tion, but with an additional constraint that is independent of
. Define

(24)

where the joint distribution of is of the form shown
in (25), found at the bottom of the page, and the minimization
is over all and under which

(26)

where denotes the best estimate of based on
, where is an auxiliary random variable with a cardinality

.

Theorem 2: The rate-distortion-cost function for the setting
where actions taken by the decoder before the index is seen, is
given by .

Proof: The proof is similar to the proof of Theorem 1, but
taking into account that is independent of , and therefore

is independent of .

If the cost is unlimited, then the greedy policy is optimal,
namely the decoder blindly chooses the action minimizing

(27)

and an optimal Wyner-Ziv code for the source and channel
is employed. For the more general case, in the pres-

ence of a cost constraint, as can be expected and is straightfor-
ward to check, in (24) coincides with the min-
imum on the right-hand side of (8).

(19)

(20)

(21)

(22)

(23)

(25)
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Fig. 3. Example of vending side information, where the action chooses be-
tween Z-channel and S-channel with parameter �.

D. Examples

1) The Lossless Case: As a very special case of Theorem 1
we get that, in the absence of a cost constraint on the actions,
the minimum rate needed for a near lossless reconstruction at
the decoder is given by

(28)

where the joint distribution of in (28) is of the form

(29)

and the minimization is over all . Letting
denote the conditional entropy

induced by the pair (the subscript standing
for ‘Slepian-Wolf’ [9]), it is natural to wonder whether the
above minimum rate can be strictly better (smaller) than

, which is what would be achieved
if the decoder greedily takes the one action leading to S.I.
which is best in the sense of inducing lowest ,
irrespective of any information from the encoder, and then
proceeding as in Slepian-Wolf coding. The following is an
example showing that this greedy strategy may be suboptimal.

Consider the case where is
a fair coin flip, is the Z-channel with crossover
probability from 1 to 0, and is the S-channel
with crossover probability from 0 to 1. The setting is de-
picted in Fig. 3. Symmetry implies that the minimizing

satisfies ,
in other words, there is a BSC connecting to (or to ).
Assuming this BSC has crossover probability , an elementary
calculation yields (30), as shown at the bottom of the page.
Thus, letting denote the minimum in (28) for this
scenario

(31)

In contrast, the minimum rate achieved by a ‘greedy’ strategy
which chooses actions without regard to the information from

Fig. 4. Plot of � ��� � � ���.

Fig. 5. Plot of � ����� �� as a function of the cost � .

the encoder is given by the conditional entropy of the input given
the output of the Z-channel whose input is a fair coin flip,
namely

(32)

For example, elementary calculus shows that is
achieved by , assuming the value , which
is about a 1.5% improvement over .
Fig. 4 plots the difference between and .

In the presence of a cost constraint, Theorem 1 implies that
the minimum rate needed for a near lossless reconstruction
is given by the minimum in (28), with the additional con-
straint . Let denote this minimum
for our present example, assuming cost 0 for using say the
first Z-channel and 1 for using the second channel. Clearly

and conse-
quently, by a time-sharing argument

(33)
As it turns out, the inequality in (33) is strict, i.e., in our example
one can do better than time-sharing between the respective op-
timum schemes for the different costs (to the level allowed by
the cost constraint). Fig. 5 contains a plot of ,
which is seen to be strictly convex and hence better (lower) than
the straight line represented by the right side of (33).

(30)
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Fig. 6. Ternary example.

2) The Lossy Case: Ternary Source and Binary Side Infor-
mation of Unit Cost: Consider a ternary taking values in

, distributed according to

(34)

The actions are binary, taking values in , where action 0
corresponds to no S.I. while action 1 corresponds to obtaining
a binary noisy measurement of , taking values in ,
which is the output of the following channel:

and
. Suppose that there is a unit cost for obtaining such a noisy

measurement of the source, i.e.: . This
source coding scenario is depicted in Fig. 6.

The conditional entropy of given is 1 bit. Thus, lossless
compression of is achievable at a rate of 1 bit per source
symbol at a cost of 1 per source symbol with a greedy decoder
who chooses to observe the noisy source measurement of all
symbols. Can one do better than this greedy policy? This rate
is achievable at half the cost via the following scheme: the
encoder uses one bit per source symbol to describe whether
or not the symbol is 0. The decoder then needs to use the
noisy measurement of the source only for those symbols
that are not 0 (in which case the measurement will com-
pletely determine the source symbol). This corresponds to rate

under
, which is readily verified to be the minimum

of achievable rates under a cost constraint of 1/2.
In the lossy case, under Hamming distortion, we note the

following.
• When the S.I. is available to both encoder and decoder (at no

cost) the problem is reduced to one of lossy compression for
the binary symmetric source, thus .

• This rate is achievable even when the S.I. is absent at the
encoder, as can be seen by letting be the output of a

whose input is the quantized version of
, defined by and , where

. It is readily seen that the optimal estimate
of based on satisfies
and that . Thus,

.
• in the above item corresponds to a decoder

that observes all of the S.I. symbols. Can the same per-
formance be achieved with fewer observations? In other
words, assuming unit cost per observation, can the same
performance be achieved at a cost less than 1? We now
argue that the same performance can be achieved at half
the cost: letting, as before, correspond to no obser-
vation and correspond to an observation, consider
a conditional distribution given by

and where
. Then

and the optimal estimate
of based on has . The
cost here is . Evidently, the rate-distor-
tion-cost function in (4) satisfies

and in fact since obvi-
ously . Thus, the rate
is achievable even if the decoder is allowed to access only
half of the observations.

3) Binary Action: To Observe or Not to Observe the S.I.:
Consider a given source and side information distribution .
The action is to either observe the side information symbol
or not, where an observation has unit cost. Thus
is a constraint on the fraction of side information symbols
the decoder will be allowed to observe. Let us arbitrarily take

, with corresponding to observation of
the side-information symbol and to lack of it. Noting
that the second mutual information term in (4) corresponds
to Wyner-Ziv coding conditional on , the specialization of
Theorem 1 for this case gives (35), as shown at the bottom of
the page, where denotes the rate distortion function
of the source and denotes the Wyner-Ziv
rate distortion function when source and side information are
distributed according to .

A very special case is when . Thus the action is
either to observe the source symbol or not. Assuming a non-
negative distortion measure satisfying for
all , (35) becomes When is a fair coin flip and distortion
is Hamming, (36) becomes (for in the nontrivial region)

(35)

(36)
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as shown in (37), found at the bottom of the page, where
is the rate distortion function

of the Bernoulli source and step (a) is due to the fact that
is minimized (at the value ) by taking

independent of .
To see that can be strictly smaller than

in the observe/not-observe binary action sce-
nario, consider the case where is a fair coin flip and is the
output of an erasure channel with erasure probability (whose
input is ). Recalling that
when is the erased version of (cf. [8], [10]), we spe-
cialize the right-hand side of (35) for this case to obtain
(38), shown at the bottom of the page, where the last min-
imum is over and

. For the extreme points we get, as
expected: and .
Fig. 7 plots the curve in (38) for and

.

E. Causal Decoder Side Information

Consider the setting presented in Fig. 8, which is similar to
that described in Section II-A, the only difference being that the
reconstruction is allowed causal dependence on the side infor-
mation, i.e., to be of the form (motivation for
why this might be interesting can be found in [12]).

Define

(39)

Fig. 7. Rate-distortion-cost function������� � � � � �, for the case where
� is a fair coin flip, � its erased version where � ���� � is fraction of places
where decoder is allowed to observe S.I., and� � ���. In this case���� �� �
� � � � � �����	��� ���� �� � � � � �� � � � � � � � �.
The strict concavity implies suboptimality of time-sharing optimal schemes ac-
cording to the available observation budget.

Fig. 8. Rate distortion with causal side information vender at the decoder.

where the joint distributions of is of the form

(40)

(37)

(38)
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Fig. 9. Indirect rate distortion with a side information vender at the decoder. The source � is i.i.d. � and the encoder observes a noisy version of the source,
� , where the pairs �� �� � are i.i.d.�� . Side information is generated as the output of the channel � in response to the noise-free, noisy, and
action sequences �� �� �� �, where the action sequence � is generated on the basis of the index from the encoder.

and the minimization is over all under which

(41)

where denotes the best estimate of based on
, where is an auxiliary random variable. The cardinality

of may be restricted to as shown in item
3, Lemma 1. One can also denote as , and an equivalent
representation would be

(42)

where
.

Theorem 3: The rate-distortion-cost function for the setting
of a side information vender at the decoder with causal side
information is given by .

Proof: Achievability: The achievability proof is based on
the fact that the encoder and decoder generate a joint type
using a rate that is , and since both the encoder and
decoder know the sequence of actions , they can time-share
between causal schemes such that if the action is a rate

would achieve the distortion constraint [12].
Hence, the total rate is

.
Converse: for the converse part, fix a scheme of rate for a

block of length and consider

(43)

where step (a) is due to the Markov chain
. Now let us denote , and we obtain that

(44)

The proof is now completed in the standard way upon

considering the joint distribution of
, where is randomly generated

uniformly at random from the set , independent of
, and noting (45)–(48), as shown at the

bottom of the page.

F. Indirect Rate Distortion With Action-Dependent Side
Information

Consider the case shown in Fig. 9 where, rather than the
source , the encoder observes a noisy version of it, . The
decoder, based on the index conveyed to it from the encoder,
will then select an action sequence that will result in the
side information , as output from the channel .
The reconstruction, as before, will be a function of the index
and the side information. Specifically, a scheme in this set-
ting for blocklength and rate is characterized by an
encoding function , an action
strategy , and a decoding function

that operate as follows.
• The source -tuple is i.i.d. goes through a DMC

to yield its noisy observation sequence . Thus,

(45)

(46)

(47)

(48)
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Fig. 10. � ����� in the Gaussian case, for � � � � �. The boundary of
the region where � ����� � � is the curve � � . Indeed, this
distortion level can be achieved with zero rate by estimating � on the basis of
� � � � �	�� �

�
��.

overall the clean and noisy source are characterized by a
given joint distribution .

• Encoding: based on give index to the
decoder.

• Decoding:
• given the index, choose an action sequence ;
• the side information will be the output of the memo-

ryless channel whose input is ;
• let .

The rate-distortion-cost for this case is now defined similarly as
in Subsection II-A. Let us denote it by , the subscript
standing for “indirect”. Theorem 1 is generalized to this case as
follows.

Theorem 4: is given by

(49)

where the joint distribution of is of the form
shown in (50), at the bottom of the page, and the minimization
is over all under which

(51)

where denotes the best estimate of based on
, and is an auxiliary random variable whose cardinality

is bounded as .
Proof Outline: The achievability part is very similar to the

original. The random generation of the scheme is performed in

the same way, with the noisy source replacing the original noise-
free source. This guarantees that are, with
high probability, jointly typical. The joint typicality also with

, namely the joint typicality of , then
follows from an application of the Markov lemma. The converse
part also follows similarly to the one from the noise-free case:
that

(52)

follows identically as in (16) by replacing by . That

(53)
follows similarly as (18) by replacing with , upon
noting that ,
which follows from the Markov relation

(which a fortiori implies
). Combining (52) and (53)

now yields

(54)

similarly as in Step (a) in (19) upon defining
. The proof of the converse is con-

cluded by verifying that:
• is a function of the pair ;
• the Markov relation holds (which fol-

lows from );
• the Markov relation holds (which

follows from );
and invoking the convexity of the informational rate distortion
function defined on the right-hand side of (49), which is estab-
lished similarly as in Lemma 1.

III. SIDE INFORMATION VENDING MACHINE AT THE ENCODER

In this section we consider the setting where the action se-
quence is chosen at the encoder and the side information is
available at the decoder and possibly at the encoder too. The set-
ting is depicted in Fig. 2. Specifically, a communication scheme
in this setting for blocklength and rate is characterized by
an action strategy

(55)

an encoding function as shown at the bottom of the page, and a
decoding function

(56)

(50)
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As in the case where the actions were chosen by the decoder,
the side information will be the output of the memoryless
channel whose input is . Furthermore, a triple

is said to be achievable if for all and suffi-
ciently large there exists a scheme as above for blocklength
and rate satisfying both

(57)

(58)

The rate distortion (and cost) function (The letter
stands for encoder) is defined as

(59)

The general case remains open; however, we present here a
characterization of three important cases: lossless case (where

), Gaussian case (where
and and are independent Gaussian random variables), and
a case where the Markov form holds. In all three
cases, is independent of whether or not the S.I. is
available at the encoder.

A. Lossless Case

Here we consider the lossless case, namely, for any
there exists an such that . Define

(60)

where and are determined by the problem setting
and the minimization is over such that .
The term is convex in
since the term is convex in and the identity
in (61), as shown at the bottom of the page, holds.

Let us denote the minimum (operational) rate that is needed to
reconstruct the source at the encoder losslessy, with an expected
cost per action less than , as .

Theorem 5: For the setting in Fig. 2 where the actions are
chosen by the encoder and the side information is known to
the decoder and may or may not be known to the encoder the
minimum rate that is needed to reconstruct the source under a
cost constraint is given by

(62)

Proof: Achievability: The achievability proof is divided
into two cases according to the sign of the term

. In the first case we assume and
we use a coding scheme that is based on Wyner-Ziv coding [15]
for rate distortion theory, where side information known at the
decoder. In the second case, we assume
and we use a coding scheme that is based on Gel’fand-Pinsker
coding [6] for channel with states where the state is known to
the encoder.

First case : We first generate a
codebook of sequences of actions that covers ; hence,
the size of the codebook needs to be , where

. Then, similarly to Wyner-Ziv coding scheme [15], we
bin the codebook into bins such that
into each bin we have codebooks. Similarly to
Wyner-Ziv scheme, we look in the codebook for a sequence

that is jointly typical with and transmit the number of
the bin that contains the sequence. The decoder receives the
bin number and looks which of the sequences of in the
bin that its number is received are jointly typical with the side
information . Similar to the analysis in Wyner-ziv setting,
with high probability there will be only one codeword that is
jointly typical with (The Markov form that is needed in the
analysis of Wyner-ziv setting is not needed here, since the side
information is generated according to and there-
fore if are jointly typical then with high probability
the triple would also be jointly typical). In the
final step the encoder uses a Slepian-Wolf scheme for trans-
mitting losslessy to the decoder that has side information

; hence additional rate of is needed.
Second case : First we notice that the

expression in (62) can be written as
. The actions can be considered as input to a channel

with states where the output of the channels is and the state is
and the conditional probability of the channel is . The

capacity of this channel is achieved by Gel’fand-Pinsker coding
scheme [6] and is given as . In addition the
Gel’fand-Pinsker coding scheme induces a triple
that is jointly typical. Hence, we can use the message in order to
reduce the needed rate as in Slepian-Wolf scheme
to .

Converse: for the converse part, fix a scheme of rate
for a block of length with a probability of error

and consider (63), as shown at
the bottom of the next page, where
and step (a) follows Fano’s inequality. Step (b) follows the
fact that and are deterministic functions of . Step (c)
follows the following four relations:

(61)
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, and
. The minimization in the last step

is over all conditional distribution that satisfy the cost
constrain, namely , and the inequality follows
from the fact that the expression
is convex in for fixed and . The converse
proof is completed by invoking the fact that since is an
achievable rate there exists a sequence of codes at rate such
that .

We have seen that, in the absence of a cost constraint on the
actions, the minimum rate needed for a near lossless reconstruc-
tion at the decoder is given by

(64)

(regardless of whether or not the side information is present at
the encoder). Thus, represents the saving in rate relative
to the case where the actions are taken by the decoder (recall
(28) for the minimum rate at that case). To see that this can be
significant, recall the example , where

is a fair coin flip, is the Z-channel with crossover
probability from 1 to 0, and is the S-channel with
crossover probability from 0 to 1. It is easily seen that in this
case and so, a fortiori, the
minimum in (64) is zero. That the source can be reconstructed
losslessly with zero rate in this case is equally easy to see from
an operational standpoint, since taking actions ensures
that with probability one.

B. Gaussian Case

Here we consider the case where:
• the source has a Gaussian distribution with zero mean and

variance , i.e.,

(65)

• the relation between is given by

(66)

where is a random variable independent of and
has a Gaussian distribution with zero mean and variance

, i.e.,

(67)

• the distortion is a mean square error distortion, i,e.,
and it has to be less than ;

• the cost of the actions is and has to be less
than . Without loss of generality, we assume that

where .

Theorem 6: For the Gaussian setting of Fig. 2, as described
above, we get (68), as shown at the bottom of the page.

Before proving Theorem 6, we would like to point out that the
state amplification problem [16], [17] is tangent to the vending
side information problem described here. In the state amplifi-
cation problem, the goal is to design a communication scheme
for a channel with i.i.d. states sequence, , which is known to
the encoder. The purpose of the scheme is to send a message
through the channel, and at the same time to describe to the de-
coder the state sequence . The case where there is no message
to send, namely, the input to the channel is used only to describe
the state sequence, is equivalent to the problem presented here
when , namely, we when are using only the ac-
tions to describe the source and no additional message is sent. If

, we obtain from (68) that for the Gaussian source
coding problem, the minimum mean-square error satisfies

(69)

(63)

(68)
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a result that was also obtained in [17, Theorem 2], where the
channel is the Gaussian channel and the goal is to describe the
state sequence with minimum mean square error distortion.

Proof of Theorem 6: Achievability: The encoder chooses
the actions to be and then it uses a coding for the
Gaussian Wyner-Ziv with side information at the decoder [13].
The side information satisfies ,
which is equivalent to having a side information

. Denote by . Using the Gaussian Wyner-Ziv
result, a rate

(70)

is achievable.
Converse: We prove the converse in two steps. First, we de-

rive the lower bound

(71)

which holds for any and (not necessarily
Gaussian), and then we evaluate it for the Gaussian case.

Fix a scheme at rate for a block of length and consider

(72)

where (a) follows from [14, Lemma3.2], which asserts that
for arbitrary random variables

. Step (b) follows from the facts that is a deter-
minstic function of the pair , and is a deterministic
function of . Step (c) follows from the facts that

and
conditioning reduces entropy. Since the expression in (72) is
convex in for fixed and , we obtain
the lower bound

(73)

and the minimization is over conditional distributions
that satisfy the distortion and cost constraints.

Now we evaluate the lower bound for the Gaussian case, as
shown in (74), found at the bottom of the page, where inequality
(a) follows from the fact that

(because of the constraint that )
and , where

(75)

C. Markov Form Y-A-X

Here, we consider the case where the Markov form
holds.

Theorem 7: The rate distortion (and cost) function
for the setting in Fig. 2 when
satisfies

(76)

where denotes and the minimization is
over joint distributions of the form

satisfying

and .
It is interesting to note that the solution is the difference

between a rate-distortion expression and
channel capacity expression , i.e.,

(77)

where denotes the capacity of the channel
under a cost-constraint .

Proof of Theorem 7: Achievability: Design a regular rate
distortion code, which needs a rate larger than , and
then transmits part of the rate through the channel which has an
input and output . Therefore the total rate that is needed
to be transmitted through the index is the difference

.
Converse: We invoke the lower bound given in (73) and

obtain

(78)

where the last equality is due to the Markov form .

(74)
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D. Upper and Lower Bounds for the General Case

As mentioned, our problem setting, when specialized to rate
, coincides with the state amplification problem of [16],

also specialized to zero communication rate (i.e., when there is
no message to communicate, only states to amplify). The latter
is still open and thus, a fortiori, so is ours. We dedicate this sub-
section to obtaining upper and lower bounds on the achievable
rate that hold for the general case.

1) Achievable Rates:
• Absence of S.I. at Encoder: For the setting of Fig. 2 with

an open switch, i.e., when the encoder has no access to the
S.I., the following is an achievable rate:

(79)

under any joint distribution of the form

such that and .
The argument for why this rate is achievable is similar to
that given in Subsection III-A for why the right side of (62)
is achievable, the difference being that the
term in (62), corresponding to Slepian-Wolf coding of
conditioned on , is replaced by , corre-
sponding to Wyner-Ziv coding conditioned on .

• S.I. Available at Encoder: For the setting of Fig. 2 with a
closed switch, i.e., when the encoder has access to the S.I.,
the following is an achievable rate:

(80)

under any joint distribution of the form

such that and . The argument
for why this rate is achievable is similar to that for why the
right side of (80) is achievable, the difference being that the

terms, corresponding to Wyner-Ziv coding
conditioned on , is replaced by , corre-
sponding to standard rate distortion coding conditioned on

.
2) Lower Bound on Achievable Rate: As pointed out in

Subsection III-B, the proof of the converse part of Theorem 6 is
valid for the general case (i.e., beyond the Gaussian scenario),
and shows that the rate needed to achieve distortion at cost

, regardless of whether or not S.I. is available at the encoder,
is at least as large as

(81)

for some joint distribution of the form

satisfying the distortion and cost constraints. It is worthwhile to
note that this rate was shown to be achievable for the three spe-
cial cases considered in the previous three subsections. Indeed,
this fact was shown explicitly for the cases of Subsection III-B

and Subsection III-C, and in the lossless case (81) becomes
,

which coincides with the expression on the right-hand side
of (62).

To see that the lower bound in (81) may not be tight in general,
even when the S.I. is available at the encoder, consider the stan-
dard case of rate distortion coding with S.I. available to both en-
coder and decoder. In this case is degenerate, so the right-hand
side of (81) reduces to

(82)

while the tight lower bound on the achievable rate for this sce-
nario is well-known to be given by

(83)

which may be strictly larger than the expression in (82).

IV. SUMMARY AND OPEN QUESTIONS

We have studied source coding in the presence of side infor-
mation, when the system can take actions that affect the avail-
ability, quality, or nature of the side information. We have given
a full characterization of the rate-distortion-cost tradeoff when
the actions are taken by the decoder. For the case where the
actions are taken by the encoder, we have characterized this
tradeoff in a few important special cases, while providing upper
and lower bounds on the achievable rate for the general case.

The most significant question left open by our work is a full
characterization of the rate-distortion-cost tradeoff for the set-
ting of actions taken at the encoder (beyond the special cases
considered here), with S.I. that may or may not be available at
the encoder (Fig. 2). Another question left open, for the set-
ting of actions taken by the decoder, is whether the rate-dis-
tortion-cost tradeoff can be improved when each action is al-
lowed to depend on the side information symbols generated thus
far, that is, when the th action is allowed to be of the form

(rather than ).
Finally, we mention a computational point worth future

investigation. In Lemma 1 we have shown that for any fixed
and , the expression is

convex in (assuming the joint distribution given in
(5)). Furthermore, we have shown that the set of distributions
of the form given in (5) is a convex set in . Hence, one
can use convex optimization tools for finding the minimum of

. However, it would be interesting to see if an algo-
rithm similar to Willems’ algorithm [18], [19] for computing
the Wyner-Ziv rate distortion function can be used to compute

in Equation (4) with global convergence.
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