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and Paul Cuff, Member, IEEE

Abstract— A broadcast channel (BC) where the decoders
cooperate via a one-sided link is considered. One common and
two private messages are transmitted and the private message to
the cooperative user should be kept secret from the cooperation-
aided user. The secrecy level is measured in terms of strong
secrecy, i.e., a vanishing information leakage. An inner bound on
the capacity region is derived by using a channel-resolvability-
based code that double-bins the codebook of the secret message,
and by using a likelihood encoder to choose the transmitted
codeword. The inner bound is shown to be tight for semi-
deterministic and physically degraded BCs, and the results are
compared with those of the corresponding BCs without a secrecy
constraint. Blackwell and Gaussian BC examples illustrate the
impact of secrecy on the rate regions. Unlike the case without
secrecy, where sharing information about both private messages
via the cooperative link is optimal, our protocol conveys parts of
the common and non-confidential messages only. This restriction
reduces the transmission rates more than the usual rate loss due
to secrecy requirements. An example that illustrates this loss is
provided.

Index Terms— Broadcast channel, channel resolvability,
conferencing, cooperation, likelihood encoder, physical-layer
security, strong secrecy.

I. INTRODUCTION

USER cooperation and security are two essential aspects
of modern communication systems. Cooperation can

increase transmission rates, whereas security requirements can
limit these rates. To shed light on the interaction between
these two phenomena, we study broadcast channels (BCs) with
one-sided decoder cooperation and one confidential message
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Fig. 1. Cooperative BCs with one confidential message.

(Fig. 1). Cooperation is modeled as conferencing, i.e., infor-
mation exchange via a rate-limited link that extends from one
receiver (referred to as the cooperative receiver) to the other
(the cooperation-aided receiver). The cooperative receiver
possesses confidential information that should be kept secret
from the other user.

Secret communication over noisy channels was modeled by
Wyner who introduced the degraded wiretap channel (WTC)
and derived its secrecy-capacity [1]. Wyner’s wiretap code
relied on a capacity-based approach, i.e., the code is a
union of subcodes that operate just below the capacity of the
eavesdropper’s channel. Csiszár and Körner [2] generalized
Wyner’s result to a general BC. Multiuser settings with secrecy
have since been extensively treated in the literature. Broadcast
and interference channels with two confidential messages
were studied in [3]–[7]. Gaussian multiple-input multiple-
output (MIMO) BCs and WTCs were studied in [8]–[13],
while [14]–[16] focus on BCs with an eavesdropper as an
external entity from which all messages are kept secret.

The above papers consider the weak secrecy metric, i.e.,
a vanishing information leakage rate to the eavesdropper.
Although the leakage rate vanishes asymptotically with the
blocklength, the eavesdropper can decipher an increasing
number of bits of the confidential message. This drawback
was highlighted in [17]–[19] (see also [20]), which advocated
using the information leakage as a secrecy measure referred
to as strong secrecy. We consider strong secrecy by relying
on work by Csiszár [20] and Hayashi [21] to relate the coding
mechanism for secrecy to channel-resolvability.

The problem of channel resolvability, closely related
to the early work of Wyner [22], was formulated by
Han and Verdú [23] in terms of total variation (TV).
Recently, [24] advocated replacing the TV metric with unnor-
malized relative entropy. In [25], the coding mechanism for the
resolvability problem was extended to various scenarios under
the name soft-covering lemma. These extensions were used
to design secure communication protocols for several source
coding problems under different secrecy measures [26]–[29].
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A resolvability-based wiretap code associates with each mes-
sage a subcode that operates just above the resolvability of
the eavesdropper’s channel. Using such constructions, [30]
extended the results of [2] to strong secrecy for continuous
random variables and channels with memory. In [31] (see
also [32, Remark 2.2]), resolvability-based codes were used to
establish the strong secrecy-capacities of the discrete memory-
less (DM) WTC and the DM-BC with confidential messages
by using a metric called effective secrecy.

Our inner bound on the strong secrecy-capacity region of the
cooperative BC is based on a resolvability-based Marton code.
Specifically, we consider a state-dependent channel over which
an encoder with non-causal access to the state sequence aims
to make the conditional probability mass function (PMF) of the
channel output given the state a product PMF. The resolvability
code coordinates the transmitted codeword with the state
sequence by means of multicoding, i.e., by associating with
every message a bin that contains enough codewords to ensure
joint encoding (similar to a Gelfand-Pinsker codebook). Most
encoders use joint typicality tests to determine the transmitted
codeword. We adopt the likelihood encoder, recently proposed
as a coding strategy for source coding problems [33], as
our multicoding mechanism. Doing so significantly simplifies
the distribution approximation analysis. We prove that the
TV between the induced output PMF and the target prod-
uct PMF approaches zero exponentially fast in the block-
length, which implies convergence in unnormalized relative
entropy [34, Th. 17.3.3].

Next, we construct a BC code in which the relation between
the codewords corresponds to the relation between the channel
states and the channel inputs in the resolvability problem.
To this end we associate with every confidential message
a subcode that adheres to the structure of the aforemen-
tioned resolvability code. Accordingly, the confidential mes-
sage codebook is double-binned to allow joint encoding via the
likelihood encoder (outer bin layer) and preserves confidential-
ity (inner bin layer). The bin sizes are determined by the rate
constraints for the resolvability problem, which ensures strong
secrecy. The inner bound induced by this coding scheme is
shown to be tight for semi-deterministic (SD) and physically-
degraded (PD) BCs.

Our protocol uses the cooperation link to convey infor-
mation about the non-confidential message and the common
message. Without secrecy constraints, the optimal scheme
shares information on both private messages as well as the
common message [35]. We show that the restricted protocol
results in an additional rate loss on top of standard losses due
to secrecy. To show this we compare the achievable regions
induced by each cooperation strategy for a cooperative BC
without secrecy. We show that the restricted protocol does not
lose rate when the BC is deterministic or PD, but it is sub-
optimal in general.

To the best of our knowledge, we present here the first
resolvability-based Marton code. This is also a first demon-
stration of the likelihood encoder’s usefulness in the context
of secrecy for channel coding problems. From a broader
perspective, our resolvability result is a tool for proving strong
secrecy in settings with Marton coding. As a special case,

we derive the secrecy-capacity region of the SD-BC (without
cooperation) where the message of the deterministic user is
confidential - a new result that has merit on its own. The
structure of the obtained region provides insight into the effect
of secrecy on the coding strategy for BCs. A comparison
between the cooperative PD-BC with and without secrecy is
also given.

The results are visualized by considering a Blackwell BC
(BW-BC) [36], [37] and a Gaussian BC. An explicit strong
secrecy-achieving coding strategy for an extreme point of
the BW-BC region is given. Although the BW-BC’s input is
ternary, to maximize the transmission rate of the confidential
message only a binary subset of the input’s alphabet is used.
As a result, a zero-capacity channel is induced to the other
user, who, therefore, cannot decode any of the secret bits.
Further, we show that in the BW-BC scenario, an improved
subchannel (given by the identity mapping) to the legitimate
receiver does not increase the strong secrecy-capacity region.

This paper is organized as follows. Section II provides
preliminaries and restates some useful basic properties.
In Section III we state a resolvability lemma. Section IV intro-
duces the cooperative BC with one confidential message and
gives an inner bound on its strong secrecy-capacity region. The
secrecy-capacity regions for the SD and PD scenarios are then
characterized. In Section V the effect of secrecy constraints
on the optimal cooperation protocol is discussed. Section VI
compares the capacity regions of SD- and PD-BCs with and
without secrecy. Blackwell and Gaussian BCs visualise the
results. Finally, proofs are provided in Section VII, while
Section VIII summarizes the main achievements and insights
of this work.

II. NOTATIONS AND PRELIMINARY DEFINITIONS

A. Notations

We use the following notations. As customary N is the
set of natural numbers (which does not include 0), while R

denotes the reals. We further define R+ = {x ∈ R|x ≥ 0}
and R++ = R+ \ {0}. Given two real numbers a, b, we
denote by [a : b] the set of integers

{
n ∈ N

∣
∣�a� ≤ n ≤

�b�}. Calligraphic letters denote sets, e.g., X , the complement
of X is denoted by X c, while |X | stands for its cardinality.
X n denoted the n-fold Cartesian product of X . An element
of X n is denoted by xn = (x1, x2, . . . , xn); whenever the
dimension n is clear from the context, vectors (or sequences)
are denoted by boldface letters, e.g., x. A substring of x ∈ X n

is denoted by x j
i = (xi , xi+1, . . . , x j ), for 1 ≤ i ≤ j ≤ n;

when i = 1, the subscript is omitted. We also define xn\i =
(x1, . . . , xi−1, xi+1, . . . , xn).

Let
(
X ,F , P

)
be a probability space, where X is the sample

space, F is the σ -algebra and P is the probability measure.
Random variables over

(
X ,F , P

)
are denoted by uppercase

letters, e.g., X , with conventions for random vectors similar
to those for deterministic sequences. The probability of an
event A ∈ F is denoted by P(A), while P(A

∣
∣B ) denotes

conditional probability of A given B. We use 1A to denote
the indicator function of A. The set of all probability mass
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functions (PMFs) on a finite set X is denoted by P(X ), i.e.,

P(X ) =
{

P : X → [0, 1]
∣∣
∣
∣
∑

x∈X
P(x) = 1]

}

. (1)

PMFs are denoted by the uppercase letters such as P or Q,
with a subscript that identifies the random variable and its
possible conditioning. For example, for a discrete probability
space

(
X ,F , P

)
and two correlated random variables X and Y

over that space, we use PX , PX,Y and PX |Y to denote,
respectively, the marginal PMF of X , the joint PMF of (X, Y )
and the conditional PMF of X given Y . In particular, PX |Y
represents the stochastic matrix whose elements are given
by PX |Y (x |y) = P

(
X = x |Y = y

)
. Expressions such as

PX,Y = PX PY |X are to be understood as PX,Y (x, y) =
PX (x)PY |X (y|x), for all (x, y) ∈ X × Y . Accordingly, when
three random variables X , Y and Z satisfy PX |Y,Z = PX |Y ,
they form a Markov chain, which we denote by X − Y − Z .
We omit subscripts if the arguments of a PMF are lowercase
versions of the random variables. The support of a PMF P
and the expectation of a random variable X ∼ P are denoted
by supp(P) and EP

[
X
]
, respectively; when the distribution of

X is clear from the context we write its expectation simply
as E

[
X
]
. Similarly, HP and IP denote entropy and mutual

information that are calculated with respect to an underlying
PMF P .

For a discrete measurable space (X ,F), a PMF Q ∈ P(X )
gives rise to a probability measure on (X ,F), which we
denote by PQ ; accordingly, PQ

(
A) = ∑

x∈A Q(x), for every
A ∈ F . For a sequence of random variables Xn , if the entries
of Xn are drawn in an independent and identically distributed
(i.i.d.) manner according to PX , then for every x ∈ X n we
have PXn (x) = ∏n

i=1 PX (xi ) and we write PXn (x) = Pn
X (x).

Similarly, if for every (x, y) ∈ X n×Yn we have PY n |Xn (y|x) =∏n
i=1 PY |X (yi |xi ), then we write PY n |Xn (y|x) = Pn

Y |X (y|x).
The conditional product PMF Pn

Y |X given a specific sequence
x ∈ X n is denoted by Pn

Y |X (·|x).
Let X be a finite set. The empirical PMF νx of a sequence

x ∈ X n is

νx(x) � N(x |x)

n
, (2)

where N(x |x) = ∑n
i=1 1{xi =x}. We use T n

δ (P) to denote the
set of letter-typical sequences of length n with respect to the
PMF P ∈ P(X ) and the positive number δ [38, Ch. 3], i.e.,
we have

T n
δ (P)=

{
x ∈ X n

∣∣
∣
∣
∣νx(x)− P(x)

∣
∣ ≤ δP(x), ∀x ∈ X

}
. (3)

B. Measures of Distribution Proximity

Definition 1 (Relative Entropy): Let (X ,F) be a measur-
able space and let P and Q be two probability measures on
F , with P � Q (i.e., P is absolutely continuous with respect
to Q). The relative entropy between P and Q is

D(P||Q) =
∫

X
d P log

(
d P

d Q

)
, (4)

where d P
d Q denotes the Radon-Nikodym derivative of P with

respect to Q. If the sample space X is countable, (4) reduces

to

D(P||Q) =
∑

x∈supp(P)

P(x) log

(
P(x)

Q(x)

)
. (5)

Definition 2 (Total Variation): Let (X ,F) be a measurable
and P and Q be two probability measures on F . The total
variation between P and Q is

||P − Q||TV = sup
A∈F

∣
∣P(A) − Q(A)

∣
∣. (6)

If the sample space X is countable, (6) reduces to

||P − Q||TV = 1

2

∑

x∈X

∣
∣P(x) − Q(x)

∣
∣. (7)

Remark 1 (TV Dominates Relative Entopy): Pinsker’s
inequality shows that relative entropy is larger than TV.
A reverse inequality is sometimes valid. For example, if X
is a finite set,

{
Pn

}
n∈N

is a sequence of distributions with
Pn ∈ P(X n), Q ∈ P(X ) and Pn � Qn for every n ∈ N,
then1 (see [25, eq. (29)])

D(Pn ||Qn) ∈O
([

n + log
1

||Pn − Qn ||TV

]
||Pn − Qn ||TV

)
.

(8)

In particular, (8) implies that an exponential decay of the TV
in n produces an (almost, up to a log n

n term) exponential decay
of the relative entropy with the same exponent.

III. A CHANNEL RESOLVABILITY LEMMA FOR STRONG

SECRECY

Consider a state-dependent discrete memoryless chan-
nel (DMC) over which an encoder with non-causal access to
the i.i.d. state sequence transmits a codeword (Fig. 2). Each
channel state is a pair (S0, S) of random variables drawn
according to QS0,S ∈ P(S0 × S). The encoder superimposes
its codebook on S0 and then uses a likelihood encoder with
respect to S to choose the channel input sequence. The
structure of a subcode that is superimposed on some s0 ∈ Sn

0
is illustrated in Fig. 2. The conditional PMF of the channel
output given the states should approximate a conditional
product distribution in terms of unnormalized relative entropy.
A formal description of the setup is as follows.

Let S0, S, U and V be finite sets. Fix any QS0,S,U,V ∈
P(S0 ×S×U ×V) and let W be a random variable uniformly
distributed over2 Wn = [

1 : 2nR̃
]

that is independent of
(S0, S) ∼ Qn

S0,S
.

A. Codebook

For every s0 ∈ Sn
0 , let Bn(s0) �

{
U(s0, w, i)

}
(w,i)∈Wn×In

,

where In = [
1 : 2nR′]

, be a collection of 2n(R̃+R′) condition-
ally independent random vectors of length n, each distributed
according to Qn

U |S0
(·|s0). A realization of Bn(s0), for s0 ∈ Sn

0 ,

1 f (n) ∈ O
(
g(n)

)
means that f (n) ≤ k · g(n), for some k independent of n

and sufficiently large n.
2To simplify notation, from here on we assume that quantities of the form

2n R , where n ∈ N and R ∈ R+, are integers. Otherwise, simple modifications
of some of the subsequent expressions using floor operations are needed.
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Fig. 2. Coding problem for approximating PV|S0,S,Bn=Bn ≈ Qn
V |S0,S under a resolvability codebook that is superimposed on s0 ∈ Sn

0 : For each s0 ∈ Sn
0 ,

the codebook Bn(s0) contains 2n(R̃+R′) u-codewords drawn independently according to Qn
U |S0

(·|s0). The codewords are partitioned into 2n R̃ bins, each

associated with a certain w ∈ [
1 : 2n R̃]. The u-codeword that is fed into the channel is selected by first randomly and uniformly drawing a bin index W from

[
1 : 2n R̃], and then drawing I from

[
1 : 2n R′ ]

by means of the likelihood encoder from (10).

is denoted by Bn(s0) �
{
u(s0, w, i)

}
(w,i)∈Wn×In

. Each code-

book Bn(s0) can be thought of as comprising 2nR̃ bins, each
associated with a different message w ∈ Wn and contains 2nR′

u-codewords. We also denote Bn �
{
Bn(s0)

}
s0∈Sn

0
, which is

referred to as the random resolvability codebook. A possible
value of Bn is denoted by Bn and we set Bn as the collection
of all such possible values.

The above codebook construction induces a PMF λ ∈
P(Bn) over the codebook ensemble. For every Bn ∈ Bn ,
we have

λ(Bn) =
∏

s0∈Sn
0

∏

(w,i)
∈Wn×In

Qn
U |S0

(
u(s0, w, i)

∣
∣s0

)
. (9)

B. Encoding and Induced PMF

For each codebook Bn ∈ Bn , consider the likelihood
encoder described by conditional PMF

P̂(Bn)(i |w, s0, s) = Qn
S|U,S0

(
s
∣
∣u(s0, w, i), s0

)

∑

i ′∈In

Qn
S|U,S0

(
s
∣
∣u(s0, w, i ′), s0

) . (10)

Upon observing (w, s0, s), an index i ∈ In is drawn randomly
according to (10). The codeword u(s0, w, i) ∈ Bn(s0) is passed
through the DMC Qn

V |U,S0,S
. For a fixed codebook Bn ∈ Bn ,

the induced joint distribution is

P(Bn )(s0, s, w, i, u, v) = Qn
S0,S(s0, s)2−nR̃ P̂(Bn )(i |w, s0, s)

×1{
u=u(s0,w,i)

}Qn
V |U,S0,S(v|u, s0, s).

(11)

Accounting for the random codebook generation, we also set

P(Bn, s0, s, w, i, u, v) = λ(Bn)P(Bn )(s0, s, w, i, u, v). (12)

Lemma 1 (Sufficient Conditions for Approximation): For
any QS0,S,U,V ∈ P(S0 ×S ×U ×V), if (R̃, R′) ∈ R

2+ satisfies

R′ > I (U ; S|S0) (13a)

R′ + R̃ > I (U ; S, V |S0), (13b)

then

EBn D
(

PV|S0,S,Bn

∣∣
∣
∣∣
∣Qn

V |S0,S

∣∣
∣Qn

S0,S

)
−−−→
n→∞ 0. (14)

The proof of Lemma 1 (see Section VII-A) shows that
the TV decays exponentially fast with the blocklength n. By
Remark 1 this implies an almost exponential decay of the
desired relative entropy. Another useful property is that the
chosen u-codeword is jointly letter-typical with (S0, S) with
high probability.

Lemma 2 (Typical With High Probability): If (R̃, R′) ∈
R

2+ satisfies (13), then for any w ∈ Wn and ε > 0, we have

EBn PP

((
S0, S, U(S0, w, I )

)
/∈ T n

ε (QS0,S,U )
∣
∣
∣Bn

)
−−−→
n→∞ 0.

(15)
The proof of Lemma 2 is given in Section VII-B.

IV. COOPERATIVE BROADCAST CHANNELS WITH ONE

CONFIDENTIAL MESSAGE

A. Problem Definition

The
(
X ,Y1,Y2, WY1,Y2|X : X → P(Y1 × Y2)

)
cooperative

DM-BC with one confidential message is illustrated in Fig. 1.
The channel has one sender and two receivers. The sender
uniformly chooses a triple (m0, m1, m2) of indices from the
product set

[
1 : 2nR0

]× [
1 : 2nR1

]× [
1 : 2nR2

]
and maps it to

a sequence x ∈ X n , which is the channel input (the mapping
may be random). The sequence x is transmitted over a BC
with transition probability WY1,Y2|X : X → P(Y1 × Y2). The
output sequence y j ∈ Yn

j , where j = 1, 2, is received by

decoder j . Decoder j produces a pair of estimates
(
m̂( j )

0 , m̂ j
)

of (m0, m j ). Furthermore, the message m1 is to be kept secret
from Decoder 2 and there is a one-sided noiseless cooperation
link of rate R12 that extends from Decoder 1 to Decoder 2.
By conveying a message m12 ∈ [

1 : 2nR12
]

over this link,
Decoder 1 can share with Decoder 2 information about y1,(
m̂(1)

0 , m̂1
)
, or both.

Remark 2 (Specific Classes of BCs): We sometimes spe-
cialize to the following classes of BCs:

• Semi-Deterministic BCs: A BC is SD if its channel tran-
sition matrix factors as WY1,Y2|X = 1{Y1=y1(X)}WY2|X ,
where y1 : X → Y1 and WY2|X : X → P(Y2).
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• Physically-Degraded BCs: A BC is PD if its channel
transition matrix factors as WY1,Y2|X = WY1|X WY2|Y1 ,
where WY1|X : X → P(Y1) and WY2|Y1 : Y1 → P(Y2).

• Deterministic BCs: A BC is deterministic if its
channel transition matrix factors as WY1,Y2|X =
1{Y1=y1(X)}∩{Y2=y2(X)}, where y j : X → Y j , for j = 1, 2.

Definition 3 (Code): An (n, R12, R0, R1, R2) code cn for
the BC with cooperation and one confidential message has:

1) Four message sets M(n)
12 = [

1 : 2nR12
]

and M(n)
j = [

1 :
2nR j

]
, for j = 0, 1, 2.

2) A stochastic encoder f (n) : M(n)
0 × M(n)

1 × M(n)
2 →

P(X n).
3) A decoder cooperation function g(n)

12 : Yn
1 → M(n)

12 .
4) Two decoding functions φ

(n)
1 : Yn

1 → M0 × M(n)
1 and

φ
(n)
2 : M(n)

12 × Yn
2 → M(n)

0 × M(n)
2 .

The joint distribution induced by an (n, R12, R0, R1, R2)
code cn is:

P(cn )
(

m0, m1, m2, x, y1, y2, m12,
(
m̂(1)

0 , m̂1
)
,
(
m̂(2)

0 , m̂2
))

=
⎛

⎝
∏

j=0,1,2

1
∣
∣M(n)

j

∣
∣

⎞

⎠ f (n)(x|m0,m1,m2)W n
Y1,Y2|X (y1,y2|x)

×1{
m̂12=g(n)

12 (y1),
(

m̂(1)
0 ,m̂1

)
=φ

(n)
1 (y1),

(
m̂(2)

0 ,m̂2

)
=φ

(n)
2 (m12,y2)

}.

(16)

The performance of cn is evaluated in terms of its rate tuple
(R12, R0, R1, R2), the average decoding error probability and
the strong secrecy metric.

Definition 4 (Average Error Probability): The average
error probability for an (n, R12, R0, R1, R2) code cn is

Pe(cn) = PP(cn )

⎛

⎝
⋃

j=1,2

{(
M̂( j )

0 , M̂ j

)
�= (M0, M j )

}
⎞

⎠ , (17)

where
(

M̂(1)
0 , M̂1

)
= φ

(n)
1 (Y1) and

(
M̂(2)

0 , M̂2

)
=

φ
(n)
2

(
g(n)

12 (Y1), Y2

)
.

Definition 5 (Information Leakage): The information leak-
age at receiver 2 under an (n, R12, R0, R1, R2) code
cn is

�(cn) = IP(cn )(M1; M12, Y n
2 ), (18)

where the subscript P(cn) indicates that the mutual infor-
mation term is calculated with respect to the mar-
ginal PMF P(cn )

M1,M12,Y2
of the induced joint distribution

from (16).
Definition 6 (Achievability): (R12, R0, R1, R2) ∈ R

4+ is
achievable if for any ε > 0 there exists an (n, R12, R0, R1, R2)
code cn, such that

Pe(cn) ≤ ε (19a)

�(cn) ≤ ε. (19b)

Definition 7 (Secrecy-Capacity Region): The strong
secrecy-capacity region CS is the closure of the set of the
achievable rates.

B. Strong Secrecy-Capacity Bounds and Results

We state an inner bound on the strong secrecy-capacity
region CS of a cooperative BC with one confidential
message.

Theorem 1 (Inner Bound): Let WY1,Y2|X be a transition
probability of a BC and let RI be the closure of the union
of rate tuples (R12, R0, R1, R2) ∈ R

4+ satisfying:

R1 ≤ I (U1; Y1|U0) − I (U1; U2, Y2|U0) (20a)

R0 + R1 ≤ I (U0, U1; Y1) − I (U1; U2, Y2|U0) (20b)

R0 + R2 ≤ I (U0, U2; Y2) + R12 (20c)

R0 + R1 + R2 ≤ I (U0, U1; Y1) + I (U2; Y2|U0)

−I (U1; U2, Y2|U0) (20d)

where the union is over all PMFs QU0,U1,U2,X ∈
P(U0 × U1 × U2 × X ), each inducing a joint distribution
QU0,U1,U2,X WY1,Y2|X . Then the following inclusion holds:

RI ⊆ CS. (21)

Furthermore, RI is convex and one may choose |U0| ≤ |X |+5,
|U1| ≤ |X | and |U2| ≤ |X |.

The proof of Theorem 1 relies on a channel-resolvability-
based Marton code and is given in Section VII-C. Two key
ingredients allow us to keep M1 secret while still utilizing the
cooperation link to help Receiver 2. First, the cooperation strat-
egy is modified compared to the case without secrecy that was
studied in [35], where M12 conveyed information about both
private messages as well as the common message. Here, the
confidentiality of M1 restricts the cooperation message from
containing any information about M1, and therefore, we use an
M12 that is a function of the decoded

(
M̂(2)

0 , M̂2) only. Since
the protocol requires Receiver 1 to decode the information
it shares with Receiver 2, this modified cooperation strategy
results in a rate loss in R1 when compared to [35]; the loss is
expressed in the first mutual information term in (20a) being
conditioned on U0 rather than having U0 next to U1.

The second ingredient is associating with each m1 ∈ M1
a resolvability-subcode that adheres to the construction for
Lemmas 1 and 2 described in Section III. By doing so,
the relations between the codewords in the Marton code
correspond to those between the channel states and its input
in the resolvability problem. Marton coding combines super-
position coding and binning, hence the state sequences S0 and
S play different roles in our resolvability setup. Reliability
is established with the help of Lemma 2, while Lemma 1
essentially produces strong secrecy.

The inner bound from Theorem 1 is tight for SD- and PD-
BCs, giving rise to the new strong secrecy-capacity results
stated in Theorems 2 and 3.

Theorem 2 (SD-BC Secrecy-Capacity): The strong
secrecy-capacity region C(SD)

S of a cooperative SD-BC
1{Y1=y1(X)}WY2|X with one confidential message is the
closure of the union of rate tuples (R12, R0, R1, R2) ∈ R

4+
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satisfying:

R1 ≤ H (Y1|W, V , Y2) (22a)

R0 + R1 ≤ H (Y1|W, V , Y2) + I (W ; Y1) (22b)

R0 + R2 ≤ I (W, V ; Y2) + R12 (22c)

R0 + R1 + R2 ≤ H (Y1|W, V , Y2) + I (V ; Y2|W )

+ I (W ; Y1) (22d)

where the union is over all PMFs QW,V ,Y1,X ∈ P(W × V ×
Y1 × X ) with Y1 = y1(X), each inducing a joint distribution
QW,V ,Y1,X WY2|X . Furthermore, C(SD)

S is convex and one may
choose |W| ≤ |X | + 3 and |V| ≤ |X |.

The direct part of Theorem 2 follows from Theorem 1 by
setting U0 = W , U1 = Y1 and U2 = V . The converse is
proven in Section VII-D.

Theorem 3 (PD-BC Secrecy-Capacity): The strong
secrecy-capacity region C(PD)

S of a cooperative PD-BC
WY1|X WY2|Y1 with one confidential message is the closure of
the union of rate tuples (R12, R0, R1, R2) ∈ R

4+ satisfying:

R1 ≤ I (X; Y1|W ) − I (X; Y2|W ) (23a)

R0 + R2 ≤ I (W ; Y2) + R12 (23b)

R0 + R1 + R2 ≤ I (X; Y1) − I (X; Y2|W ) (23c)

where the union is over all PMFs QW,X ∈ P(W ×X ), each
inducing a joint distribution QW,X WY1|X WY2|Y1 . Furthermore,
C(PD)

S is convex and one may choose |W| ≤ |X | + 2.

The achievability of C(PD)
S is a consequence of Theorem 1

by taking U0 = W , U1 = X and U2 = 0. For the converse
see Section VII-E.

Remark 3 (Converse): We use two distinct converse proofs
for Theorems 2 and 3. In the converse of Theorem 2, the bound
in (22d) does not involve R12 since the auxiliary random
variable Wi contains M12. With respect to this choice of Wi

(see (77)), showing that W − X − (Y1, Y2) forms a Markov
chain relies on the SD property of the channel. For the
PD-BC, however, such an auxiliary is not feasible as it
violates the Markov relation W − X − Y1 − Y2 induced by
the channel. To circumvent this, in the converse of Theorem
3 we define Wi without M12 and use the structure of the
channel to keep R12 from appearing in (23c). Specifically,
this argument relies on the relation M12 = g(n)

12 (Y1) and on
Y2 being a degraded version of Y1 (which implies that all
three messages (M0, M1, M2) can be reliably decoded from Y1
only).

Remark 4 (Weak Versus Strong Secrecy): The results of
Theorems 1, 2 and 3 remain unchanged if the strong secrecy
requirement (see (18) and (19b)) is replaced with the weak
secrecy constraint. As weak secrecy refers to a vanishing
normalized information leakage, to formally define the
corresponding achievability, one should replace the left-hand
side (LHS) of (19b) with 1

n �(cn). To see that the results
of the preceding theorems coincide under both metrics,
first notice that strong secrecy implies weak secrecy (which
validates the claim from Theorem 1). Furthermore, the
converse proofs of Theorems 2 and 3 (given in Sections VII-D
and VII-E, respectively) are readily reformulated under the

weak secrecy metric by replacing ε with nε in (75)-(76)
and (88)-(89).

Remark 5 (Cardinality Bounds): The cardinality bounds on
the auxiliary random variables in Theorems 1, 2 and 3
are established using the perturbation method [39] and the
Eggleston-Fenchel-Carathéodory theorem [40, Th. 18].

V. RESTRICTED COOPERATION SCHEME IS SUB-OPTIMAL

WITHOUT SECRECY CONSTRAINTS

The cooperation protocol for the BC with a secret M1
uses the cooperative link to convey information that is a
function of the non-confidential message and the common
message. Without secrecy constraints, it was shown in [35]
that the best cooperation strategy uses a public message that
comprises parts of both private messages as well as the com-
mon message. To understand whether the restricted protocol
reduces the transmission rates beyond standard losses due to
secrecy (which are discussed in Section VI), we compare the
achievable regions induced by each scheme for the cooperative
BC without secrecy. The formal description of this BC instance
(see [35]) closely follows the definitions from Section IV-A up
to removing the security requirement (19b) from Definition 6
of achievability. For simplicity we consider the setting without
a common message, i.e., when R0 = 0.

To isolate the (possible) rate-loss due to the restricted
cooperation scheme used in this paper from other losses due to
secrecy, we subsequently describe an adaptation of our coding
scheme to the case where M1 is not confidential. Namely,
we remove the secrecy requirement on M1 but still limit the
cooperation protocol to share information on M2 only. This
results in an achievable scheme for the cooperative BC with
no security requirements, and the induced achievable region
is compared with the result from [35].

At first glance it might seem that even without secrecy
requirements, the restricted cooperation protocol is optimal.
After all, why should the cooperative receiver (Decoder 1)
share information about M1 with the cooperation-aided
receiver (Decoder 2), which is not required to decode it?
Yet, we show that this intuitive argument fails and that the
restricted protocol is sub-optimal in general. For BCs in which
Decoder 1 can decode more than n R12 bits of M2 (e.g., PD-
BCs), both protocols achieve the same rates and M1 need
not be shared. However, when Decoder 1 can decode strictly
less than n R12 bits of M2, then sharing M1 achieves higher
R2 values, since now M1 serves as side information for
Decoder 2 in decoding M2 (note that this side information
is also available at the encoder).

The achievable region RNS for the cooperative BC
WY1,Y2|X without secrecy that was characterized in [35] (see
also [41], [42]) is the union over the same domain as (20) of
rate triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ I (U0, U1; Y1) (24a)
R2 ≤ I (U0, U2; Y2) + R12 (24b)
R1+R2 ≤ I (U0, U1; Y1)+I (U2; Y2|U0)−I (U1; U2|U0)

(24c)
R1+R2 ≤ I (U1;Y1|U0)+I (U0,U2;Y2)−I (U1;U2|U0)+ R12.

(24d)
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The cooperation scheme that achieves (24) uses the pair
(M10, M20) (where M j0 refers to the public part of the
message M j and has rate R j0 ≤ R j , for j = 1, 2) as a
public message that is decoded by both users. The public
message codebook (generated by i.i.d. samples of the random
variable U0 in (24)) is partitioned into 2nR12 bins and is first
decoded by User 1. The partitioning is defined by a mapping
m12 : [1 : 2nR10

] × [
1 : 2nR20

] → M(n)
12 and the bin number

m12
(
(M̂10, M̂20)

)
of the decoded public message is shared

with User 2 over the cooperative link. This reduces the search
space by a factor of 2nR12 . The dependence of the public
message on M̂10 essentially allows User 1 to achieve rates
up I (U0, U1; Y1).

The cooperation protocol used in this work (constructed to
account for the secrecy constraint on M1) removes M10 from
the public message, while keeping the rest of the protocol
unchanged. The region R̃NS achieved by the restricted coop-
eration protocol is derived by repeating the steps in the proof
of [35, Th. 6] while setting R10 = 0. One obtains that R̃NS is
characterized by the same rate bounds as (24), up to replacing
(24a) with

R1 ≤ I (U1; Y1|U0) +
[

I (U2; Y2|U0) − I (U1; U2|U0)
]+

(25)

where [x]+ = max
{
0, x

}
. Since R̃NS is achieved by special-

izing the scheme that achieves RNS (i.e., setting R10 = 0
therein), we have that R̃NS ⊆ RNS.

Note that R̃NS = RNS for any BC where setting
U0 = 0 in (24) is optimal. In particular, we have the following
proposition.

Proposition 4 (Optimality of Restricted Protocol): If a BC
WY1,Y2|X is PD or deterministic, i.e., it satisfies WY1,Y2|X =
WY1|X WY2|Y1 or WY1,Y2|X = 1{Y1=y1(X)}∩{Y2=y2(X)}, respec-
tively, then R̃NS = RNS = CNS.

Proof: For the PD-BC, setting U0 = W , U1 = X and
U2 = 0 into R̃NS recovers the region from [43, eq. (17)],
which is the capacity region of the cooperative PD-BC. The
capacity region of the cooperative deterministic BC (DBC)
given in [35, Corollary 12] is recovered from R̃NS by taking
U0 = 0, U1 = Y1 and U2 = Y2.

Proposition 5 (Restricted Protocol can be Sub-Optimal):
There exist BCs WY1,Y2|X for which R̃NS � RNS.

The proof of Proposition 5 is given in Appendix VIII, where
we construct an example for which the maximal achievable
R1 in both regions is the same, but the highest achievable
R2 while keeping R1 at its maximum is strictly smaller
in R̃NS.

We start with a family of BCs as illustrated in Fig. 3, where
the channel input is X = (X1, X2), the output Y1 is produced
by feeding X1 into a binary symmetric channel (BSC) with
crossover probability3 0.1, while Y2 is generated by the DMC
WY2|X1,X2 . All alphabets are binary, i.e., X1 = X2 = Y1 =
Y2 = {

0, 1
}
. The maximal achievable R1 in both schemes is

the capacity of the aforementioned BSC, i.e., c � 1− Hb(0.1),

3The actual value of the crossover probability is of no real importance as
long as it is not 0.5.

Fig. 3. A semi-orthogonal BC.

where Hb : [0, 1] → [0, 1] is the binary entropy function.
Setting the capacity of the cooperation link to R12 = c,
we show that the highest R2 such that (R12, R1, R2) =
(c, c, R2) ∈ RNS is lower bounded by the capacity of the state-
dependent channel WY2|X1,X2 (with X1 and X2 playing the
roles of the state and the input, respectively) with non-causal
channel state information (CSI) available at the transmitting
and receiving ends. This is because R12 = c in the permissive
protocol allows Decoder 1 to share the decoded X1 with
Decoder 2 despite its dependence on M1.

The corresponding value of R2 in R̃NS is then upper
bounded by the capacity of the same channel but with non-
causal CSI at the transmitter only (also known as a Gelfand-
Pinsker (GP) channel). The cooperation link is, in fact, useless
in this scenario since the entire capacity of the BSC was used
to reliably convey bits of M1, on which the restricted protocol
prohibits exchanging information. Thus, the proof boils down
to choosing WY2|X1,X2 as a channel for which the capacity
with full CSI is strictly larger than the GP capacity. The binary
dirty-paper (BDP) channel [44]–[46] qualifies and completes
the proof.

VI. EFFECT OF SECRECY ON THE CAPACITY-REGION OF

COOPERATIVE BROADCAST CHANNELS

The impact of the secrecy constraint on M1 on the cooper-
ation strategy and the resulting reduction of transmission rates
was discussed in Section V. However, secrecy requirements
affect BC codes even when no user cooperation is allowed.
Thus, when considering a scenario that combines secrecy
and cooperation, both these effects occur simultaneously. We
highlight this by comparing the SD and PD versions of the
cooperative BC to their corresponding models without secrecy.
For simplicity, throughout this section we again assume BCs
with private messages only, i.e., R0 = 0.

A. Semi-Deterministic Broadcast Channels

1) Capacity Region Comparison: Consider the SD-BC
without cooperation (i.e., where R12 = 0) in which M1 is
secret. By Theorem 2, the strong secrecy-capacity region of the
SD-BC with one confidential message, which was an unsolved
problem until this work, is as follows.

Corollary 6 (Non-Cooperative SD-BC Secrecy-Capacity):
The strong secrecy-capacity region C̃(SD)

S of the SD-BC
1{Y1=y1(X)}WY2|X with one confidential message is the union
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Fig. 4. Capacity region without secrecy vs. strong secrecy-capacity region
where M1 is confidential for the SD-BC (without cooperation).

of rate pairs (R1, R2) ∈ R
2+ satisfying:

R1 ≤ H (Y1|V , Y2) (26a)

R2 ≤ I (V ; Y2) (26b)

where the union is over all PMFs QV ,Y1,X ∈ P(V × Y1 ×
X ) with Y1 = y1(X), each inducing a joint distribution
QV ,Y1,X WY2|X .

The region (26) coincides with C(SD)
S in (22d) (where R12 =

R0 = 0) by noting that the bound (22d) is redundant because if
QW,V ,Y1,X is a PMF for which (22d) is active, then replacing
W and V with W̃ = 0 and Ṽ = (W, V ) achieves a larger
region. Removing (22d) from C(SD)

S and setting Ṽ = (W, V )
recovers (26).

Marton coding achieves the capacity region of the classic
SD-BC [47]. The capacity is the union of rate pairs (R1, R2) ∈
R

2+ satisfying:

R1 ≤ H (Y1) (27a)

R2 ≤ I (V ; Y2) (27b)

R1 + R2 ≤ H (Y1|V ) + I (V ; Y2) (27c)

where the union is over the same domain as in Corollary 6.
The regions in (26) and (27) (for a fixed QW,Y1,X ) are

depicted in Fig. 4. When M1 is secret, one can no longer
operate on both corner points of Marton’s region. Rather, the
optimal coding scheme is the one with the lower transmission
rate to the 1st user. This essentially means that the redundancy
in the codebook needed for multicoding befalls solely on
User 1 (whose message is to be kept secret). Consequently,
a loss of I (V ; Y1), which corresponds to the sizes of the
bins used for joint encoding, is inflicted on R1. An additional
rate-loss of I (Y1; Y2|V ) in R1 is caused by a second layer
of binning used to conceal M1 from the 2nd user. A coding
scheme for the higher corner point of the region without
secrecy, i.e., the point

(
H (Y1) , I (V ; Y2) − I (V ; Y1)

)
, is not

feasible with secrecy since the larger value of R1 violates the
secrecy constraint. A similar effect occurs for the correspond-
ing regions with cooperation.

2) Blackwell BC Example: Suppose the channel from the
transmitter to receivers 1 and 2 is the BW-BC without a
common message as illustrated in Fig 5(a) [36], [37]. Noting

Fig. 5. (a) Cooperative Blackwell BC; (b) Cooperative Blackwell-like PD-
BC.

that the BW-BC is deterministic, we set R0 = 0 into the region
from Theorem 2 to characterize the strong secrecy-capacity
region of a DBC as follows.

Corollary 7 (DBC Secrecy-Capacity): The strong
secrecy-capacity region C(D)

S of a cooperative DBC
1{Y1=y1(X)}∩{Y2=y2(X)} with one confidential message is
the union of rate triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ H (Y1|Y2) (28a)

R2 ≤ H (Y2) + R12 (28b)

R1 + R2 ≤ H (Y1, Y2) (28c)

where the union is over all input distributions QX ∈ P(X ).
Corollary 7 follows by arguments similar to those in the

proof of [35, Corollary 12]. By parameterizing the input PMF
QX as

QX (0) = α , QX (1) = β , QX (2) = 1 − α − β (29)

where α, β ∈ R+ and α + β ≤ 1, the strong secrecy-

capacity region C(BW)
S of the BW-BC is the union of rate pairs

(R1, R2) ∈ R
2+ satisfying:

R1 ≤ (1 − α)Hb

(
β

1 − α

)
(30a)

R2 ≤ Hb(α) + R12 (30b)

R1 + R2 ≤ Hb(α) + (1 − α)Hb

(
β

1 − α

)
(30c)

where the union is over all α, β ∈ R+ with α + β ≤ 1.
The projection of C(BW)

S onto the plane (R1, R2) for differ-
ent values of R12 is shown in Fig. 6(a). For every R12 ∈ R+,
the maximal achievable R1 in C(BW)

S equals 1 [bits/use] (while
the corresponding R2 is zero). The rate triple (R12, 1, 0)
is achieved by setting α = 0 and β = 1

2 in the bounds
in (30). These probability values provide insight into the
coding strategy that maximizes the transmission rate to User
1. Namely, the encoder chooses each channel input symbol
uniformly from the set {1, 2} � X . By doing so, Decoder 1
effectively sees a clean binary channel (by mapping every
received Y1 = 0 to the input symbol X = 2) with capacity 1.
Decoder 2, on the other hand, sees a flat channel with zero
capacity since both X = 1 and X = 2 are mapped to Y2 = 1.
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Thus, Decoder 2 has no information about the transmitted
sequence, and therefore, strong secrecy is achieved while
conveying one secured bit to Decoder 1 in each channel use.

Remark 6 (Clean Channel to User 1 Does Not Help):
An improved subchannel to the legitimate user does not
enlarge the strong secrecy-capacity region. We illustrate
this by considering the BW-like PD-BC shown in Fig. 5(b),
where Y1 = X and Y1 = X (Y2 and the mapping from
X to Y2 remain as in the BW-BC). Evaluating the strong
secrecy-capacity region of the BW-like PD-BC reveals that
it coincides with C(BW)

S . This implies that the QX that
maximizes R1 while keeping Decoder 2 ignorant of M1 has
α = 0 and β = 1

2 , which coincides with the input PMF that
maximizes R1 while transmitting over the classic BW-BC.
Thus, to ensure secrecy over the BW-like PD-BC, the encoder
overlooks the improved channel to Decoder 1 and ends up
not using the symbol X = 0.

The effect of secrecy on the capacity region of a cooperative
BC is illustrated by comparing to the BW-BC (Fig. 5(a))
without a secrecy constraint. Using the characterization of
the capacity region of a cooperative DBC given in [35,
Corollary 12] and the parametrization in (29), the capacity
region C(BW)

NS of the cooperative BW-BC is the union of rate
triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ Hb(α + β) (31a)

R2 ≤ Hb(α) + R12 (31b)

R1 + R2 ≤ Hb(α) + (1 − α)Hb

(
β

1 − α

)
(31c)

where the union is over all α, β ∈ R+ with α + β ≤ 1.
Fig. 6(b) compares the regions with and without secrecy.

The dashed red line represents the capacity region for the case
without secrecy while the blue line depicts the region where
M1 is confidential. Evidently, C(BW)

NS is strictly larger than

C(BW)
S . Note that up to approximately R1 ≈ 0.6597 � R(Th)

1 ,

the two regions coincide. Thus, as long as R1 ≤ R(Th)
1 ,

concealing M1 is achieved without any rate loss in R2. When
R1 > R(Th)

1 , on the other hand, an increased confidential
message rate leads to a reduced R2 value compared to the case
without secrecy. Further, if no secrecy constraint is imposed
on M1, one can transmit it at its maximal rate of R1 = 1 and
still have a positive value of R2 (up to approximately 0.5148).
When M1 is confidential then R1 = 1 is achievable only if
R2 = 0.

B. Physically Degraded BCs

1) Capacity Region Comparison: When the BC is PD, the
reduction in R1 is due to the extra layer of bins in the codebook
of M1 only, while the modified cooperation scheme results
in no loss (in accordance with Proposition 4). To see this,
consider the capacity region C(PD)

NS of the cooperative PD-BC
without a secrecy constraint on M1 (see [43], [48]), which
is the union over the same domain as (23) of rate triples

Fig. 6. (a) Projection of the strong secrecy-capacity region of the cooperative
BW-BC with one confidential message onto the plane (R1, R2) for different
values of R12; (b) Cooperative BW-BC with R12 = 0.2: Strong secrecy-
capacity region where M1 is confidential vs. Capacity region without secrecy.

(R12, R1, R2) ∈ R
3+ satisfying:

R1 ≤ I (X; Y1|W ) (32a)

R2 ≤ I (W ; Y2) + R12 (32b)

R1 + R2 ≤ I (X; Y1). (32c)

In contrast to the SD case, the only impact of the secrecy
requirement on the capacity region is expressed in a rate-
loss of I (X; Y2|W ) in R1 (see (23a) in comparison to (32a))
that is due to the extra layer of bins needed for secrecy.
Otherwise, the optimal code construction (and the optimal
cooperation protocol) for both problems is the same. The
similarity is because, whether M1 is secret or not, its codebook
is superimposed on the codebook of M2, and decoding M2 as
part of the cooperation protocol comes without cost by the
degraded property of the channel. Thus, for a fixed QW,X , if
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Fig. 7. Capacity region without secrecy vs. strong secrecy-capacity region
where M1 is confidential for the cooperative PD-BC.

Fig. 8. Cooperative Gaussian PD-BC.

(R12, R1, R2) ∈ C(PD)
NS then

(
R12,

[
R1− I (X; Y2|W )

]+
, R2

)
∈

C(PD)
S , and vice versa. This relation is illustrated in Fig. 7

for some fixed value of R12 and under the assumption that
I (W ; Y2) + R12 > I (W ; Y1).

2) Gaussian BC Example: Consider next the coopera-
tive Gaussian PD-BC (without a common message) shown
in Fig. 8, where for every time instance i ∈ [1 : n], we have

Y1,i = Xi + Z1,i , (33a)

Y2,i = Xi + Z1,i + Z2,i (33b)

and
{

Z1,i
}n

i=1 and
{

Z2,i
}n

i=1 are mutually independent
sequences of i.i.d. Gaussian random variables with Z1,i ∼
N (0, N1), Z2,i ∼ N (0, N2−N1) and N2 > N1, for i ∈ [1 : n].
The channel input is subject to an average power constraint

1

n

n∑

i=1

E
[
Xi

] ≤ P. (34)

By using continuous alphabets with an input power con-
straint adaptation of Theorem 3 we characterize the strong
secrecy-capacity region C(G)

S of the cooperative Gaussian
PD-BC with one confidential message as the union of rate
triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ 1

2
log

(
1 + αP

N1

)
− 1

2
log

(
1 + αP

N2

)
(35a)

R2 ≤ 1

2
log

(
1 + ᾱP

αP + N2

)
+ R12 (35b)

R1 + R2 ≤ 1

2
log

(
1 + P

N1

)
− 1

2
log

(
1 + αP

N2

)

(35c)

Fig. 9. (a) Projection of the strong secrecy-capacity region of the cooperative
Gaussian BC with one confidential message onto the plane (R1, R2) for
different values of R12; (b) Cooperative Gaussian BC with R12 = 0.2: Strong
secrecy-capacity region where M1 is confidential vs. capacity region without
secrecy.

where the union is over all α ∈ [0, 1].
The achievability of (35) follows from Theorem 3 with the

following choice of random variables:

W ∼ N (0, αP) , W̃ ∼ N (0, ᾱP) , X = W + W̃ (36)

where W and W̃ are independent. The optimality of Gaussian
inputs is proven in Appendix VIII.

Setting P = 11, N1 = 1 and N2 = 4, Fig. 9(a) shows the
strong secrecy-capacity region of the cooperative Gaussian BC
for different R12 values, while Fig. 9(b) compares the optimal
rate regions when a secrecy constraint on M1 is and is not
present. The red line in both figures coincide and represent the
secrecy-capacity region when R12 = 0.2. The dashed blue line
in Fig 9(b) shows the capacity region C(G)

NS of the cooperative
Gaussian BC without secrecy constraints, which is given by
the union over all α ∈ [0, 1] of rate triples (R12, R1, R2) ∈ R

3+
satisfying:

R1 ≤ 1

2
log

(
1 + αP

N1

)
(37a)
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R2 ≤ 1

2
log

(
1 + ᾱP

αP + N2

)
+ R12 (37b)

R1 + R2 ≤ 1

2
log

(
1 + P

N1

)
(37c)

The derivation of (37) relies on [43, eq. (17)] and uses standard
arguments for proving the optimality of Gaussian inputs.

By the structure of the rate bounds in (35) and (37), for
every fixed α ∈ [0, 1], if (R12, R1, R2) ∈ C(G)

NS , we have

(
R12, R1 − 1

2
log

(
1 + αP

N2

)
, R2

)
∈ C(G)

S . (38)

This agrees with the discussion in Section VI-B.1 as
I (X; Y2|W ) = 1

2 log
(

1 + αP
N2

)
.

VII. PROOFS

A. Proof of Lemma 1

Recall that the factorization in (12) implies that
PS0,S,W,I,U,V|Bn=Bn = P(Bn)

S0,S,W,I,U,V, where Bn ∈ Bn and
the RHS is given in (11). Throughout this proof we use
P(Bn )

S0,S,W,I,U,V when the codebook Bn ∈ Bn is fixed, and prefer
PS0,S,W,I,U,V|Bn when the codebook is random. Furthermore,
on account of the factorization in (11) we have P(Bn )

S0,S = Qn
S0,S

,
for each Bn ∈ Bn . Therefore, to establish Lemma 1 we show
that

EBn D
(

PS0,S,V|Bn

∣
∣
∣
∣
∣
∣Qn

S0,S,V

)
−−−→
n→∞ 0. (39)

Lemma 3 (Absolute Continuity): For any Bn ∈ Bn, we
have P(Bn )

S0,S,V � Qn
S0,S,V , i.e., P(Bn )

S0,S,V is absolutely continues
with respect to Qn

S0,S,V .
The proof of Lemma 3 is relegated to Appendix VIII.

Combining this with Remark 1, a sufficient condition for (39)
is that

EBn

∣∣
∣
∣∣
∣PS0,S,V|Bn − Qn

S0,S,V

∣∣
∣
∣∣
∣ −−−→

n→∞ 0 (40)

at an exponential rate.
To evaluate the TV in (40), for any Bn ∈ Bn , define the

ideal PMF on Sn
0 × Sn × Wn × In × Un × Vn as

�(Bn )(s0, w, i, u, s, v)

= Qn
S0

(s0)2−n(R̃+R′)1{
u=u(s0,w,i)

}Qn
S,V |U,S0

(s, v|u, s0)

(41a)

and further set

�(Bn, s0, w, i, u, s, v) = λ(Bn)�(Bn)(s0, w, i, u, s, v).

(41b)

Note that � describes an encoding process where the choice
of the u-codeword from a certain bin is uniform, as opposed
to P in (11) that uses a likelihood encoder. Furthermore, the
structure of � implies that the sequence s is generated by
feeding s0 and the chosen u-codeword into the DMC Qn

S|U,S0
.

Using the TV triangle inequality, we upper bound the LHS
of (40) by

EBn

∣
∣
∣
∣
∣
∣PS0,S,V|Bn − Qn

S0,S,V

∣
∣
∣
∣
∣
∣
TV

≤ EBn

∣
∣
∣
∣
∣
∣PS0,S,V|Bn − �S0,S,V|Bn

∣
∣
∣
∣
∣
∣
TV

+ EBn

∣∣
∣
∣∣
∣�S0,S,V|Bn − Qn

S0,S,V

∣∣
∣
∣∣
∣
TV

. (42)

By [25, Corollary VII.5], the second expected TV on the RHS
of (42) decays exponentially fast as n → ∞ if

R̃ + R′ > I (U ; S, V |S0). (43)

For the first term in (42), we use the following relations
between � and P . For every Bn ∈ Bn , we have

�
(Bn )
I |W,S0,S = P̂(Bn )

I |W,S0,S = P(Bn )
I |W,S0,S (44a)

�
(Bn )
U|I,W,S0,S = 1{

U=u(S0,W,I )
} = P(Bn )

U|I,W,S0,S (44b)

�
(Bn )
V|U,I,W,S0,S

= Qn
V |U,S0,S = P(Bn )

V|U,I,W,S0,S
. (44c)

While (44b)-(44c) follow directly from (11) and (41b), the
justification for (44a) is that for every (Bn, s0, s, w, i) ∈ Bn ×
Sn

0 × Sn × Wn × In , we have

�(Bn )(i |w, s0, s)

= �(Bn )(s0, w, i, s)

�(Bn )(s0, w, s)

=
∑

u Qn
S0

(s0)2−n(R̃+R′)1{
u=u(s0,w,i)

}Qn
S|U,S0

(s|u, s0)

∑
u,i ′ Qn

S0
(s0)2−n(R̃+R′)1{

u=u(s0,w,i ′)
}Qn

S|U,S0
(s|u, s0)

= Qn
S|U,S0

(
s
∣
∣u(s0, w, i), s0

)

∑
i ′ Qn

S|U,S0

(
s
∣
∣u(s0, w, i ′), s0

)

(a)= P̂(Bn )(i |w, s0, s) (45)

where (a) follows from (10). The relations in (44) yield

EBn

∣
∣∣
∣
∣∣PS0,S,V|Bn − �S0,S,V|Bn

∣
∣∣
∣
∣∣
TV

≤ EBn

∣
∣
∣
∣
∣
∣PS0,S,W,I,U,V|Bn − �S0,S,W,I,U,V|Bn

∣
∣
∣
∣
∣
∣
TV

(a)= EBn

∣∣
∣
∣∣
∣PS0,S,I,U,V|W=1,Bn − �S0,S,I,U,V|W=1,Bn

∣∣
∣
∣∣
∣
TV

(b)= EBn

∣
∣
∣
∣
∣
∣Qn

S0,S
− �S0,S|W=1,Bn

∣
∣
∣
∣
∣
∣
TV

(46)

where:
(a) is because �(Bn)(w) = P(Bn )(w) = 2−nR̃ , for every w ∈
Wn and Bn ∈ Bn , the independence of Bn and W , and the
symmetry of the codebook construction with respect to W ;
(b) is by (44) and because P(Bn )

S0,S = Qn
S0,S

for every Bn ∈ Bn .
Invoking [25, Corollary VII.5] once more yields

EBn

∣
∣
∣
∣
∣
∣Qn

S0,S − �S0,S|W=1,Bn

∣
∣
∣
∣
∣
∣
TV

−−−→
n→∞ 0 (47)

exponentially fast, as long as

R′ > I (U ; S|S0). (48)

This implies that there exists γ > 0 such that

EBn

∣
∣
∣
∣
∣
∣PS0,S,V|Bn − Qn

S0,S,V

∣
∣
∣
∣
∣
∣
TV

≤ e−nγ . (49)
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B. Proof of Lemma 2

The proof uses the following property of the TV (see, e.g.,
[28, Property 1]): Let μ, ν be two probability measures on a
measurable space (X ,F) and g : X → R be a measurable
function bounded by b ∈ R. We then have

∣
∣Eμg − Eνg

∣
∣ ≤ b · ∣∣∣∣μ − ν

∣
∣
∣
∣
TV. (50)

Fix ε > 0 and consider the � PMF defined in (41b). With
respect to the random experiment described by �, we have

EBn P�

((
S0, S, U(S0, w, I )

)
/∈ T n

ε (QS0,S,U )
∣
∣∣Bn

)
−−−→
n→∞ 0

(51)

because U(S0, w, i) ∼ Qn
U |S0

, for every i ∈ In , and S is
obtained by feeding (S0, U(S0, w, i)

)
into the DMC Qn

S|U,S0
.

Thus, (51) holds by the weak law of large numbers (WLLN).
Further, basic properties of the TV and the analysis in
Section VII-A (see (46)) imply

EBn

∣∣
∣
∣∣
∣PS0,S,U|Bn − �S0,S,U|Bn

∣∣
∣
∣∣
∣
TV

≤ EBn

∣
∣
∣
∣
∣
∣PS0,S,W,I,U,V|Bn − �S0,S,W,I,U,V|Bn

∣
∣
∣
∣
∣
∣
TV

−−−→
n→∞ 0.

(52)

Now, let gn : Sn
0 ×Sn×Un → R be defined by gn(s0, s, u) �

1{
(s0,s,u)/∈T n

ε (Q S0,S,U )
} and consider

EBn PP

((
S0, S, U(S0, w, I )

)
/∈ T n

ε (QS0,S,U )
∣
∣
∣Bn

)

= EBn EP

[
gn

(
S0, S, U(S0, w, I )

)∣∣
∣Bn

]

≤ EBn E�

[
gn

(
S0, S, U(S0, w, I )

)∣∣
∣Bn

]

+ EBn

∣
∣
∣
∣EP

[
gn

(
S0, S, U(S0, w, I )

)∣∣
∣Bn

]

− E�

[
gn

(
S0, S, U(S0, w, I )

)∣∣
∣Bn

]∣∣
∣
∣

(a)≤ EBn P�

((
S0, S, U(S0, w, I )

)
/∈ T n

ε (QS0,S,U )
∣
∣
∣Bn

)

+ EBn

∣
∣∣
∣
∣∣PS0,S,U|Bn − �S0,S,U|Bn

∣
∣∣
∣
∣∣
TV

(53)

where (a) uses (50) and gn being bounded by b = 1, for
any n ∈ N. By (51)-(52), the RHS of (53) approaches 0 as
n → ∞.

C. Proof of Theorem 1

Fix n ∈ N, ε, δ > 0, a PMF QU0,U1,U2,X ∈ P(U0 × U1 ×
U2 ×X ) and denote QU0,U1,U2,X,Y1,Y2 � QU0,U1,U2,X WY1,Y2|X .
In the following we omit the blocklength n from our notations
of the involved sets of indices, e.g., we write M0 instead of
M(n)

0 , etc. Furthermore, we assume that quantities of the form
2nR , where n ∈ N and R ∈ R+, are integers.

1) Message Splitting: Split each m2 ∈ M2 into two sub-
messages denoted by (m20, m22). The pair m p � (m0, m20)
is referred to as a public message and is to be decoded
by both receivers, while m1 and m22, that serve as private
messages, are to be decoded by receiver 1 and receiver 2,
respectively. The cooperation protocol will use the link to
convey information about the decoded m p from receiver 1 to
receiver 2. The rates associated with m20 and m22 are denoted
by R20 and R22, while the corresponding alphabets are M20
and M22, respectively. Furthermore, we use Rp � R0 + R20

and Mp � M0×M20. Since |Mp| = 2nRp , with some abuse
of notation, we also use Mp = [

1 : 2nRp
]
. The partial rates

R20 and R22 satisfy

R2 = R20 + R22. (54)

With respect to the above, the random variable M2 is split
into two independent random variables M20 and M22 that
are uniform over M20 and M22, respectively. The random
variable Mp � (M0, M20) is uniformly distributed over Mp.
Moreover, let W be a random variable uniformly distributed
over W = [

1 : 2nR̃
]

and independent of (M0, M1, M2) (which
implies its independence of (Mp, M1, M22)).

2) Cooperation Protocol Preliminaries: Fix a partitioning4

of Mp into 2nR12 equal-sized subsets (referred to as “bins”)
Bn(m12), where m12 ∈ M12. Let m̂12 : Mp → M12 be the
function that associates with each public message m p ∈ Mp

its bin index m̂12(m p), i.e., m p ∈ Bn
(
m̂12(m p)

)
.

3) Codebook Cn: Let C(n)
0 �

{
U0(m p)

}
m p∈Mp

be a random

public message codebook that comprises 2nRp i.i.d. random
vectors U0(m p), each distributed according to Qn

U0
. A real-

ization of C(n)
0 is denoted by C(n)

0 �
{
u0(m p)

}
m p∈Mp

.

Fix a public message codebook C(n)
0 . For every m p ∈ Mp,

let C(n)
1 (m p) �

{
U1(m p, m1, w, i)

}
(m1,w,i)∈M1×W×I , where

I �
[
1 : 2nR′]

, be a random codebook of confidential
messages to User 1, consisting of conditionally indepen-
dent random vectors each distributed according to Qn

U1|U0

( ·
∣
∣u0(m p)

)
. A realization of C(n)

1 (m p) is denoted by C(n)
1 (m p) �{

u1(m p, m1, w, i)
}
(m1,w,i)∈M1×W×I . Based on this labeling,

each C(n)
1 (m p), m p ∈ Mp , can be thought of as having a

u1-bin associated with every pair (m1, w) ∈ M1 × W , each
containing 2nR′

1 u1-codewords.
Next, for each m p ∈ Mp , the corresponding ran-

dom codebook of private message 2 is C(n)
2 (m p) �{

U2(m p, m22)
}

m22∈M22
, and comprises 2nR22 condition-

ally independent random vectors distributed according to

4The partitioning may be preformed in any prescribed manner and it is not
part of the random coding experiment.

μ(Cn) =
∏

m p∈Mp

Qn
U0

(
u0(m p)

) ∏

(m(1)
p ,m1,w,i)

∈Mp×M1×W×I

Qn
U1|U0

(
u1

(
m(1)

p , m1, w, i
)∣∣
∣u0

(
m(1)

p

)) ∏

(m(2)
p ,m22)

∈Mp×M22

Qn
U2|U0

(
u2

(
m(2)

p , m22
)∣∣
∣u0

(
m(2)

p

))

(55)
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Qn
U2|U0

( · ∣∣u0(m p)
)
. We use C(n)

2 (m p) �
{
u2(m p,

m22)
}

m22∈M22
to denote a possible outcome of C(n)

2 (m p).

For j = 1, 2, we denote C(n)
j �

{
C(n)

j (m p)
}

m p∈Mp
, and its

realization by C(n)
j . A random codebook is denoted by Cn ={

C(n)
0 , C(n)

1 , C(n)
2

}
, while Cn =

{
C(n)

0 , C(n)
1 , C(n)

2

}
denotes a

fixed codebook (a possible realization of Cn). Denoting the
set of all possible values of Cn by Cn , the above codebook
construction induces a PMF μ ∈ P(Cn) over the codebook
ensemble. For every Cn ∈ Cn , we have (55) from the bottom
of the previous page.

For a fixed codebook Cn ∈ Cn we next describe its
associated encoding function f (Cn), cooperation function g(Cn)

12
and decoding functions φ

(Cn )
j , for j = 1, 2.

4) Encoder f (Cn): To transmit a triple (m0, m1, m2) ∈
M0 × M1 × M2, the encoder transforms it into the triple
(m p, m1, m22) ∈ Mp ×M1 ×M22, and draws W uniformly
over W ; denote the realization of W by w ∈ W . Given
(m p, m1, m22, w), an index i ∈ I is then randomly selected
by the likelihood encoder according to

P(Cn )
LE

(
i
∣∣w, u0(m p), u2(m p, m22)

)

= Qn
U2|U1,U0

(
u2(m p, m22)

∣
∣u1(m p, m1, w, i), u0(m p)

)

∑

i ′∈I
Qn

U2|U1,U0

(
u2(m p, m22)

∣
∣u1(m p, m1, w, i ′), u0(m p)

) .

(56)

The structure of P(Cn )
LE adheres to the setup of Lemmas 1-2

from Section III and, in particular, to the stochastic choice of
indices therein as described in (10).

Denoting by i ∈ I the index selected by P(Cn )
LE , the

channel input sequence is then randomly generated
according to the conditional product distribution
Qn

X |U0,U1,U2

( · ∣∣u0(m p), u1(m p, m1, w, i), u2(m p, m22)
)
.

5) Decoding and Cooperation: For a fixed codebook Cn ∈
Cn , we define the following:

• Decoder φ
(Cn)
1 : Searches for a unique triple

(m̂ p, m̂1, ŵ) ∈ Mp × M1 × W , for which there
exists an index î ∈ I such that

(
u0(m̂ p), u1(m̂ p, m̂1, ŵ, î), y1

)
∈ T n

ε (QU0,U1,Y1).(57)

If such a unique triple is found set φ
(Bn)
1 (y1) = (m̂0, m̂1),

where m̂0 is taken from m̂ p = (m̂0, m̂22); otherwise, set

φ
(Cn)
1 (y1) = (1, 1).

• Cooperation g(Cn)
12 : Having (m̂ p, m̂1, ŵ, î), Decoder 1

conveys the bin number of m̂ p , i.e., m̂12(m̂ p) ∈ M12, to
Decoder 2 via the cooperation link. That is, g(Cn)

12 (y1) =
m̂12(m̂ p).

• Decoder φ
(Cn)
2 : Upon observing

(
m̂12(m̂ p), y2

)
, Decoder

2 searches for a unique pair ( ˆ̂m p, ˆ̂m22) ∈ Mp × M22,
such that

(
u0( ˆ̂m p), u2( ˆ̂m p, ˆ̂m22), y2

)
∈ T n

ε (QU0,U2,Y2) (58)

where ˆ̂m p ∈ Bn
(
m̂12(m̂ p)

)
. If such a unique pair is

found, set φ
(Cn)
2

(
m̂12(m̂ p), y2

) = ( ˆ̂m0, ˆ̂m2
)
, where ˆ̂m2 =

( ˆ̂m20, ˆ̂m22) in which ˆ̂m0 and ˆ̂m20 are specified by ˆ̂m p =( ˆ̂m0, ˆ̂m20
)
; otherwise, set φ

(Bn)
2

(
m̂12(m̂ p), y2

) = (1, 1).

6) Induced Code and Joint Distribution: The tuple(
f (Cn), g(Cn)

12 , φ
(Cn )
1 , φ

(Cn )
2

)
defined with respect to the code-

book Cn ∈ Cn constitutes an (n, R12, R0, R1, R2) code cn

for the cooperative BC. Thus, for every codebook Cn ∈
Cn , the induced joint distribution is given in (59) at the
bottom of this page, where the random variables U0, U1
and U2 are the chosen codewords at the conclusion of the
encoding process (from which the input X to the BC is
generated).

Taking the random codebook generation into account, we
also set (60) from the bottom of this page, where μ ∈ P(Cn) is
described in (55). The PMF P induces a probability measure
P � PP , with respect to which the subsequent analysis is
preformed. Specifically, all the mutli-letter information mea-
sures in the sequel are taken with respect to P from (60),
while single-letter information terms are always calculated
with respect to QU0,U1,U2,X,Y1,Y2 .

7) Expected Average Error Probability Analysis: By virtue
of Lemma 2 we first show that under the proper rate con-
straints, the above encoding process results in u0-, u1- and
u2-sequences that are jointly typical. The rest of the analysis
goes through via classic joint typicality arguments. The details
of the analysis are relegated to Appendix VIII, where it is
shown that

EPe(Cn) ≤ η(n, δ, δ′), (61)

P(Cn )
(

m p, m1, m22, w, m12, u0, u2, i, u1, x, y1, y2,
(
m̂(1)

0 , m̂1
)
,
(
m̂(2)

0 , m̂2
))

= 2−n(Rp+R1+R22+R̃)1{
m12=m̂12(m p),u0=u0(m p),u2=u2(m p,m22)

}P(Cn )
LE

(
i
∣∣w, u0(m p), u2(m p, m22)

)
1{

u1=u1(m p,m1,w,i)
}

×Qn
X |U0,U1,U2

(x|u0, u1, u2)Qn
Y1,Y2|X (y1, y2|x)1{(

m̂(1)
0 ,m̂1

)
=φ

(Cn )
1 (y1),

(
m̂(2)

0 ,m̂2

)
=φ

(Cn )
2 (m12,y2)

} (59)

P
(

m p, m1, m22, w, m12, u0, u2, i, u1, x, y1, y2,
(
m̂(1)

0 , m̂1
)
,
(
m̂(2)

0 , m̂2
))

= μ(Cn)P(Cn )
(

m p, m1, m22, w, m12, u0, u2, i, u1, x, y1, y2,
(
m̂(1)

0 , m̂1
)
,
(
m̂(2)

0 , m̂2
))

(60)
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where δ′ ∈ (0, δ) and limn→∞ η(n, δ, δ′) = 0 for all 0 < δ′ <
δ, if

R′ > I (U1; U2|U0) (62a)

R′ + R̃ > I (U1; U2, Y2|U0) (62b)

R1 + R̃ + R′ < I (U1; Y1|U0) − τδ (62c)

Rp + R1 + R̃ + R′ < I (U0, U1; Y1) − τδ (62d)

R22 < I (U2; Y2|U0) − τδ (62e)

Rp + R22 − R12 < I (U0, U2; Y2) − τδ. (62f)

with τδ → 0 as δ → 0 and τδ′ → 0 as δ′ → 0. To clarify,
the δ′ that appears in the upper bound on the expected error
probability from (61) is a consequence of the Conditional
Typicality Lemma [49, Sec. 2.5]. Namely, the lemma considers
conditioning on sequences that are jointly letter-typical with
respect to a slightly smaller gap δ′ than the original δ.

8) Security Analysis: As in the proof of Lemma 1 from
Section VII-A, throughout this proof we use P(Cn ) when the
codebook Cn ∈ Cn is fixed, and P·|Cn when the codebook
is random (see (59)-(60)). Fix a codebook Cn ∈ Cn and let
ICn denote the a mutual information taken with respect to
P(Cn ). Consider the following upper bound on the information
leakage.

ICn (M1; M12, Y2)

≤ ICn (M1; M12, Mp , M22, Y2)
(a)= ICn

(
M1; Y2|Mp, M22, U0, U2

)

(b)≤ D
(

P(Cn )
Y2|Mp,M1,M22,U0,U2

∣
∣
∣
∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P(Cn )

Mp,M1,M22,U0,U2

)

(63)

where:
(a) is because M1 is independent of (Mp, M22), and since
M12 = m̂12(Mp), U0 = u0(Mp) and U2 = u2(Mp, M22) are
defined by (Mp, M22);
(b) follows by the relative entropy chain rule and because for
every Cn ∈ Cn , the definition of relative entropy gives (64)
from the bottom of this page.

Taking the expectation of the RHS of (63) over the ensemble
of codebooks, we get (65) from the bottom of this page,
where (a) uses the symmetry of the codebook with respect
to the messages, while (b) is by the law of total expectation
conditioning the inner expectation on C(n)

0,2 �
{
C(n)

0 , C(n)
2

}
.

Next, we adjust the RHS of (65) so that it corresponds to
the setup of Lemma 1. To this end, note that when Cn ∈ Cn is
fixed, P(Cn )

Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2
is well-defined only

if u0 = u0(1) and u2 = u2(1). For any other u0 and u2, we
may set this conditional distribution as any arbitrary PMF on
Yn

2 , since this does not affect the joint distribution from (59).
Accordingly, if u0 �= u0(1) or u2 �= u2(1, 1), we define

P(Cn )
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2

= Qn
Y2|U0,U1

( · ∣∣u0, u2
)
.

(66)

Having this, note that for any (u0, u2) ∈ Un
0 × Un

2 and

a fixed C(n)
0,2 = C(n)

0,2 �
{
C(n)

0 , C(n)
2

}
, we have (67) from

the top of the next page. In the derivation of (67)
(a) follows from (66) and because conditioned on U0(1)
and U2(1, 1), PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn is inde-
pendent of all the other codewords in C0,2. Furthermore,
PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn is actually a function of

the codebook C(n)
1 (1), rather than the entire collection Cn .

Some further definitions are required in order to rigorously
justify the application of Lemma 1. For each u0 ∈ Un

0 , let
C̃n(u0) �

{
Ũ1(u0, w, i)

}
(w,i)∈W×I , be a collection of i.i.d.

random vectors of length n, each distributed according to
Qn

U1|U0
(·|u0). The collection C̃n �

{
C̃n(u0)

}

u0∈Un
0

is inde-

pendent of Cn and is distributed according to

λ̃(C̃n) =
∏

u0∈Un
0

∏

(w,i)
∈W×I

Qn
U1|U0

(
ũ1(u0, w, i)

∣
∣u0

)
, (68)

where, as before, C̃n(u0) �
{
ũ1(u0, w, i)

}
(w,i)∈W×I stands

for a realization of C̃n(u0). For each (u0, u2) ∈ Un
0 × Un

2 and

D
(

P(Bn )
Y2|Mp,M1,M22,U0,U2

∣
∣
∣
∣
∣
∣P(Bn )

Y2|Mp,M22,U0,U2

∣
∣
∣P(Bn)

Mp,M1,M22,U0,U2

)

≤ D
(

P(Bn )
Y2|Mp,M1,M22,U0,U2

∣∣
∣
∣∣
∣Qn

Y2|U0,U2

∣∣
∣P(Bn)

Mp,M1,M22,U0,U2

)
− D

(
P(Bn )

Y2|Mp,M22,U0,U2

∣∣
∣
∣∣
∣Qn

Y2|U0,U2

∣∣
∣P(Bn )

Mp,M22,U0,U2

)
(64)

ECn D
(

PY2|Mp,M1,M22,U0,U2,Cn

∣
∣∣
∣
∣∣Qn

Y2|U0,U2

∣
∣∣PMp,M1,M22,U0,U2,Cn

)

= ECn

[ ∑

m p,m1,m22,u0,u2

2−n(Rp+R1+R22)1{(
U0(m p),U2(m p,m22)

)
=(u0,u2)

}

× D
(

PY2|Mp=m p,M1=m1,M22=m22,U0=u0,U2=u2,Cn

∣
∣∣
∣
∣∣Qn

Y2|U0,U1
(·|u0, u2)

)]

(a)=
∑

u0,u2

ECn

[
1{(

U0(1),U2(1,1)
)
=(u0,u2)

}D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn

∣∣
∣
∣∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)]

(b)=
∑

u0,u2

EC(n)
0,2

[
1{(

U0(1),U2(1,1)
)
=(u0,u2)

}E
C(n)

1

∣
∣C(n)

0,2

[
D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn

∣
∣
∣
∣
∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)]]
(65)



GOLDFELD et al.: STRONG SECRECY FOR COOPERATIVE BCs 483

E
C(n)

1

∣
∣C(n)

0,2=C(n)
0,2

[
D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn

∣∣
∣
∣∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)]

= E
C(n)

1

∣∣C(n)
0,2=C(n)

0,2

[
1{(

u0(1),u2(1,1)
)
=(u0,u2)

}D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn

∣∣
∣
∣∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)

+1{(
u0(1),u2(1,1)

)
�=(u0,u2)

}D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,Cn

∣
∣∣
∣
∣∣Qn

Y2|U0,U1
(·|u0, u2)

)]

(a)= E
C(n)

1

∣
∣U0(1)=u0(1),U2(1,1)=u2(1,1)

[
1{(

u0(1),u2(1,1)
)
=(u0,u2)

}

×D
(

PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,C(n)
1 (1)

∣
∣
∣
∣
∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)]
(67)

a corresponding C̃n(u0), define a conditional PMF

P̃(C̃n )(w, i, ũ1, y2|u0, u2)

= 2−nR̃ P̃(C̃n )(i |w, u0, u2)1{ũ1=ũ1(u0,w,i)
}

×Qn
Y2|U0,U1,U2

(y2|u0, ũ1, u2), (69)

where P̃(C̃n )(i |w, u0, u2) is defined exactly like
P̂(Bn )(i |w, s0, s) from (10), up to renaming s0, s, u
and Bn therein to u0, u2, ũ1 and C̃n , respectively. Also define

P̃(C̃n, w, i, ũ1, y2|u0, u2) = λ̃(C̃n)P̃(C̃n )(w, i, ũ1, y2|u0, u2).

(70)

For any (u0, u2) ∈ Un
0 × Un

2 , the RHS of (67) is further
upper bounded by

EC̃n
D
(

P̃Y2|U0=u0,U2=u2,C̃n

∣
∣
∣
∣
∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)
. (71)

This follows by removing the indicator function and because
when u0(1) = ũ0 and C(n)

1 (1) = C̃n(ũ0), the dis-
tributions PY2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,C(n)

1 (1)=C(n)
1 (1)

and

P̃Y2|U0=ũ0,U2=u2,C̃n(ũ0)=C̃n(ũ0)
are equal as PMFs on Yn

2 .
Since (71) falls within the framework of Lemma 1
we can make this expectation arbitrarily small provided
that (62a)-(62b) hold.

Inserting (65), (67) and (71) back into (63), yields

ECn �(Cn)

I (M1; M12, Y2|Cn)

≤
∑

u0,u2

EC0,21
{(

U0(1),U2(1,1)
)
=(u0,u2)

}

× EC̃n
D
(

P̃Y2|U0=u0,U2=u2,C̃n

∣
∣
∣
∣
∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)

(a)= EC̃n

[ ∑

u0,u2

Qn
U0,U2

(u0, u2)

×D
(

P̃Y2|U0=u0,U2=u2,C̃n

∣∣
∣
∣∣
∣Qn

Y2|U0,U1
(·|u0, u2)

)]

= EC̃n
D
(

P̃Y2|U0,U2,C̃n

∣∣
∣
∣∣
∣Qn

Y2|U0,U2

∣∣
∣Qn

U0,U2

)
(72)

where (a) is since QU0,U2 is the coding PMF, which gives

Pμ

(
U0(1) = u0, U2(1, 1) = u2

)
= Qn

U0,U2
(u0, u2). Invoking

Lemma 1 on the RHS of (72), while viewing QY2|U0,U1,U2 as a

state-dependent DMC from U1 to Y2 with state space U0 ×U2,
we see that (62a)-(62b) give

EC̃n
D
(

P̃Y2|U0,U2,C̃n

∣∣
∣
∣∣
∣Qn

Y2|U0,U2

∣∣
∣Qn

U0,U2

)
−−−→
n→∞ 0. (73)

The Selection Lemma [50, Lemma 5] (see also [19, Lemma
2.2]) applied to the sequence of random variables

{
Cn

}
n∈N

and
the functions Pe and � implies the existence of a sequence of
codebooks

{
Cn

}
n∈N

, each giving rise to a code cn such that
Pe(cn) ≤ ε and �(cn) ≤ ε, for n sufficiently large. Finally,
we apply Fourier-Motzkin elimination (FME) on (62) while
using (54) and the non-negativity of the involved terms, to
eliminate R20, R′ and R̃. Since the above linear inequalities
have constant coefficients, the FME can be performed by a
computer program, e.g., by the FME-IT algorithm [51]. This
produces the rate bounds from (20) with small subtracted
terms such as τδ . Since δ > 0 and δ′ ∈ (0, δ) can be chosen
arbitrarily small (which shrinks τδ), this concludes the proof
of Theorem 1.

Remark 7 (BC Code and Resolvability Lemma Analogy):
Lemma 1 is key in the security analysis of the proposed
coding scheme. In the following, we relate the cooperative
BC code construction and the setup of our resolvability
lemma. Having (63), the main idea is to adjust the relative
entropy on the RHS so that it corresponds to the lemma.
This is done by viewing the u0- and the u2-codewords from
the BC codebook as a pair of states of the subchannel
QY2|U0,U1,U2 to Decoder 2, where the u1-codewords plays
the role of the channel’s input. The validity of this analogy
stems from the structure of the BC codebook, where for each
(m p, m1) ∈ Mp ×M1, the set

{
U1(m p, m1, w, i)

}
(w,i)∈W×I

forms a resolvability codebook just like in Lemma 1. This
resolvability codebook is superimposed on U0(m p), while the
transmitted u1-codeword is correlated with U2(m p, m22) by
means of the likelihood encoder (56). The correspondence
between the coding scheme presented in this section and the
setup of Lemma 1 is summarized in Table I.

The main challenge in applying the resolvability for the
BC code is accounting for the relative entropy from the RHS
of (63) being conditioned on the induced joint distribution
of U0 and U2, while the lemma conditions it on a product
distribution. However, as the derivation between Equation
(63)-(73) shows, under the expectation over the ensemble of
codebooks, the induced distribution in the conditioning can be
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TABLE I

CORRESPONDENCE BETWEEN THE CODING SCHEME FOR THE COOPERATIVE BC AND THE SETUP OF THE RESOLVABILITY LEMMA 1

converted to the product PMf Qn
U0,U2

(according to which the
codebooks U0 and U2 are drawn).

Remark 8 (Comparison to the Scheme Without Secrecy):
The main differences between the coding schemes for the
cooperative BC with one confidential message and the
same channel without secrecy [35] are threefold. First, a
randomizer W is used in the secrecy-achieving scheme.
Second, the cooperation message M12 depends on M20 rather
than on the pair (M10, M20) (M10 refers to the public part of
the message M1). Note that conveying an M12 that holds any
part of M1 (in the form of its public part M10) violates the
secrecy requirement. Finally, a prefix channel QX |U0,U1,U2

is used to optimize randomness and, in turn, to conceal M1
from the 2nd receiver. In the non-secret scenario Q X |U0,U1,U2

can be replaced with a deterministic function.

D. Converse Proof for Theorem 2

We show that if a rate tuple (R12, R0, R1, R2) is achievable,
then there exists a PMF QW,V ,Y1,X ∈ P(W × V × Y1 × X )
with Y1 = y1(X), such that the inequalities in (22) are
satisfied with respect to the joint distribution QW,V ,Y1,X WY2|X .
Fix an achievable tuple (R12, R0, R1, R2), an ε > 0, and
let cn be the corresponding (n, R12, R0, R1, R2) code for
some sufficiently large n ∈ N such that (19) holds. All
subsequent multi-letter information measures are calculated
with respect to the PMF induced by cn from (16), with the

SD-BC W n
Y1,Y2|X (y1, y2|x) = 1⋂n

i=1

{
y1,i =y1(xi )

}W n
Y2|X (y2|x).

By Fano’s inequality we have

H (M0, M1|Y n
1 ) ≤ 1 + nε(R0 + R1) � nε(1)

n (74a)

H (M0, M2|M12, Y n
2 ) ≤ 1 + nε(R0 + R2) � nε(2)

n . (74b)

Define

εn = max
{
ε(1)

n , ε(2)
n

}
. (74c)

Moreover, (19b) implies

ε ≥ I (M1; M12, Y n
2 )

= I (M1; M0, M2, M12, Y n
2 ) − I (M1; M0, M2|M12, Y n

2 )

(a)≥ I (M1; M12, Y n
2 |M0, M2) − H (M0, M2|M12, Y n

2 )
(b)≥ I (M1; M12, Y n

2 |M0, M2) − nεn (75)

where (a) uses the independence of M1 and (M0, M2) and the
non-negativity of entropy, while (b) follows from (74). Thus,

I (M1; M12, Y n
2 |M0, M2) ≤ ε + nεn . (76)

It follows that

n R1 = H (M1)
(a)= H (M1|M12, M0, M2) + I (M1; M12|M0, M2)
(b)≤ I (M1; Y n

1 |M12, M0, M2) + I (M1; M12|M0, M2)
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−I (M1; M12, Y n
2 |M0, M2) + nδ(1)

n

(c)=
n∑

i=1

[
I (M1; Y i

1, Y n
2,i+1|M12, M0, M2)

− I (M1; Y i−1
1 , Y n

2,i |M12, M0, M2)
]

+ nδ(1)
n

=
n∑

i=1

[
I (M1; Y1,i |M12, M0, M2, Y i−1

1 , Y n
2,i+1)

− I (M1; Y2,i |M12, M0, M2, Y i−1
1 , Y n

2,i+1)
]

+ nδ(1)
n

(d)=
n∑

i=1

[
H (Y1,i |M2, Wi ) − H (Y1,i |M1, M2, Wi )

− I (M1; Y2,i |M2, Wi )
]

+ nδ(1)
n

≤
n∑

i=1

[
H (Y1,i |M2, Wi ) − I (Y1,i ; Y2,i |M1, M2, Wi )

− I (M1; Y2,i |M2, Wi )
]

+ nδ(1)
n

=
n∑

i=1

[
H (Y1,i |M2, Wi )

− I (M1, Y1,i ; Y2,i |M1, M2, Wi )
]

+ nδ(1)
n

≤
n∑

i=1

H (Y1,i |M2, Wi , Y2,i ) + nδ(1)
n (77)

where:
(a) is because M1 is independent (M0, M2);
(b) follows from (74)-(75) and by denoting δ

(1)
n = 2εn + ε

n ;
(c) is a telescoping identity [52, eqs. (9) and (11)];
(d) defines Wi = (M12, M0, Y i−1

1 , Y n
2,i+1).

The common message rate R0 satisfies

n R0 = H (M0)
(a)≤ I (M0; Y n

1 ) + nεn (78a)

=
n∑

i=1

I (M0; Y1,i |Y i−1
1 ) + nεn

≤
n∑

i=1

I (M0, Y i−1
1 ; Y1,i) + nεn

(b)≤
n∑

i=1

I (Wi ; Y1,i) + nεn (78b)

where (a) uses (74) and (b) follows by the definition of Wi .
Combining (77) with (78b) yields

n(R0 + R1)≤
n∑

i=1

[
H (Y1,i |M2, Wi , Y2,i )+ I (Wi ; Y1,i )

]
+nδ(2)

n

(79)

where δ
(2)
n = δ

(1)
n + εn .

For the sum R0 + R2, we have

n(R0+ R2) = H (M0, M2)
(a)≤ I (M0, M2; M12, Y n

2 ) + nεn

= I (M0, M2; Y n
2 |M12) + I (M0, M2; M12) + nεn

(b)≤ I (M0, M2; Y n
2 |M12) + n R12 + nεn

=
n∑

i=1

I (M0, M2; Y2,i |M12, Y n
2,i+1) + n R12 + nεn

(c)≤
n∑

i=1

I (M2, Wi ; Y2,i ) + n R12 + nεn (80)

where:
(a) uses (74);
(b) is by the non-negativity of entropy and since a uniform
distribution maximizes entropy;
(c) follows from the definition of Wi and because conditioning
cannot increase entropy.

To bound R0 + R1 + R2, we begin by writing

n(R0 + R1+ R2) = H (M0, M1, M2)

= H (M1|M0, M2)+ H (M2|M0)+ H (M0).

(81)

Consider now

H (M2|M0)
(a)≤ I (M2; Y n

2 |M12, M0) + I (M2; M12|M0) + nεn

(b)=
n∑

i=1

[
I (M2; Y n

2,i |M12, M0, Y i−1
1 )

− I (M2; Y n
2,i+1|M12, M0, Y i

1)
]
+ I (M2; M12|M0)+nεn

(c)=
n∑

i=1

[
I (M2; Y n

2,i+1|M12, M0, Y i−1
1 )

+ I (M2; Y2,i |Wi )− I (M2; Y1,i , Y n
2,i+1|M12, M0, Y i−1

1 )

+ I (M2; Y1,i |M12, M0, Y i−1
1 )

]
+ I (M2; M12|M0)+nεn

(d)=
n∑

i=1

[
I (M2; Y2,i |Wi ) − I (M2; Y1,i |Wi )

]

+ I (M2; Y n
1 |M0) + nεn (82)

where:
(a) uses (74) and the mutual information chain rule;
(b) is a telescoping identity;
(c) follows from the definition of Wi ;
(d) is due to the mutual information chain rule and the
definition of Wi (second term), and because M12 is defined
by Y n

1 (third term).
Combining (78a) with (82), yields

n(R0 + R2)

≤
n∑

i=1

[
I (M2; Y2,i |Wi ) − I (M2; Y1,i |Wi )

]

+I (M0, M2; Y n
1 ) + 2nεn

(a)≤
n∑

i=1

[
I (M2; Y2,i |Wi ) − I (M2; Y1,i |Wi ) + H (Y1,i)

−H (Y1,i |M0, M2, Y i−1
1 )

]
+ 2nεn

(b)≤
n∑

i=1

[
I (M2; Y2,i |Wi ) + I (Wi ; Y1,i )
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−I (M12, Y n
2,i+1; Y1,i |M0, M2, Y i−1

1 )
]

+ 2nεn

(c)≤
n∑

i=1

[
I (M2; Y2,i |Wi ) + I (Wi ; Y1,i )

]
+ 2nεn (83)

where:
(a) is because conditioning cannot increase entropy;
(b) uses the definition of Wi ;
(c) is by the non-negativity of mutual information.

By inserting (77) and (83) into (81), we bound the sum of
rates as

n(R0 + R1 + R2) ≤
n∑

i=1

[
H (Y1,i |M2, Wi , Y2,i )

+I (M2; Y2,i |Wi ) + I (Wi ; Y1,i)
]

+ nδ(3)
n

(84)

where δ
(3)
n = δ

(1)
n + 2εn .

The bounds in (77), (79), (80) and (83) are rewritten by
introducing a time-sharing random variable T that is uni-
formly distributed over the set [1 : n] and is independent of
(M0, M1, M2, Xn, Y n

1 , Y n
2 ). For instance, (77) is rewritten as

R1 ≤ 1

n

n∑

t=1

H (Y1,t |M2, Wt , Y2,t ) + δ(1)
n

=
n∑

t=1

P
(
T = t

)
H (Y1,T |M2, WT , Y2,T , T = t) + δ(1)

n

= H (Y1,T |M2, WT , Y2,T , T ) + δ(1)
n . (85)

Denote W � (WT , T ), V � (M2, W ), X � XT , Y1 � Y1,T

and Y2 � Y2,T . This results in the bounds (22) with small
added terms such as εn and δ

(1)
n . For large n, we can make

these terms approach 0. The converse is completed by showing
the PMF of (W, V , X, Y1, Y2) factors as QW,V ,Y1,X WY2|X and
satisfies Y1 = y1(X). As the functional relation between Y1
and X is straightforward, it remains to be shown that

(W, V , Y1) − X − Y2 (86)

forms a Markov chain. This is proven in Appendix VIII-D.

E. Converse Proof for Theorem 3

We show that given an achievable rate tuple
(R12, R0, R1, R2), there exists a PMF QW,X ∈ P(W × X )
for which (23) holds with respect to the joint distribution
QW,X WY1|X WY2|Y1 . Let (R12, R0, R1, R2) be an achievable
tuple and fix ε > 0. Let cn be the corresponding
(n, R12, R0, R1, R2) code for some sufficiently large
n ∈ N such that (19) holds. The induced joint distribution
is again given by (16), but now the transition matrix is of a
PD-BC, i.e., W n

Y1,Y2|X (y1, y2|x) = W n
Y1|X (y1|x)W n

Y2|Y1
(y2|y1).

Fano’s inequality gives

H (M0, M1|Y n
1 ) ≤ 1+nε(R0 + R1) � nκ(1)

n (87a)

H (M0, M2|M12, Y n
2 ) ≤ 1+nε(R0 + R2) � nκ(2)

n (87b)

H (M0, M1, M2|Y n
1 , Y n

2 ) ≤ 1+nε(R0 + R1 + R2) � nκ(3)
n

(87c)

and we set

κn = max
{
κ(1)

n , κ(2)
n , κ(3)

n

} = κ(3)
n . (87d)

Further, by the strong secrecy constraint (19b), we have

ε ≥ I (M1; M12, Y n
2 )

= I (M1; M0, M2, M12, Y n
2 ) − I (M1; M0, M2|M12, Y n

2 )
(a)≥ I (M1; M12, Y n

2 |M0, M2) − H (M0, M2|M12, Y n
2 )

(b)≥ I (M1; Y n
2 |M0, M2) − nκn (88)

where (a) uses the independence of M1 and (M0, M2) and
the non-negativity of entropy, while (b) is by (87) and since
conditioning cannot increase entropy. This yields

I (M1; Y n
2 |M0, M2) ≤ ε + nκn. (89)

We bound

n R1 = H (M1)
(a)= H (M1|M0, M2)
(b)≤ I (M1; Y n

1 |M0, M2) − I (M1; Y n
2 |M0, M2) + nηn

(c)=
n∑

i=1

[
I (M1; Y i

1, Y n
2,i+1|M0, M2)

−I (M1; Y i−1
1 , Y n

2,i |M0, M2)
]

+ nηn

(d)=
n∑

i=1

[
I (M1; Y1,i |Wi ) − I (M1; Y2,i |Wi )

]
+ nηn

(90a)
(e)=

n∑

i=1

I (M1; Y1,i |Wi , Y2,i ) + nηn

( f )≤
n∑

i=1

I (Xi ; Y1,i |Wi , Y2,i ) + nηn

(g)≤
n∑

i=1

[
I (Xi ; Y1,i |Wi )− I (Xi ; Y2,i |Wi )

]
+nηn (90b)

where:
(a) uses the independence of M1 and (M0, M2);
(b) is by virtue of (87)-(88) and by denoting ηn = 2κn + ε

n ;
(c) is a telescoping identity;
(d) follows by defining Wi � (M0, M2, Y i−1

1 , Y n
2,i+1);

(e) and (g) rely on the mutual information chain rule and the
PD property of the channel, which implies that (M1, Xi ) −
(Wi , Y1,i ) − Y2,i forms a Markov chain for all i ∈ [1 : n];
(f) follows since M1 − (Wi , Xi , Y1,i ) − Y2,i forms a Markov
chain.

Next, we have

n(R0 + R2) = H (M0, M2)
(a)≤ I (M0, M2; M12, Y n

2 ) + nκn

(b)≤ I (M0, M2; Y n
2 ) + n R12 + nκn

=
n∑

i=1

I (M0, M2; Y2,i |Y n
2,i+1) + n R12 + nκn

(c)≤
n∑

i=1

I (Wi ; Y2,i ) + n R12 + nκn (91)



GOLDFELD et al.: STRONG SECRECY FOR COOPERATIVE BCs 487

where:
(a) is by (87);
(b) is because entropy is non-negative and is maximized by
the uniform distribution;
(c) follows from the definition of Wi and because conditioning
cannot increase entropy.

Finally, consider

n(R0 + R1 + R2)

= H (M0, M1, M2)
(a)≤ I (M0, M1, M2; Y n

1 , Y n
2 ) − I (M1; Y n

2 |M0, M2) + nηn
(b)= I (M0, M1, M2; Y n

1 ) − I (M1; Y n
2 |M0, M2) + nηn

(c)=
n∑

i=1

[
I (M0, M1, M2, Y n

2,i+1; Y1,i |Y i−1
1 )

− I (Y n
2,i+1; Y1,i |M0, M1, M2, Y i−1

1 )

− I (M1; Y2,i |M0, M2, Y n
2,i+1)

]
+ nηn

(d)=
n∑

i=1

[
I (M0, M1, M2, Y n

2,i+1; Y1,i |Y i−1
1 )

− I (Y i−1
1 ; Y2,i |M0, M1, M2, Y n

2,i+1)

− I (M1; Y2,i |M0, M2, Y n
2,i+1)

]
+ nηn

≤
n∑

i=1

[
I (M0, M1, M2, Y i−1

1 , Y n
2,i+1; Y1,i)

− I (M1, Y i−1
1 ; Y2,i |M0, M2, Y n

2,i+1)
]

+ nηn

(e)≤
n∑

i=1

[
I (Wi ;Y1,i )+ I (M1;Y1,i |Wi )− I (M1;Y2,i |Wi )

]
+nηn

( f )≤
n∑

i=1

[
I (Wi ; Y1,i)+ I (Xi ; Y1,i |Wi )− I (Xi ; Y2,i |Wi )

]
+nηn

(g)=
n∑

i=1

[
I (Xi ; Y1,i ) − I (Xi ; Y2,i |Wi )

]
+ nηn (92)

where:
(a) uses (87) and the definition of ηn;
(b) is because (M0, M1, M2)−Y n

1 −Y n
2 forms a Markov chain,

which is induced by the PD degraded and memoryless property
of the channel;
(c) is the mutual information chain rule;
(d) uses the Csiszár sum identity (see, e.g., [52, eq. (3)]);
(e) follows from the definitions of Wi and because condition-
ing cannot increase entropy;
(f) is by repeating steps (90a)-(90b);
(g ) is by the mutual information chain rule and because
Wi − Xi − Y1,i forms a Markov chain (see Appendix VIII-
E for the proof).

By time-sharing arguments similar to those presented in
Section VII-D, and by denoting W � (WT , T ), X � XT ,
Y1 � Y1,T and Y2 � Y2,T , we obtain the bounds of (23) with
the small added terms κn and ηn , which approach 0 as n → ∞.
In Appendix VIII-E we show that the chain

W − X − Y1 − Y2 (93)

is Markov, which establishes the converse.

VIII. SUMMARY AND CONCLUDING REMARKS

We considered cooperative BCs with one common and two
private messages, where the private message to the coop-
erative user is confidential. An inner bound on the strong
secrecy-capacity region was established by deriving a channel
resolvability lemma and using it as a building block for
the BC code. A resolvability-based Marton code for the BC
with a double-binning of the confidential message codebook
was constructed, and the resolvability lemma was invoked
to achieve strong secrecy. The cooperation protocol used the
link from Decoder 1 to Decoder 2 to share information on
a portion of the non-confidential message and the common
message only. Removing the secrecy constraint on M1 allows
a more flexible cooperation scheme that in general achieves
strictly higher transmission rates [35]. The inner bound was
shown to be tight for the SD and PD cases. Two separate
converse proofs were used because the structure of the joint
PMFs describing the regions seems to require distinct choices
of auxiliary random variable.

The secrecy results were compared to those of the corre-
sponding BCs without secrecy constraints, and the impact of
secrecy on the capacity regions was highlighted. Cooperative
Blackwell and Gaussian BCs illustrated the results. An explicit
coding scheme that achieves strong secrecy while maximizing
the transmission rate of the confidential message over the
BW-BC was given. Further, it was shown that the strong
secrecy-capacity region of the BW-BC remains unchanged
even if the subchannel to the legitimate user is noiseless.

APPENDIX A
PROOF OF PROPOSITION 5

Let X1 = X2 = Y1 = Y2 = {0, 1}. Consider the BC
WY1|X1 WY2|X1,X2 from Fig. 3, where WY1|X1 is a BSC with
transition probability 0.1 and WY2|X1,X2 is an arbitrary channel
from {0, 1}2 to {0, 1} to be specified later.

For simplicity of notation we relabel U0 = W , U1 = U
and U2 = V in RNS, which becomes the union of rate triples
(R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ I (W, U ; Y1) (94a)

R2 ≤ I (W, V ; Y2) + R12 (94b)

R1+ R2 ≤ I (U ; Y1|W ) + I (V ; Y2|W ) − I (U ; V |W )

+ min
{

I (W ; Y1), I (W ; Y2) + R12

}
(94c)

where the union is over all PMFs QW,U,V ,X1,X2 ∈ P(W ×
V × V × X1 × X2), each inducing a joint distribution
QW,U,V ,X1,X2,Y1,Y2 � QW,U,V ,X1,X2 WY1|X1 WY2|X1,X2 . Setting
U0 = W , U1 = U and U2 = V into R̃NS, gives a region
described by the same rate bounds as (94), up to replacing
(94a) with

R1 ≤ I (U ; Y1|W ) +
[

I (V ; Y2|W ) − I (U ; V |W )
]+

. (95)

We outer bound R̃NS by loosening (95) to

R1 ≤ I (U ; Y1|W ). (96)

Let ÕNS denote the obtained outer bound on R̃NS. We show
that under the considered example ÕNS � RNS.
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For any r ∈ R+, let

RNS(r) �
{
(R1, R2) ∈ R

2+
∣
∣∣(r, R1, R2) ∈ RNS

}
(97a)

ÕNS(r) �
{
(R1, R2) ∈ R

2+
∣
∣
∣(r, R1, R2) ∈ ÕNS

}
(97b)

be the projections of RNS and ÕNS on the (R1, R2) plane for
R12 = r . Let c = 1 − Hb(0.1), where Hb : [0, 1] → [0, 1]
is the binary entropy function, and note that R1 = c is the
maximal achievable rate of M1 in both CNS(c) and ÕNS(c).
Define the supremum of all achievable R2 that preserve R1 = c
in each region by

R�
2 � sup

{
R2 ∈ R+

∣
∣
∣(c, R2) ∈ RNS(c)

}
(98a)

R̃�
2 � sup

{
R2 ∈ R+

∣
∣∣(c, R2) ∈ ÕNS(c)

}
. (98b)

We next evaluate R�
2 and R̃�

2, and then choose WY2|X1,X2 for
which R�

2 > R̃�
2.

For RNS(c), setting W = X1 ∼ Ber
( 1

2

)
achieves

R1 = I (W, U ; Y1)
(a)= I (X1; Y1) = c (99)

where (a) follows because U − X1 −Y1 forms a Markov chain.
Consequently, for R�

2 we have

R�
2

(a)= sup
QU,V ,X2|X1 :

(U,V )−(X1,X2)−Y2

min

{
I (X1, V ; Y2) + c,

I (X1, V ; Y2) − I (U ; V |X1)

}

(b)≥ sup
QV ,X2|X1 :

V −(X1,X2)−Y2

I (V ; Y2|X1) (100)

where (a) uses the structure of RNS from (94) and the relations
R12 = I (X1; Y1) = c and W = X1, while (b) is by setting
U = X1 and due to the non-negativity of mutual information.

For ÕNS(c), first note that R1 is upper bounded by c since

I (U ; Y1|W )
(a)≤ I (W, U ; Y1)

(b)≤ I (X1; Y1)
(c)≤ c. (101)

However, R1 = c is also achievable: (a) becomes an inequality
if and only if Y1 is independent of W ; (b) is an equality if and
only if X1 −(W, U)−Y1 forms a Markov chain (this step also
uses the Markov relation (W, U) − X1 − Y1; (c) holds with
equality if and only if X1 ∼ Ber

( 1
2

)
.

Now, since Y1 and X1 are connected by a BSC, the
independence of Y1 and W implies that X1 and W are also
independent. To see this observe that the independence of Y1
and W means that

QY1|W (0|w) = QY1|W (0|w′), ∀(w,w′) ∈ W2, (102)

and assume by contradiction that a similar relation does not
hold for X1 and W . Namely, assume that there exists a pair
(w,w′) ∈ W2 such that

QX1|W (0|w) �= QX1|W (0|w′). (103)

Denote QX1|W (0|w) = α and QX1|W (0|w′) = α′, where
α, α′ ∈ [0, 1] and α �= α′. Consider the following:

QY1|W (0|w)

(a)= QX1|W (0|w)QY1|X1(0|0) + QX1|W (1|w)QY1|X1(0|1)

= 0.9α + 0.1(1 − α)

= 0.1 + 0.8α. (104)

By repeating similar steps for QY1|W (0|w′), we get

QY1|W (0|w′) = 0.1 + 0.8α′. (105)

Combining (104)-(105) with (102) gives that α = α′, which
is a contradiction. Therefore X1 and W must be independent.

Furthermore, recall that from the equality in step (b)
of (101) the chain X1 − (W, U) − Y1 is Markov, i.e.,

QX1,Y1|W,U (x1, y1|w, u)

= QX1|W,U (x1|w, u)QY1|W,U (y1|w, u) (106)

for all (w, u, x1, y1) ∈ W × U × X1 × Y1. Since (W, U) −
X1 −Y1 is also a Markov chain, we have that QX1,Y1|W,U also
factors as

QX1,Y1|W,U (x1, y1|w, u) = QX1|W,U (x1|w, u)QY1|X1(y1|x1)

(107)

for all (w, u, x1, y1) ∈ W ×U ×X1 ×Y1. Therefore, for every
(w, u, x1, y1) ∈ W×U×X1 ×Y1, either QX1|W,U (x1|w, u) =
0 or QY1|W,U (y1|w, u) = QY1|X1(y1|x1). In particular, for
(x1, y1) = (1, 1) and any (w, u) ∈ W × U , either

QX1|W,U (1|w, u) = 0 (108a)

or

QY1|W,U (1|w, u) = QY1|X1(1|1) = 0.9. (108b)

If (108b) is true, then

QY1|W,U (1|w, u)

(a)= QX1|W,U (0|w, u)QY1|X1(1|0)

+QX1|W,U (1|w, u)QY1|X1(1|1)

= 0.1 · QX1|W,U (0|w, u) + 0.9 · QX1|W,U (1|w, u)

= 0.1 + 0.8 · QX1|W,U (1|w, u) (109)

where (a) uses the Markov chain (W, U) − X1 − Y1. When
combined with (108b), this gives

QX1|W,U (1|w, u) = 1. (110)

Thus, for any (w, u) ∈ W × U either (108a) or (110) is true,
which implies that X1 is a deterministic function of (W, U).
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Having this, we upper bound R̃�
2 as follows.

R̃�
2

(a)= sup
QW QU,V ,X2|W,X1 :

(W,U,V )−(X1,X2)−Y2

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I (W, V ; Y2) + c,

I (V ; Y2|W ) − I (U ; V |W ),

I (U ; Y1|W ) + I (W, V ; Y2)

−I (U ; V |W )

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(b)= sup
QW QU,V ,X2|X1,W :

(W,U,V )−(X1,X2)−Y2

I (V ; Y2|W ) − I (U ; V |W )

(c)= sup
QW QU,V ,X2|X1,W :

(W,U,V )−(X1,X2)−Y2

I (V ; Y2|W ) − I (U, X1; V |W )

≤ sup
QW QV ,X2|X1,W :

(W,V )−(X1,X2)−Y2

I (V ; Y2|W ) − I (V ; X1|W )

(d)≤ max
w∈W

sup
QV ,X2|X1,W=w :

Vw−(X1,X2,w)−Y2

I (V ; Y2|W =w) − I (V ; X1|W =w)

≤ sup
QV ,X2|X1 :

V −(X1,X2)−Y2

I (V ; Y2) − I (V ; X1) (111)

where:
(a) uses the structure of ÕNS, the independence of W and X1
and the relation R12 = I (W, U ; Y1) = c;
(b) follows by the non-negativity of mutual information;
(c) is because X1 is determined by (W, U);
(d) follows by defining (Vw, X2,w) to be a pair of random
variables jointly distributed with X1 ∼ Ber

( 1
2

)
according to

QX1 QV ,X2|X1,W=w, where w ∈ W .
The lower bound on R�

2 from (100) is the capacity of the
state-dependent channel WY2|X1,X2 with non-causal CSI Xn

1
available at both the transmitting and receiving ends. The
upper bound on R̃�

2 given in (111) is the capacity of the
corresponding GP channel, i.e., with non-causal transmitter
CSI only. Thus, to show that R̃�

2 < R�
2 it suffices to choose

WY2|X1,X2 for which the GP capacity is strictly less than
the capacity with full CSI. A simple example for which
these capacities are different is the binary dirty-paper (BDP)
channel. Specifically, let WY2|X1,X2 be defined by

Y2 = X2 ⊕ X1 ⊕ Z (112)

where ⊕ denotes modulo 2 addition, X1 ∼ Ber
( 1

2

)
plays the

role of the channel’s state, and the noise Z ∼ Ber(ε), with
ε ∈ [

0, 1
2

]
is independent of (X1, X2). The input X2 is subject

to a constraint 1
n wH (x2) ≤ q , for q ∈ [

0, 1
2

]
, where wH :{

0, 1
}n → N ∪ {

0
}

is the Hamming weight function. For the
BDP channel, the GP capacity is [44]–[46]

C(BDP)
GP = max

QV ,X2|X1 :
V −(X1,X2)−Y2

I (V ; Y2) − I (V ; Y1)

= uce
{[

Hb(q) − Hb(ε)
]+}

(113)

where ‘uce’ is the upper convex envelope operation with
respect to q (ε is constant). On the other hand, the capacity

of the BDP channel with full CSI is [44]–[46]

C(BDP)
F−CSI = max

QV ,X2|X1 :
V −(X1,X2)−Y2

I (V ; Y2|X1) = Hb(q ∗ ε) − Hb(ε)

(114)

where q ∗ ε = q(1 − ε) + (1 − q)ε. Clearly, q and ε can be
chosen such that C(BDP)

GP < C(BDP)
F−CSI, which shows that RNS

and R̃NS are not equal in general.

APPENDIX B
CONVERSE PROOF FOR (35)

To prove the optimality of (35), we show that C(PD)
S ⊆ C(G)

S
(C(PD)

S and C(G)
S are given by (23) and (35), respectively). First

note that on one hand

h(Y1|W )
(a)≥ h(Y1|X) = h(Z1) = 1

2
log(2πeN1) (115a)

where (a) is because W − X −Y1 forms a Markov chain, while
on the other hand

h(Y1|W ) ≤ h(Y1) ≤ 1

2
log

(
2πe(P + N1)

)
. (115b)

The intermediate value theorem and (115) imply that there is
an α ∈ [0, 1] such that

h(Y1|W ) = 1

2
log

(
2πe(αP + N1)

)
. (116)

Further, for every w ∈ W , we have

h(Y2|W = w) = h(Y1 + Z2|W = w)
(a)≥ 1

2
log

(
22h(Y1|W=w) + 22h(Z2|W=w)

)

(b)= 1

2
log

(
22h(Y1|W=w) + 2πe(N2 − N1)

)

� λ(w) (117)

where (a) uses the conditional entropy-power inequality (EPI),
while (b) follows by the independence of Z2 and W . Using
(117), we lower bound h(Y2|W ) in terms of h(Y1|W ) as

h(Y2|W )
(a)≥ EW λ(W )
(b)≥ 1

2
log

(
22h(Y1|W ) + 2πe(N2 − N1)

)

= 1

2
log

(
2πe(αP + N2)

)
(118)

where (a) follows from (117), while (b) uses the convexity
of the function x �→ log(2x + c) for c ∈ R+ and Jensen’s
inequality.

We next present upper bounds on the information terms on
the RHS of (23). For (23a), we have

I (X; Y1|W ) − I (X; Y2|W )
(a)= h(Y1|W ) − h(Y1|X) − h(Y2|W ) + h(Y2|X)
(b)≤ 1

2
log

(
1 + αP

N1

)
− 1

2
log

(
1 + αP

N2

)
(119)
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where (a) follows since the chain W − X −(Y1, Y2) is Markov,
while (b) relies on (116), (118) and on the Gaussian distri-
bution maximizing the differential entropy under a variance
constraint. Next, using (118) we bound the RHS of (23b) as

I (W ; Y2) + R12 = h(Y2) − h(Y2|W ) + R12

≤ 1

2
log

(
1 + ᾱP

αP + N2

)
+ R12. (120)

By repeating arguments similar to those in the derivation
of (119), we bound the sum of rates R1 + R2 as

R1 + R2 ≤ 1

2
log

(
1 + P

N1

)
− 1

2
log

(
1 + αP

N2

)
. (121)

APPENDIX C
PROOF OF LEMMA 3

For a any Bn ∈ Bn and (s0, s, v) ∈ Sn
0 ×Sn ×Vn , we have

P(Bn )(s0, s, v)

= Qn
S0,S

(s0, s) 2−nR̃
∑

(w,i)∈Wn×In

P̂(Bn)(i |w, s0, s)

×Qn
V |U,S0,S

(
v
∣
∣u(s0, w, i), s0, s

)
. (122)

Let (s0, s, v) ∈ Sn
0 × Sn × Vn be a triple such that

Qn
S0,S,V (s0, s, v) = 0. Clearly, if Qn

S0,S
(s0, s) = 0 then (122)

implies that P(Bn )(s0, s, v) = 0. Thus, we henceforth assume
that Qn

S0,S
(s0, s) > 0 and Qn

V |S0,S
(v|s0, s) = 0. By expanding

Qn
V |S0,S

(v|s0, s)

=
∑

u∈supp
(

Qn
U |S0=s0,S=s

)
Qn

U |S0,S(u|s0, s)Qn
V |U,S0,S(v|u, s0, s)

(123)

we have Qn
V |U,S0,S

(v|u, s0, s) = 0 for every u ∈
supp

(
Qn

U |S0=s0,S=s

)
. Thus, to complete the proof it suffices

to show that every u-codeword that is transmitted with positive
probability is in supp

(
Qn

U |S0=s0,S=s

)
.

By the construction of the codebook, every u ∈ Bn

also satisfies u ∈ supp
(

Qn
U |S0=s0

)
. Moreover, a necessary

condition for a codeword u(s0, w, i) to be chosen by the
encoder with positive probability is P̂(Bn )(i |w, s0, s) > 0,
which by the definition of the likelihood encoder implies that
Qn

S|U,S0

(
s
∣
∣u(s0, w, i), s0

)
> 0. Combining the above, we have

that if a codeword u(s0, w, i) is transmitted with positive
probability then

Qn
U |S0,S

(
u(s0, w, i)

∣
∣s0, s

)

= Qn
S0,S,U

(
s0, s, u(s0, w, i)

)

Qn
S0,S

(s0, s)

= Qn
S0

(s0)Qn
U |S0

(
u(s0, w, i)

∣
∣s0

)
Qn

S|U,S0

(
s
∣
∣u(s0, w, i), s0

)

Qn
S0,S

(s0, s)
> 0.

APPENDIX D
ERROR PROBABILITY ANALYSIS FOR THEOREM 1

Since we evaluate the expected value (over the code-
book ensemble) of the error probability and because the
code is symmetric with respect to the uniformly dis-
tributed tuple (Mp, M1, M22, M), we may assume that
(Mp, M1, M22, W ) = (1, 1, 1, 1). For any event A from the
σ -algebra over which P is defined, denote

P1 � P
(
A
∣
∣Mp = 1, M11 = 1, W1 = 1, M22 = 1, W2 = 1

)
.

A. Encoding Error

An encoding error occurs if the u1-codeword chosen
by the likelihood encoder is not jointly typical with(
U0(Mp), U2(Mp, M22)

)
. Based on the aforementioned sym-

metry, for any δ′ ∈ (0, δ), we set the event of an encoding
error as

E =
{(

U0(1), U1(1, 1, 1, I ), U2(1, 1)
)

/∈ T n
δ′ (QU0,U1,U2)

}
.

(124)

Abbreviating T � T n
δ′ (QU0,U1,U2) and recalling that C(n)

0,2 �{
C(n)

0 , C(n)
2

}
, we have

P1(E)

= ECn P1

((
U0(1), U1(1, 1, 1, I ), U2(1, 1)

)
/∈ T

∣
∣
∣Cn

)

= ECn

[ ∑

i,u0,u1,u2

1{(
U0(1),U2(1,1)

)
=(u0,u2)

}

× P(Cn)
LE (i |1, u0, u2)1{U1(1,1,1,i)=u1

}1{
(u0,u1,u2)/∈T

}
]

(a)= EC(n)
0,2

⎡

⎢
⎢
⎣

∑

i,u0 ,u1,u2:
(u0,u1,u2)/∈T

1{(
U0(1),U2(1,1)

)
=(u0,u2)

}

×E
C(n)

1

∣∣C(n)
0,2

[
P(Cn)

LE (i |1, u0, u2)1{U1(1,1,1,i)=u1

}
]
⎤

⎥⎥
⎦

(b)= EC̃n

⎡

⎢
⎢
⎣

∑

i,u0,u1,u2:
(u0,u1,u2)/∈T

Qn
U0,U2

(u0, u2)P̃(C̃n)(i |1, u0, u2)

×1{
Ũ1(u0,1,i)=u1

}

⎤

⎥
⎥
⎦

(c)= EC̃n
PQn

U0,U2
×P̃

((
U0, Ũ1

(
U0, 1, I

)
, U2

)
/∈ T

∣
∣
∣C̃n

)
.

(125)

In the above derivation (a) applies the law of total expectation
in a similar fashion as in (65) (an inner expectation over C(n)

1
conditioned on C(n)

0,2, and an outer expectation over the possible
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values of C(n)
0,2), while (c) uses (70). To justify step (b), for

every Cn ∈ Cn , we define (analogously to (66))

P(Cn )
LE (i |1, u0, u2) = 0 (126)

whenever u0 �= u0(1) or u2 �= u2(1, 1), and note that
for every fixed C(n)

0,2, we have (127) on the bottom of this
page, where the last step follows by intersecting the event
of interest with

{(
u0(1), u2(1, 1)

) = (u0, u2)
}

(otherwise
the probability is zero due to (126)) and, once again, using
(70). Inequality (b) then follows by removing the intersection
with the aforementioned event and because C̃n and Cn are
independent. Since the PMF Qn

U0,U2
P̃C̃n ,W,I,Ũ1|U0,U2

is merely
a relabeling of the induced distribution (12) in our resolvability
setup, Lemma 2 implies that the RHS of (125) approaches 0
as n → ∞, as long as (62a)-(62b) are satisfied.

B. Decoding Errors

To account for decoding errors, define the events in (128)
at the bottom of this page.

C. Expected Average Error Probability

By the union bound, the expectation of the average error
probability over the codebook ensemble5 is bounded as (129)
at the top of the next page. Note that P[1]

0 is the probability
of an encoding error, while P[2]

0 and P[k]
j , for k ∈ [1 :

4], correspond to decoding errors of Decoder j = 1, 2.
We proceed with the following steps:

1) The encoding error analysis shows that P[1]
0 → 0 as

n → ∞ if (62a)-(62b).
2) The Conditional Typicality Lemma [49, Sec. 2.5]

implies that P[2]
0 → 0 as n grows. More precisely, there

exists a function β(n, δ, δ′) with limn→∞ β(n, δ, δ′) = 0
for any 0 < δ′ < δ, such that P[2]

0 ≤ β(n, δ, δ′). The
interested reader may refer to, e.g., [53, Th. 3.16] for
precise expressions.

3) The definitions in (128) clearly give P[1]
j = 0 for

j = 1, 2 and every n ∈ N.

5We slightly abuse notation in writing EPe(Cn) because Pe is actually a
function of the code cn rather than the codebook Cn . We favor this notation
for its simplicity and remind the reader that Cn uniquely defines cn .

4) For P[3]
1 , we have

P[3]
1

(a)≤
∑

(m̃1,w̃) �=(1,1),

ĩ∈I

2−n
(

I (U1;Y1|U0)−τ
[3]
1 (δ)

)

≤ 2n(R1+R̃+R′)2−n
(

I (U1;Y1|U0)−τ
[3]
1 (δ)

)

= 2n
(

R1+R̃+R′−I (U1;Y1|U0)+τ
[3]
1 (δ)

)

where (a) follows since for any (m̃1, w̃) �= (1, 1) and
ĩ ∈ I, U1(1, m̃1, w̃, ĩ) is independent of Y1 while both
of them are drawn conditioned on U0(1). Moreover,
τ [3]

1 (δ) → 0 as δ → 0. Hence, for the probability P[3]
1

to vanish as n → ∞, we take:

R1 + R̃ + R′ < I (U1; Y1|U0) − τ [3]
1 (δ). (130)

5) For P[4]
1 , consider

P[4]
1

(a)≤
∑

(m̃ p,m̃1,w̃) �=(1,1,1),

ĩ∈I

2−n
(

I (U0,U1;Y1)−τ
[4]
1 (δ)

)

≤ 2n(Rp+R1+R̃+R′)2−n
(

I (U0,U1;Y1)−τ
[4]
1 (δ)

)

= 2n
(

Rp+R1+R̃+R′−I (U0,U1;Y1)+τ
[4]
1 (δ)

)

where (a) follows since for any (m̃ p, m̃1, w̃) �= (1, 1, 1)

and ĩ ∈ I, U0(m̃ p) and U1(m̃ p, m̃1, w̃, ĩ) are correlated
with one another but independent of Y1. As before,
τ

[4]
1 (δ) → 0 as δ → 0, and we have P[4]

1 → 0 as
n → ∞ if

Rp + R1 + R̃ + R′ < I (U0, U1; Y1) − τ [4]
1 (δ). (131)

6) Similar steps as in the upper bound of P[3]
1 show that

the rate bound that ensures that P[2]
1 → 0 as n → ∞ is

redundant. This is since for every m̃ p �= 1 and ĩ ∈ I, the
codewords U0(m̃ p) and U1(m̃ p, 1, 1, ĩ) are independent
of Y1. Hence, the condition

Rp < I (U0, U1; Y1) − τ [2]
1 (δ) (132)

where limδ→0 τ [2]
1 (δ) = 0 suffices for P[2]

1 to vanish.
However, up to the vanishing terms, the RHS of (132)
coincides with the RHS of (131), while the left-hand
side (LHS) of (132) is with respect to Rp only. Clearly,

E
C(n)

1

∣
∣C(n)

0,2=C(n)
0,2

[
P(Cn )

LE (i |1, u0, u2)1{U1(1,1,1,i)=u1

}
]

= E
C(n)

1

∣
∣C(n)

0,2=C(n)
0,2

P1

(
I = i, U1(1, 1, 1, i) = u1

∣∣
∣C(n)

1 , C(n)
0,2 = C(n)

0,2

)

≤ EC̃n
P P̃

(
I = i, Ũ1(u0, 1, i) = u1

∣
∣∣W = 1, U0 = u0, U2 = u2, C̃n

)

(127)

D0 =
{(

U0(1), U1(1, 1, 1, I ), U2(1, 1), Y1, Y2
) ∈ T n

δ (QU0,U1,U2,Y1,Y2)
}

(128a)

D1(m p, m1, w) =
{(

U0(m p), U1(m p, m1, w, I ), Y1
) ∈ T n

δ (QU0,U1,Y1)
}

(128b)

D2(m p, m22) =
{(

U0(m p), U2(m p, m22), Y2
) ∈ T n

δ (QU0,U2,Y2)
}

(128c)
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EPe(Cn) ≤ P1

⎛

⎜
⎜
⎜⎜
⎝
E ∪ Dc

0 ∪ D1(1, 1, 1, I )c ∪ D2(1, 1)c ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⋃

(m̃ p,m̃1,w̃)
�=(1,1,1)

D1(m̃ p, m̃1, w̃, I )

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∪

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⋃

(m̃ p,m̃22) �=(1,1):
m̃ p∈Bn

(
m̂12(1)

)

D2(m̃ p, m̃22)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟⎟
⎠

≤ P1
(
E
) + P1

(
Dc

0 ∩ Ec) + P1

(
D1(1, 1, 1, I )c ∩ D0

)
+ P1

⎛

⎝
⋃

(m̃ p,m̃1,w̃) �=(1,1,1)

D1(m̃ p, m̃1, w̃, I )

⎞

⎠

+P1

(
D2(1, 1)c ∩ D0

)
+ P1

⎛

⎜
⎜⎜
⎜
⎝

⋃

(m̃ p,m̃22) �=(1,1):
m̃ p∈Bn

(
m̂12(1)

)

D2(m̃ p, m̃22)

⎞

⎟
⎟⎟
⎟
⎠

≤ P1
(
E
)

︸ ︷︷ ︸
P[1]

0

+ P1
(
Dc

0 ∩ Ec)

︸ ︷︷ ︸
P[2]

0

+ P1

(
D1(1, 1, 1, I )c ∩ D0

)

︸ ︷︷ ︸
P[1]

1

+
∑

ĩ∈I
P
(
ĩ
)
P1

⎛

⎝
⋃

m̃ p �=1

D1(m̃ p, 1, 1, ĩ)

⎞

⎠

︸ ︷︷ ︸
P[2]

1

+ P1

⎛

⎜
⎜
⎝

⋃

(m̃1,w̃) �=(1,1),

ĩ∈I

D1(1, m̃1, w̃, ĩ)

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
P[3]

1

+ P1

⎛

⎜
⎜
⎜
⎝

⋃

(m̃ p,m̃1,w̃) �=(1,1,1),

ĩ∈I

D1(m̃ p, m̃1, w̃, ĩ)

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
P[4]

1

+ P1

(
D2(1, 1)c ∩ D0

)

︸ ︷︷ ︸
P[1]

2

+ P1

⎛

⎜
⎜⎜
⎜
⎝

⋃

m̃ p �=1:
m̃ p∈Bn

(
m̂12(1)

)

D2(m̃ p, 1)

⎞

⎟
⎟⎟
⎟
⎠

︸ ︷︷ ︸
P[2]

2

+ P1

⎛

⎝
⋃

m̃22 �=1

D2(1, m̃22)

⎞

⎠

︸ ︷︷ ︸
P[3]

2

+ P1

⎛

⎜
⎜⎜
⎜
⎝

⋃

(m̃ p,m̃22) �=(1,1):
m̃ p∈Bn

(
m̂12(1)

)

D2(m̃ p, m̃22)

⎞

⎟
⎟⎟
⎟
⎠

︸ ︷︷ ︸
P[4]

2

(129)

(131) is the dominating constraint.

7) By similar arguments, we find that P[ j ]
2 , for j = 2, 3, 4,

vanish with n if

R22 < I (U2; Y2|U0) − τ
[3]
2 (δ) (133)

Rp + R22 − R12 < I (U0, U2; Y2) − τ
[4]
2 (δ)

(134)

where τ [3]
2 (δ), τ [4]

2 (δ) → 0 as δ → 0.
Summarizing the above results, by setting

τδ � max
{
τ [k]

j (δ)
}

j=1,2,
k=3,4

(135)

we find that the RHS of (129) decays as n → ∞ for any
0 < δ′ < δ if the conditions in (62) are met.

APPENDIX E
PROOF OF THE MARKOV RELATION IN (86) AND (93)

We prove that (86) and (93) form Markov chains by using
the notions of d-separation and fd-separation in functional
dependence graphs (FDGs), for which we use the formulation
from [54]. Throughout this appendix all probabilities are taken

with respect to the PMF P(cn) that is induced by cn and given
in (16). For brevity, we omit the superscript and write P
instead of P(cn ).

D. Proof of (86)

By the definitions of the auxiliaries W and V , it suffices to
show that

(M0, M2, M12, Y t−1
1 , Y n

2,t+1, Y1,t ) − Xt − Y2,t (136)

forms a Markov chain for every t ∈ [1 : n]. In fact, we prove
the stronger relation

(M0, M2, Y n
1 , Y n

2,t+1) − Xt − Y2,t (137)

from which (136) follows because M12 is a function of Y n
1 .

Since the channel is SD, memoryless and without feedback,
for every (m0, m1, m2) ∈ M(n)

0 ×M(n)
1 ×M(n)

2 , (xn, yn
1 , yn

2 ) ∈
X n × Yn

1 × Yn
2 and t ∈ [1 : n], we have

P(m0, m1, m2, xn, yn
1 , yn

2 )

= P(m0)P(m1)P(m2)P(xn |m0, m1, m2)

×P
(
yt−1

1

∣
∣xt−1)P

(
yt−1

2

∣
∣xt−1)P(y1,t |xt )

×P(y2,t |xt)P
(
yn

1,t+1

∣
∣xn

t+1

)
P
(
yn

2,t+1

∣
∣xn

t+1

)
. (138)
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Fig. 10. (a) The FDG that stems from (138): (137) follows since C = {
Xt

}

d-separates A = {
Y2,t

}
from B = {

M0, M2, Y n
1 , Y n

2,t+1

}
. (b) The undirected

graph obtained from the FDG after the manipulations described in Definition
[54, Definition 1]. Both FDGs omit the dependence of the channel outputs
on the noise.

Fig. 10(a) shows the FDG induced by (138). The structure
of FDGs allows one to establish the conditional statistical inde-
pendence of sets of random variables by using d-separation.
The Markov relation in (137) follows by setting A = {

Y2,t
}
,

B = {
M0, M2, Y n

1 , Y n
2,t+1

}
and C = {

Xt
}
, and noting that C

d-separates A from B by applying the manipulations described
in [54, Definition 1].

E. Proof of (93)

To prove (93), is suffices to show that Markov relations

(M0, M2, Y t−1
1 , Y n

2,t+1) − Xt − Y1,t (139a)

(M0, M2, Y t−1
1 , Y n

2,t+1, Xt ) − Y1,t − Y2,t (139b)

hold for every t ∈ [1 : n]. By the PD property of the
channel, and because it is memoryless and without feed-
back, for every (m0, m1, m2) ∈ M(n)

0 × M(n)
1 × M(n)

2 ,
(xn, yn

1 , yn
2 ) ∈ X n × Yn

1 × Yn
2 and t ∈ [1 : n], we

have

P(m0, m1, m2, xn, yn
1 , yn

2 )

= P(m0)P(m1)P(m2)P(xn |m0, m1, m2)

×P
(
yt−1

1

∣
∣xt−1)P

(
yt−1

2

∣
∣yt−1

1

)
P(y1,t |xt)

×P(y2,t |y1,t)P
(
yn

1,t+1

∣
∣xn

t+1

)
P
(
yn

2,t+1

∣
∣yn

1,t+1

)
. (140)

Fig. 11. (a) The FDG that stems from (140): (139) follows since C j d-
separates A j from B j , for j = 1, 2. (b) The undirected graph that corresponds
to A1, B1 and C1. (c) The undirected graph that corresponds to A2, B2 and
C2. The FDGs omit the dependence of the channel outputs on the noise.

The FDG induced by (140) is shown in Fig. 11(a). Set
A1 = {

Y1,t
}
, B1 = {

M0, M2, Y i−1
1 , Y n

2,t+1

}
and C1 = {

Xt
}
,

and A2 = {
Y2,t

}
, B2 = {

M0, M2, Y i−1
1 , Y n

2,t+1, Xt
}

and
C2 = {

Y1,t
}
. The relations in (139) follow by noting that

C j d-separates A j from B j , for j = 1, 2 by applying the
manipulations described in [54, Definition 1].
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