
2308 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016
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Abstract— In this paper, we investigate problems of commu-
nication over physically degraded, state-dependent broadcast
channels (BCs) with cooperating decoders. Two different setups
are considered, and their capacity regions are characterized.
First, we study a setting in which one decoder can use a finite
capacity link to send the other decoder information regarding
the messages or the channel states. In this scenario, we analyze
two cases: one, where noncausal state information, is available
to the encoder and the strong decoder, and the other, where
state information, is available only to the encoder in a causal
manner. Second, we examine a setting in which the cooperation
between the decoders is limited to taking place before the outputs
of the channel are given. In this case, one decoder, which is
informed of the state sequence noncausally, can cooperate only to
send the other decoder rate-limited information about the state
sequence. The proofs of the capacity regions introduce a new
idea of coding for channels with cooperation between different
users, where we exploit the link between the decoders for multiple
binnings. Finally, we discuss the optimality of using rate-splitting
techniques when coding for cooperative BCs. In particular,
we show that rate splitting is not necessarily optimal when coding
for cooperative BCs by solving an example in which our method
of coding outperforms rate splitting.

Index Terms— Binning, broadcast channels, causal coding,
channel capacity, cooperative broadcast, degraded broadcast
channel, noncausal coding, partial side information, side
information, state-dependent channels.

I. INTRODUCTION

CLASSICAL broadcast channels (BCs) adequately model
a variety of practical communication scenarios, such as

cellular systems, Wi-Fi routers and digital TV broadcasting.
However, with the rapid growth of wireless networking, it is
necessary to expand the study of such channels and to consider
more complex settings that can more accurately describe a
wider range of scenarios. Some of these important exten-
sions include settings in which the BC is state dependent.
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Wireless channels with fading, jamming or interference in the
transmission are but a few examples that can be modeled by
state-dependent settings. Other important extensions include
cooperation between different nodes in a network, where
the nodes help one another in decoding. These settings can,
inter alia, describe sensor networks in which a large number
of nodes conduct measurements on some ongoing process.
When such measurements are correlated, cooperation between
nodes can assist them in decoding. Some practical sensor
network applications include surveillance, health monitoring
and environmental detection. Therefore, the results presented
in this work will contribute to meeting the growing need to
find the fundamental limits of such important communication
scenarios.

The most general form of the BC, in which a single
source attempts to communicate simultaneously to two or
more receivers, was introduced by Cover in [1]. Following
his work, the capacity of the degraded BC was character-
ized by Bergmans [2] and Gallager [3]. In the degraded
BC setting, one receiver is statistically stronger than the
other. This scenario can, for instance, model TV broadcasts,
where some users consume high definition media while other
users watch the same broadcast with lower resolution. In [4],
El Gamal expanded the capacity result for the degraded BC
and in [5] and [6], he discussed the two-user BC with and
without feedback. Later, in [7] El Gamal showed that the
capacity of the two-user, physically degraded BC does not
change with feedback.

State-dependent channels were first introduced by
Shannon [8], who characterized the capacity for the case
where a single user channel, PY |X,S , is controlled by a
random parameter S, and the state information sequence
up to time i , si , is known causally at the encoder. The
case in which the full realization of the channel states, sn ,
is known noncausally at the encoder was presented by
Kuznetsov and Tsybakov [9] in the context of coding
for a storage unit, and similar cases were studied by
Heegard and El Gamal in [10]. The capacity of the channel
for this case was fully solved by Gel’fand and Pinsker in [11].
In recent years, growing interest in state-dependent channels
has resulted in many studies on multi-user settings. Some
examples considering multiple access channels (MAC)
include the works of Lapidoth and Steinberg [12], [13],
Piantanida et al. [14], Somekh-Baruch et al. [15] and many
more. In the case of BCs, Steinberg studied the degraded,
state-dependent BC in [16]. Inner and outer bounds were
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derived for the case in which the state information is known
noncausally at the encoder and the capacity region was
found for the case in which the states are known causally
at the encoder or known noncausally at both the encoder
and the strong decoder. Our channel setting with cooperation
naturally extends this model, and the capacity results of this
paper generalize the capacity regions found in [16].

Other important settings for state-dependent channels are
cases where only rate-limited state information is available at
the encoder or decoder. In many practical systems, information
on the channel is not freely available. Thus, to provide side
information on the states of the channel to the different users,
we must allocate resources such as time slots, bandwidth and
memory. Heegard and El Gamal [10] presented a model of a
state-dependent channel, where the transmitter is informed of
the state information at a rate-limited to Re and the receiver
is informed of the state information at a rate-limited to Rd .
Cover and Chiang [17] extended the Gel’fand-Pinsker problem
to the case where both the encoder and the decoder are pro-
vided with different, but correlated, partial side information.
Steinberg in [18] derived the capacity of a channel where
the state information is known fully to the encoder in a
noncausal manner and is available rate-limited at the decoder.
Coding for such a channel involves solving a Gel’fand-Pinsker
problem as well as a Wyner-Ziv problem [19] simultaneously.
An extension of this setting to a degraded, state-dependent
BC is introduced in this work.

Cooperation between different users in multi-user chan-
nels was first considered for MACs in the works of
Willems [20]. Further studies involving cooperation between
encoders in MACs include papers such as the work of
Willems and van der Meulen [21], and later [22] and [23].
A setting in which cooperation between users takes place
in a state-dependent MAC, where partial state informa-
tion is known to each user and full state information is
known at the decoder, was treated by Shamai, Permuter and
Somekh-Baruch in [24].

The notion of cooperation between receivers in a BC was
proposed by Dabora and Servetto [25], where the capacity
region for the cooperative physically degraded BC is charac-
terized. Simultaneously, Liang and Veeravalli independently
examined a more general problem of a relay-BC in [26]. The
direct part of the proof for the capacity region of the coopera-
tive physically degraded BC, combines methods of broadcast
coding together with a code construction for the degraded relay
channel. The BC setting we present in this work generalizes
the model of Dabora and Servetto, and therefore our capacity
result generalizes the result of [25]. Moreover, the coding
scheme we propose, that achieves the capacity of the more
general physically degraded state-dependent cooperative BC,
is fundamentally different and in some sense simpler, since it
uses binning instead of block Markov coding.

In this work, we consider several scenarios of coop-
eration between decoders for physically degraded, state-
dependent (PDSD) BCs. First, we consider a setting in which
there is no constraint on when the cooperation link between
the decoders, C12, should be used. For this setting, we char-
acterize the capacity region for the noncausal case, where

noncausal state information is known at the encoder and
the strong decoder, and for the causal case, where causal
state information is available only at the encoder. The proof
proposes a new coding scheme, using multiple-binning, for
channels with cooperating users. The idea of using multiple
binning to exploit the cooperation link is novel, and this insight
is one contribution of our paper. We suggest dividing the weak
decoder’s message set into bins, where the number of bins is
determined by the capacity link between the decoders. The
strong decoder will use the cooperation link to send the weak
decoder the bin number containing its message, and hence
narrow down the search from the entire message set, to the
message set of that bin alone. This scheme increases the rate
of the weak user.

The optimal schemes of the first scenario use the coop-
eration link between the decoders, C12, solely for sending
additional information about the messages, i.e., information
about the state sequence is not sent explicitly via C12. The
second setting we consider is a case in which the cooperation
link C12 can be used only before the outputs are given. In such
a case, the strong decoder can use the cooperation link only to
convey rate-limited state information to the weaker user. This
setting can be regarded as a broadcast extension of the results
in [18]. The capacity region for this case is derived by using
the methods we developed when solving the first scenario,
combined with Wyner-Ziv coding.

Another interesting result involves the interplay between the
different methods of coding for cooperative BC. In cooperative
MACs, for example, the most common coding method, given
a cooperation link, is rate splitting. This coding method was
used to achieve the capacity for most settings that have been
solved. Thus, a first guess would be to use this method when
coding for cooperative BCs. However, we show that rate split-
ting schemes are not necessarily optimal for BCs. Moreover,
we demonstrate that our method of coding, i.e., using the
cooperation link for multiple-binning, strictly outperforms rate
splitting. We solve an example (the binary symmetric BC with
cooperation) for which rate splitting is shown to be suboptimal,
and it’s achievable region is shown to be strictly smaller than
the region achieved by the multiple-binning coding method.

The remainder of the paper is organized as follows.
Section II presents the mathematical notation and definitions
used in this paper. In Section III, all the main results are
stated, which include the capacity regions of three PDSD BC
settings. Section III-A is devoted to the noncausal PDSD BC
and a discussion of special cases, Section III-B is dedicated
to the causal PDSD BC, and Section III-C is dedicated to the
PDSD BC with rate-limited state information. In Section IV,
we discuss the optimality of using rate splitting methods when
dealing with cooperating BC, and in Section IV-A we give
an example of a cooperative BC in which rate splitting is
suboptimal. Finally, proofs are given in Section V.

II. NOTATION AND PROBLEM DEFINITION

In this paper, random variables are denoted by upper case
letters, deterministic realizations or specific values are denoted
by lower case letters, and calligraphic letters will denote the
alphabets of the random variables. Vectors of n elements,
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Fig. 1. The physically degraded, state-dependent BC with cooperating
decoders. When considering cooperation between decoders in a physically
degrade BC setting, only a cooperation link from the strong decoder to the
weak decoder will contribute to increasing the rate.

(x1, x2, . . . , xn) are denoted as xn , and x j
i denotes

the j −i +1-tuple (xi , xi+1, . . . , x j ) when j ≥ i and an empty
sequence otherwise. The probability distribution function of X ,
the joint distribution function of X and Y , and the conditional
distribution of X given Y are denoted by PX , PX,Y and PX |Y ,
respectively.

Throughout the paper, random variables will be denoted
by upper case letters, deterministic realizations or specific
values will be denoted by lower case letters and calligraphic
letters will denote the alphabets of the random variables. Let
xn denote vectors of n elements, i.e., xn = (x1, x2, . . . , xn),
and x j

i denotes the j−i+1-tuple (xi , xi+1, . . . , x j ) when j ≥ i
and an empty sequence otherwise. The probability distribution
function of X , the joint distribution function of X and Y and
the conditional distribution of X given Y will be denoted by
PX , PX,Y and PX |Y , respectively.

A PDSD BC, (S, PS(s),X ,Y,Z, PY,Z |X,S(y, z|x, s)),
illustrated in Fig. 1, is a channel with input alphabet X , output
alphabet Y × Z and a state space S. The encoder selects a
channel input sequence, Xn = Xn(MZ , MY , Sn). The outputs
of the channel at Decoder Y and Decoder Z are denoted
Y n and Zn , respectively. The channel is assumed memoryless
and without feedback, thus probabilities on n-vectors are
given by:

PY,Z |X,S(yn, zn |xn, sn) =
n∏

i=1

PY,Z |X,S(yi , zi |xi , si ). (1)

In addition, the channel probability function can be decom-
posed as PY,Z |X,S(yi , zi |xi , si ) = PY |X,S(yi |xi , si )PZ |Y (zi |yi),
i.e, (X, S) − Y − Z form a Markov chain. Due to the Markov
property of physically degraded BCs, only a cooperation link
from Decoder Y to the Decoder Z will contribute to increasing
the rate.

Definition 1: A ((2nRZ , 2nRY ), 2nC12, n) code for the PDSD
BC with noncausal side information available at the encoder
and strong decoder (where switch A is closed in Fig. 1)
consists of two sets of integers, MZ = {1, 2, . . . , 2nRZ } and
MY = {1, 2, . . . , 2nRY }, called message sets, an index set for
the conference message M12 = {1, 2, . . . , 2nC12}, an encoding
function

f : MZ × MY × Sn → X n, (2)

Fig. 2. The physically degraded, state-dependent BC with full state
information at the encoder and one decoder together with rate-limited state
information at the other decoder. This model describes the case where the
cooperation between the decoders is confined such that it takes place prior to
the decoding of the messages. Therefore, the only information that the strong
decoder, Decoder Y, can send to the weaker decoder, Decoder Z, is regarding
the state sequence. However, the state is only partially available at Decoder Z,
since it is sent rate-limited due to the limited capacity of the link between the
decoders.

a conference mapping

h12 : Yn × Sn → M12, (3)

and two decoding functions

gy : Yn × Sn → M̂Y (4)

gz : Zn × M12 → M̂Z . (5)

Definition 2: The definition of an ((2nRZ , 2nRY ), 2nC12, n)
code for the PDSD BC with causal side information and
noninformed decoders (where switch A is open and switch B
is closed in Fig. 1) follows Definition 1 above, except that the
encoder (2) is replaced by a sequence of encoders:

fi : MZ × MY × S i → X n, i = 1, 2, . . . , n (6)

and Decoder Y’s decoding function (4) is replaced by

gy : Yn → M̂Y . (7)

In Definition 1 there is no restriction on when the link C12
can be used. However, if we restrict the link to be used before
the sequence Y n is given to the strong decoder, then only
information on the state sequence, Sn , can be sent there. This
is the subject of the next definition.

Definition 3: A ((2nRZ , 2nRY ), 2nC12 , n) code for the PDSD
BC with rate-limited side information at the weak decoder,
illustrated in Fig. 2, consists of three sets of integers,
MZ = {1, 2, . . . , 2nRZ } and MY = {1, 2, . . . , 2nRY }, called
message sets, an index set M12 = {1, 2, . . . , 2nC12}, a channel
encoding function

f : MZ × MY × Sn → X n, (8)

a state encoding function

hs : Sn → M12, (9)

and two decoding functions

gy : Yn × Sn → M̂Y (10)
gz : Zn × M12 → M̂Z . (11)
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The next definitions, which deal with probability of error,
achievable rates, and capacity region, hold for all the three
problems defined in definitions 1 to 3 above, with respect to
the corresponding code definitions.

Definition 4: We define the average probability of error for
a ((2nRZ , 2nRY ), 2nC12, n) code as follows:

P(n)
e = Pr

(
(M̂Y �= MY ) ∪ (M̂Z �= MZ )

)
. (12)

The average probability of error at each receiver is
defined as

P(n)
e,y = Pr(M̂Y �= MY ) (13)

P(n)
e,z = Pr(M̂Z �= MZ ). (14)

As is commonly held when discussing BCs, the average

probability P(n)
e tends to zero as n approaches infinity, iff P(n)

e,y

and P(n)
e,z both tend to zero as n approaches infinity.

Definition 5: A rate triplet (RZ , RY , C12) is achievable if
there exists a sequence of codes ((2nRZ , 2nRY ), 2nC12, n) such
that P(n)

e → 0 as n → ∞.
Definition 6: The capacity region is the closure of all

achievable rates.

III. MAIN RESULTS AND INSIGHTS

A. Capacity Region of the PDSD BC With
Cooperating Decoders

We begin by stating the capacity region for the PDSD BC
illustrated in Fig. 1 (switch A is closed) in the following
theorem.

Theorem 7: The capacity region of the PDSD BC,
(X, S)−Y − Z, with noncausal state information known at the
encoder and at Decoder Y, with cooperating decoders, is the
closure of the set that contains all the rates (RZ , RY ) that
satisfy

RZ ≤ I (U ; Z) − I (U ; S) + C12 (15a)

RY ≤ I (X; Y |U, S) (15b)

RZ + RY ≤ I (X; Y |S), (15c)

for some joint probability distribution of the form

PS,U,X,Z ,Y = PS PU |S PX |S,U PY |X,S PZ |Y . (15d)

The proof is given in Sections V-B and V-C. The main
idea of proving the achievability of the capacity region is
to identify how to best use the cooperation link between the
decoders. In particular, we want to maximize the potential use
of the capacity link while simultaneously successfully balance
the allocation of rate resources between the two messages.
Changes in the allocation of resources between the messages
MY and MZ are possible due to the fact that we use super-
position coding. When using this coding method, Decoder Y,
which is the strong decoder, also decodes the message MZ

intended for Decoder Z. This allows us to shift resources
between the messages and thus increase the rate resources
of MZ at the expense of the message MY . Decoder Y can
then send information about MZ to Decoder Z by using the
capacity link between them. Therefore, the optimal coding

scheme balances the distribution of rate resources between the
messages, taking into account that additional information can
be sent through the capacity link.

The coding scheme proposed exploits the additional infor-
mation sent from Decoder Y to Decoder Z for the use of
binning. This new use of the capacity link is what distinguishes
this coding scheme from previous coding schemes used for
cooperative settings. Here, we divide the messages MZ among
superbins in ascending order. Now, we can redirect some of the
rate resources of the message MY to send the superbin index
that contains MZ . Decoder Y, which decodes both messages,
sends this superbin index to Decoder Z through the capacity
link between the decoders, where we use a Gel’fand-Pinsker
code for each superbin. Decoder Z then searches for MZ only
in that superbin, by using joint typicality methods. By utilizing
the capacity link through adding the superbining measure,
we can increase the rate of MZ achieved using the standard
Gel’fand-Pinsker coding scheme.

Nevertheless, if the capacity link between the decoders
is very large, there is still a restriction on the amount of
information we can send through it. This restriction is reflected
through the bound on the rate sum, RZ + RY ≤ I (X; Y |S).
This bound indicates that we cannot send more information
about (MY , MZ ) through this setting compared to the infor-
mation we could have sent about (MY , MZ ) through a state
dependent point-to-point channel, where the state information
is known at both the encoder and decoder. Moreover, note
that

RZ + RY ≤ I (X; Y |S)

= I (U, X; Y |S)

= I (U ; Y |S) + I (X; Y |U, S), (16)

that is, if we have a large capacity link between the decoders,
we have a tradeoff between sending information about MZ

and MY . If we choose to send information about MY at
the maximal rate possible, I (X; Y |U, S), then the maxi-
mal rate we can send MZ is I (U ; Y |S). In contrast, we
can increase the rate of MZ (up to the minimum between
I (U ; Z) − I (U ; S) + C12 and I (X; Y |S)) at the expense of
reducing the rate of MY . For example, if we have an infi-
nite capacity link between the decoders, we can consolidate
the two decoders into one decoder which will decode both
messages.

Another interesting insight is revealed by comparing a
special case of the result presented in Theorem 7 with the
result presented in [25] which is referred to as the physically
degraded BC with cooperating receivers (i.e., the BC model
where the channel is not state dependent).

Let us consider the special case of Theorem 7 where S = ∅.
As a result, the region (15) reduces to

RZ ≤ I (U ; Z) + C12 (17a)

RY ≤ I (X; Y |U) (17b)

RZ + RY ≤ I (X; Y ), (17c)

for some

PU,X,Z ,Y = PX,U PY |X PZ |Y .
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This special case was studied in [25], where a different
expression for the capacity region was found:

RZ ≤ min{I (U ; Z) + C12 , I (U ; Y )} (18a)

RY ≤ I (X; Y |U) (18b)

for some

PU,X,Z ,Y = PX,U PY |X PZ |Y .

Corollary 8: The two regions, (17) and (18), are equivalent.
The fact that the two regions, (17) and (18), are shown

to be the capacity regions of the same setting indicates that
they are equivalent. The capacity region (18) was achieved
by using block Markov coding. The equivalence between the
two regions implies that there is a connection between block
Markov coding and binning. There is an interesting interplay
between the two coding methods. Using the cooperation link
between the decoders for block Markov coding substitutes the
use of the link for the purpose of extra binning.

It is simple to show that (18)⊆(17). However, the reverse
inclusion is not so straightforward. A direct proof, which is
not based on the fact that both regions characterize the same
capacity, is given in Section V-A. The main idea is to find a
specific choice of U , for any rate pair (RZ , RY ) in (17), such
that (RZ , RY ) satisfy (18), implying that (17)⊆(18). Hence,
we conclude that (17) and (18) are equivalent.

B. Causal Side Information

Consider the case where the state is known to the encoder
in a causal manner, i.e., at each time index, i , the encoder has
access to the sequence si . This setting is illustrated in Fig. 1,
where we take switch A to be open and switch B to be closed.
In this scenario, the encoder is the only user with information
regarding the state sequence, in contrast to the noncausal case,
where the strong decoder also has access to the channel states.
The capacity region for this setting is characterized in the
following theorem.

Theorem 9: The capacity region for the PDSD BC with
cooperating decoders and causal side information known at
the encoder is the closure of the set that contains all the rates
(RZ , RY ) that satisfy

RZ ≤ I (U ; Z) + C12 (19a)

RY ≤ I (V ; Y |U) (19b)

RZ + RY ≤ I (V , U ; Y ), (19c)

for some joint probability distribution of the form

PS,U,V ,X,Z ,Y = PS PU,V PX |S,U,V PY |X,S PZ |Y . (19d)

The proof of Theorem 9 follows closely the proof of the
noncausal case with some minor differences and is similar to
the proof of the causal case studied in [16, Sec. V-E], therefore
it is omitted.

C. Capacity Region of the PDSD BC With Rate-Limited State
Information at the Weak Decoder

In the previous two cases there was no restriction on when
the cooperation link C12 is to be used. In the following case,

we consider a setting where the cooperation is restricted to take
place before the outputs Y n are given to the strong decoder.
Therefore, we can only use the cooperation link to send the
weak decoder information about the state sequence, sn , from
the strong decoder. Moreover, since there is a limit on the
information we can send through the link, the weak decoder
receives rate-limited information about the channel states.
Hence, we model this setting as a PDBC with noncausal state
information at the encoder and strong decoder and rate-limited
state information at the weak decoder. This is a broadcast
extension of the point-to-point model studied in [18]. We state
the capacity region for this setting in the following theorem.

Theorem 10: The capacity region of the PDSD BC,
(X, S) − Y − Z, with rate-limited state information at the
weak decoder, illustrated in Fig. 2, is the closure of the set
that contains all the rates (RZ , RY ) that satisfy

RZ ≤ I (U ; Z , Sd ) − I (U ; S, Sd ) (20a)

RY ≤ I (X; Y |U, S, Sd ) (20b)

for some joint probability distribution of the form

PS,Sd,U,X,Z ,Y = PS PSd ,U,X |S PY |X,S PZ |Y (20c)

such that

C12 ≥ I (S; Sd ) − I (Z; Sd ). (20d)

Remark 11: As was noted in [18], we can replace the rate
bound on RZ in (20a) with the bound:

RZ ≤ I (U ; Z |Sd ) − I (U ; S|Sd ). (21)

This can easily be seen by applying the chain rule on the
expressions on the right-hand side of (20a) as follows

I (U ; Z , Sd ) − I (U ; S, Sd )

= I (U ; Sd ) + I (U ; Z |Sd ) − I (U ; Sd ) − I (U ; S|Sd )

= I (U ; Z |Sd ) − I (U ; S|Sd ).

Remark 12: Observe that the region (20) is contained in the
region (15) given in Theorem 7. The rate RZ can be further
bounded as follows:

RZ ≤ I (U ; Z |Sd ) − I (U ; S|Sd )

= I (U, Sd ; Z) − I (U, Sd ; S) − I (Sd ; Z) + I (Sd ; S)

≤ I (U, Sd ; Z) − I (U, Sd ; S) + C12

= I (Ũ ; Z) − I (Ũ ; S) + C12,

where we take Ũ = (U, Sd ). Furthermore, with the definition
of Ũ , the rate RY is bounded by

RY ≤ I (X; Y |U, Sd , S) = I (X; Y |Ũ , S).

Finally, notice that the sum of rates, RZ + RY , satisfies
RZ + RY ≤ I (X; Y |S), since

RZ + RY ≤ I (U, Sd ; Y, S) − I (U, Sd ; S) + I (X; Y |U, Sd , S)

= I (U, Sd ; Y |S) + I (X; Y |U, Sd , S)

= I (Ũ , X; Y |S)

= I (X; Y |S),
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where

RZ ≤ I (U ; Z |Sd ) − I (U ; S|Sd )

≤ I (U, Sd ; Y, S) − I (U, Sd ; S).

Hence we have that (20) ⊆ (15).
The proof of Theorem 10 is given in Sections V-D and V-E.

The coding scheme that achieves the capacity region (20)
uses techniques that include superposition coding and
Gel’fand-Pinsker coding, which are similar to the proof
of Theorem 7, with an addition of Wyner-Ziv compression.
The main idea is based on a Gel’fand-Pinsker code, but
with several extensions. First, note that the Channel Encoder
and Decoder Y are both informed of the sequence sn

d , the
compressed codeword that the State Encoder sends Decoder Z.
This is due to the fact that they both know the state sequence sn

and the State Encoder’s strategy. The encoder then uses this
knowledge to find a codeword un , in a bin associated with m Z ,
that is jointly typical not only with sn , as in the original
Gel’fand-Pinsker scheme, but also with sn

d . Each codeword un

is set as the center of 2nRY bins, one bin for each message mY .
Once a codeword un is chosen, we look in its satellite bin mY

for a codeword xn such that it is jointly typical with that un ,
the state sequence sn and with sn

d . Upon transmission, the
State Encoder chooses a codeword sn

d , the Channel Encoder
chooses a codeword un and a corresponding xn , where xn is
transmitted through the channel. Consequently, identifying xn

leads to the identification of un .
At the decoder’s end, the State Encoder sends Decoder Z

a compressed version of sn by using the codewords sn
d

in a Wyner-Ziv scheme, where Decoder Z uses the chan-
nel output zn as side information. The joint typicality of
zn and sn

d used for decoding is a result of the channel Markov
Sd − (X, S) − Y − Z and the fact that the codewords xn

are generated according to ∼ ∏n
i=1 p(xi |ui , sd,i ). Finally,

sn
d is used as side information to identify the codeword un .

As for the strong decoder, Decoder Y looks for codewords
un and xn that are jointly typical with the received yn , the
state sequence sn , and the codeword sn

d .

IV. IS RATE SPLITTING OPTIMAL FOR COOPERATION?

When dealing with cooperation settings, the most common
approach is the use of rate splitting. Many coding schemes
based on rate splitting have been known to achieve the capacity
of channels involving cooperation. For example, rate splitting
is the preferred coding method when coding for cooperative
MACs, and it has been shown to be optimal [20], [21].
However, when dealing with cooperative BCs, we show, by
a numerical example, that rate splitting schemes are not
necessarily optimal. Moreover, other coding schemes, such as
that we propose in which the cooperation link is used for
binning, strictly outperform rate splitting.

The main idea of the rate splitting scheme is to split the
message intended for the weaker decoder, MZ , into two mes-
sages, MZ = (MZ1 , MZ2). Next, we reorganize the messages.
We concatenate part of the message intended for the weak
decoder, MZ2 , to the message intended for the strong decoder,
MY . In addition, we define new message sets, M ′

Z = MZ1

and M ′
Y = (MY , MZ2), where we choose MZ2 to be of

size ≤ C12. Now that we have a new message set (M ′
Z , M ′

Y ),
we transmit by using a Gelfand-Pinsker superposition cod-
ing scheme, such as the one described in [16]. Once the
strong decoder decodes both messages, (M ′

Z , M ′
Y ) (which, in

whole, equal (MZ , MY )), it uses the capacity link between the
decoders, C12, to send the message MZ2 to the weak decoder.
To sum up, this scheme results with the strong decoder
decoding both messages, and the weak decoder decoding the
original message MZ .

The achievability scheme that uses the rate splitting
method closely follows the achievability of Theorem 7,
but with some alterations. In the rate splitting scheme, we
define two sets of messages MZ1 = {1, 2, . . . , 2nRZ1 } and
MZ2 = {1, 2, . . . , 2nRZ2 }, where |MZ1 ||MZ2| = |MZ |
and RZ = RZ1 + RZ2 , such that each message, m Z ∈
{1, 2, . . . , 2nRZ }, is uniquely defined by a pair of messages
(m Z1, m Z2). Using these definitions, we can define a new pair
of messages, (m′

Z , m′
Y ), where we take m′

Z = m Z1 , R′
Z = RZ1 ,

m′
y = (mY , m Z2) and R′

Y = RY + RZ2 . The code is now
constructed in a similar manner to the code described in the
triple-binning achievability scheme with respect to (m′

Z , m′
Y ),

despite the fact that in this scheme additional partitioning into
superbins is not required. However, we will see that this fact
turns out to be significant.

To transmit (mY , m Z ) in the encoding stage, we first
construct the corresponding pair (m′

Z , m′
Y ). The rest of the

encoding is preformed in a manner similar to the encoding in
Section V-B with respect to the constructed (m′

Z , m′
Y ). The

decoding stage is also similar, except that now Decoder Y,

upon decoding the messages (M̂ ′
Y , M̂ ′

Z ) = (M̂Z1 , M̂Z2 , M̂Y ),
uses the link C12 to send the decoded message M̂Z2 to
Decoder Z (instead of a bin number as in the achievability
of Theorem 7). The code construction is illustrated in Fig. 3.

Using the achievability result of the capacity region found
in [16, Th. 3] for the PDSD BC with state information known
at the encoder and decoder, together with the fact that the
rate RZ2 cannot be negative or greater than C12, we derive the
following bounds:

RZ2 ≤ C12 (22a)

RZ2 ≥ 0 (22b)

RZ1 ≤ I (U ; Z) − I (U ; S) (22c)

RY + RZ2 ≤ I (X; Y |U, S) (22d)

RZ1 + RZ2 + RY ≤ I (X; Y |S). (22e)

Recalling that RZ = RZ1 + RZ2 , we substitute RZ1 with
RZ − RZ2 in the bounds (22c) and (22e). Next, by using
the Fourier-Motzkin elimination, we eliminate the bounds that
contain RZ2 , (22a), (22b) and (22d). The resulting region is
the following bounds on RZ and RY

RZ ≤ I (U ; Z) − I (U ; S) + C12 (23a)

RY ≤ I (X; Y |U, S) (23b)

RZ + RY ≤ I (U ; Z) − I (U ; S) + I (X; Y |U, S). (23c)

This region, (23), is the achievable region as a result of rate
splitting.



2314 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016

Fig. 3. The code construction for the rate splitting scheme. We can see that the code construction is similar to the triple-binning scheme, except that here
we do not partition the bins associated with the messages m̃ Z into superbins.

We note that in the process we derive an additional bound
on the rate sum RZ + RY ≤ I (X; Y |S); however, we can
see that this bound satisfied automatically by satisfying (23c),
since

I (X; Y |S) = I (U, X; Y |S)

= I (U ; Y |S) + I (X; Y |U, S)

= I (U ; Y, S) − I (U, S) + I (X; Y |U, S)

≥ I (U ; Z) − I (U ; S) + I (X; Y |U, S), (24)

where the last inequality is due to the degradedness properties
of the channel. Moreover, we also omit the bound C12 ≥ 0,
which follows from the problem setting.

Examining the region (23) we notice that its form differs
from the capacity region of this channel (15). Therefore,
an interesting question rises: Are rate splitting coding schemes
optimal for BCs with cooperating decoders? We answer this
question in the following lemma.

Lemma 13: Using rate splitting and superposition coding
for BCs with cooperating decoders is not necessarily optimal.

Proof: We would like to show that the rate splitting
coding scheme that derives the region (23) does not achieve
the capacity of the channel given by (15) in Theorem 7.
In order to do so, we need to show that the region (15) is
strictly larger than the region achievable by rate splitting, (23).
The region (15) is shown to be achievable in Section V-B
by using triple-binning. Thus, by showing that (15) is strictly
larger than (23), we can conclude that the rate splitting method
is not optimal.

Firstly, it is easy to see that the region (15) contains (23),
since the bounds on RZ and RY are the same, yet the bound
on the rate sum (15c) is greater than or equal to (23c),
as shown in (24).

However, to show that (15) is strictly larger than (23),
we need to show that for all distributions of the form (15d):

{
∃(RZ , RY ) ∈ (15) : (RZ , RY ) /∈ (23)

}
. (25)

This is not an easy task. If we look at the regions in their
general form, we need to find a pair (RZ , RY ) ∈ (15) and show

Fig. 4. On the left hand side we have the binary symmetric broadcast channel.
On the right hand side we have the equivalent physically degraded version.

that for every random variable U we choose, (RZ , RY ) /∈ (23).
Nevertheless, we can show that (15) is strictly larger than (23)
by considering a specific channel and showing that for this
specific setting (23) ⊂ (15).

A. The Special Case of the Binary Symmetric
Broadcast Channel

Consider the binary symmetric BC, [27, Sec. 5.3], illustrated
in Fig. 4. Here, Y = X ⊕ W1, Z = X ⊕ W2, where W1 ∼
Ber(p1), W2 ∼ Ber(p2), and we assume that p1 < p2 < 1

2 .
Note that we can present this channel as a physically degraded
BC, where Y = X ⊕ W1, Z = X ⊕ W̃2 and W1 ∼Ber(p1),
W̃2 ∼Ber( p2−p1

1−2p2
). This channel is a special case of our setting,

where the channel is not state-dependent (hence, we take the
state as a constant).

Following closely the arguments given in [27, Sec. 5.4.2]
we can upper bound the region (23) by considering all the sets
of rate pairs (RZ , RY ) such that

RZ ≤ 1 − H (α ∗ p2) + C12 (26a)

RY ≤ H (α ∗ p1) − H (p1) (26b)

RZ + RY ≤ 1 − H (α ∗ p2) + H (α ∗ p1) − H (p1). (26c)
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Fig. 5. The upper bound for the region (23), which is calculated in (26), is plotted using the solid line and corresponds to the smaller region. The achievable
region for (15), given by the expressions in (27), is plotted using the dashed line and corresponds to the larger region. Both regions in all the figures are
plotted for values of p1 = 0.2, p2 = 0.3, where each figure corresponds to a different value of C12.

for some α ∈ [0, 1
2 ]. In contrast, we can show that by

taking X = U ⊕ V , where U ∼Ber( 1
2 ) and V ∼Ber(α),

and calculating the corresponding expressions of (15), the
following region of rate pairs, (RZ , RY ) such that

RZ ≤ 1 − H (α ∗ p2) + C12 (27a)

RY ≤ H (α ∗ p1) − H (p1) (27b)

RZ + RY ≤ 1 − H (p1), (27c)

is achievable via the binning scheme.
Consequently, we can see that the region (27) is strictly

larger than the region (26). For example, consider Fig. 5, where
we take p1 = 0.2, p2 = 0.3 and C12 = 0.03. Looking at
both regions, we can see that taking by RY to be zero, the
point (RZ , RY ) = (0.1487, 0) is achievable in the binning
region (27) (the doted line) for α = 0, but it is not achievable
in the rate splitting region (26) (the solid line) for any value
of α ∈ [0, 1

2 ].
To demonstrate the effect of the link C12, let us further

examine the points where RY = 0 and RZ is maximized,
in the corresponding regions due to C12. Notice that for
any C12, RZ cannot exceed the rate of

max
(
1 − H (p2) + C12, 1 − H (p1)

)

= max
(
1 − H (0.3) + C12, 1 − H (0.2)

)

≈ max
(
0.1187 + C12, 0.278

)
. (28)

Furthermore, the point (RZ , RY ) = (0.278, 0) can only be
achievable in the rate splitting regions (26) corresponding to

C12 ≥ 0.278 by taking α = 1
2 , whereas it is achievable in

the binning regions (27) corresponding to any C12 ≥ 0.1593
for α = 0.

Thus, for the binary symmetric BC we have shown that
an achievable region derived from (15) by a specific choice
of U is strictly larger than the upper bound for the region (23).
Therefore, we can conclude that (15) is strictly larger than (23)
and that the rate splitting coding scheme is not necessarily
optimal for BCs. �

V. PROOFS

A. Proof of Corollary 8

The technique for showing the equivalence of these regions
is similar in flavour to that for showing the equivalence
of [28, eqs. (16.1)–(16.5)], and is given here for completeness.
Let us denote our region without states by A. It is character-
ized as the union of all rate pairs (RY , RZ ) satisfying:

RZ ≤ I (U ; Z) + C12 (29a)

RY ≤ I (X; Y |U) (29b)

RY + RZ ≤ I (X; Y ) (29c)

for some joint distribution

PU,X,Y,Z = PU PX |U PY |X PZ |Y (30)

where PY |X PZ |Y is the original BC (without states). The region
of Dabora and Servetto, presented in [25], is the union of all
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rate pairs (RY , RZ ) satisfying

RZ ≤ min {I (U ; Z) + C12, I (U ; Y )} (31a)

RY ≤ I (X; Y |U) (31b)

for some joint distribution (30). For brevity, we denote the
region of Dabora and Servetto by B. It is simple to show
that B ⊆ A. We now proceed to show the reverse inclusion,
i.e., A ⊆ B. Let (RY , RZ ) be a rate pair in A, achieved with
a given pair of random variables (U, X). If RY = I (X; Y |U),
then by (29c) and the Markov structure (30), we also have:

RZ ≤ I (U ; Y ) (32)

and (29a), (32), (29b) coincide with the region B. Therefore,
we only have to examine the case where a strict inequality
holds in (29b). Thus, let

RY = I (X; Y |U) − γ (33)

for some γ > 0. Define the random variable

U∗ =
{

U w.p. λ
X w.p. 1 − λ.

(34)

Clearly, the Markov structure

U∗ − X − Y − Z (35)

still holds. Moreover,

rCl I (X; Y |U∗) = I (X; Y |U∗ = U)P(U∗ = U)

+I (X; Y |U∗ = X)P(U∗ = X)

= λI (X; Y |U) (36)

(In (36) and in the sequel, by I (X; Y |U∗ = U) we mean
I (X; Y |U∗, U∗ = U), that is, the conditioning is not only on
the event that U∗ = U , but also on the specific value.) Now,
we choose λ to be

λ = I (X; Y |U) − γ

I (X; Y |U)
. (37)

Note that with this choice, the following holds

RY = I (X; Y |U) − γ = I (X; Y |U∗) (38)

and

RY + RZ ≤ I (X; Y ) = I (XU∗; Y )

= I (U∗; Y ) + I (X; Y |U∗) = I (U∗; Y ) + RY . (39)

So that

RZ ≤ I (U∗; Y ). (40)

We now turn to bound I (U∗; Z). For this purpose, observe
that we can decompose I (X; Z) as

I (X; Z) = I (U ; Z) + I (X; Z |U) (41a)

= I (U∗; Z) + I (X; Z |U∗)
= I (U∗; Z) + I (X; Z |U∗ = U)P(U∗ = U)

+ I (X; Z |U∗ = X)P(U∗ = X)

= I (U∗; Z) + λI (X; Z |U). (41b)

From (41a) and (41b) we obtain

I (U∗; Z) = I (U ; Z) + (1 − λ)I (X; Z |U) ≥ I (U ; Z). (42)

Therefore, (29a) and (42) imply

RZ ≤ I (U∗ Z) + C12. (43)

From (40), (43), and (38) we have

RZ ≤ min
{

I (U∗; Z) + C12, I (U∗; Y )
}

(44a)

RY ≤ I (X; Y |U∗) (44b)

which, together with the Markov structure (35), imply that
(RY , RZ ) ∈ B.

B. Proof of Achievability for Theorem 7

In this section, we prove the achievability part of
Theorem 7. Throughout the achievability proof, we use the
definition of a strong typical set [27]. The set T (n)

ε (X, Y, Z)
of ε-typical n-sequences is defined by {(xn, yn, zn) :
| 1

n N(x, y, z|xn, yn, zn) − p(x, y, z)| ≤ ε · p(x, y, z)
∀(x, y, z) ∈ X × Y × Z}, where N(x, y, z|xn, yn, zn) is
the number of appearances of (x, y, z) in the n-sequence
(xn, yn, zn).

Proof: Fix a joint distribution of PS,U,X,Z ,Y =
PS PU |S PX |S,U PY,Z |X,S where PY,Z |X,S = PY |X,S PZ |Y is given
by the channel.

Code Construction: First, generate 2nC12 superbins. Next,
generate 2nRZ bins, one for each message m Z ∈
{1, 2, . . . , 2nRZ }. Partition the bins among the superbins
in their natural ordering such that each superbin l ∈
{1, 2, . . . , 2nC12} contains the bins associated with the mes-
sages m Z ∈ {(l − 1)2n(RZ−C12) + 1, . . . , l2n(RZ −C12)}. Thus,
each superbin contains 2n(RZ −C12) bins. Let R̃Z and R̃Y

be two nonnegative real numbers. For each bin, generate
2nR̃Z codewords un(m Z , j), where j ∈ {1, 2, . . . , 2nR̃Z }.
Each codeword, un(m Z , j), is generated i.i.d. according
to ∼∏n

i=1 p(ui ). Now, for each codeword un(m Z , j), gener-
ate 2nRY satellite bins. In each satellite bin, generate 2nR̃Y

codewords xn(m Z , j, mY , k), where k ∈ {1, 2, . . . , 2nR̃Y },
i.i.d. ∼∏n

i=1 p(xi (m Z , j, mY , k)|ui (m Z , j)). The code con-
struction is illustrated in Fig. 6.

Encoding: To transmit (mY , m Z ), the encoder first
looks in the bin associated with the message m Z for a
codeword un(m Z , j), such that it is jointly typical with the
state sequence, sn , i.e.

(un(m Z , j), sn) ∈ T (n)
ε′ (U, S). (45)

If such a codeword, un , does not exist, namely, no codeword
in the bin m Z is jointly typical with sn , choose an arbitrary
un from the bin (in such a case, the decoder will declare an
error). If there is more than one such codeword, choose the
one for which j is of the smallest lexicographical order. Next,
the encoder looks for a sequence xn(m Z , j, mY , k) (where j
was chosen in the first stage), such that it is jointly typical
with the state sequence, sn , and the codeword un(m Z , j), i.e.,

(xn(m Z , j, mY , k), un(m Z , j), sn) ∈ T (n)
ε′ (X, U, S). (46)
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Fig. 6. The code construction. We have 2nC12 superbins, each one containing 2n
(

I (U ;Z)−I (U ;S)
)

bins. In each bin, we have 2nI (U ;S) codewords un , such
that in total, each superbin contains 2nI (U ;Z) codewords un . Finally, each codeword un plays the role of a cloud center and is associated with 2nI (X ;Y |U,S)

satellite codewords xn .

If such a codeword, xn , does not exist, choose an arbitrary xn

from the bin mY . If there is more than one such codeword,
choose the one for which k is of the smallest lexicographical
order.

Decoding:

1) Let ε > ε′. Decoder Y looks for the smallest values of
(m̂Y , m̂ Z ) for which there exist a ĵ and a k̂ such that

(un(m̂ Z , ĵ)), xn(m̂ Z , ĵ, m̂Y , k̂), sn, yn)

∈ T (n)
ε (U, X, S, Y ). (47)

If no pair or more than one pair is found, an error is
declared.

2) Upon decoding the messages (m̂Y , m̂ Z ), Decoder Y uses
the link C12 to send Decoder Z the superbin number, l̂,
that contains the decoded message m̂ Z .

3) Decoder Z looks in the superbin l̂ for the smallest value
of m̂ Z for which there exists a ĵ such that

(un(m̂ Z , ĵ)), zn) ∈ T (n)
ε (U, Z). (48)

If no value or more than one value is found, an error is
declared.

Analysis of the Probability of Error: Without loss of gener-
ality, we can assume that messages (m Z , mY ) = (1, 1) were
sent. Therefore, the superbin containing m Z = 1 is l = 1.

We define the error events at the encoder:

E1 = {∀ j ∈ {1, 2, . . . , 2nR̃Z } : (Un(1, j), Sn) /∈ T (n)
ε′ (U, S)},

(49)

E2 = {∀k ∈ {1, 2, . . . , 2nR̃Y } : (Xn(1, 1, j, k), Un(1, j), Sn)

/∈ T (n)
ε′ (X, U, S)}. (50)

We define the error events at Decoder Y:

E3 = {∀ j ∈ {1, 2, . . . , 2nR̃Z },∀k ∈ {1, 2, . . . , 2nR̃Y } :
(Un( j, 1), Xn(1, j, 1, k), Sn, Y n) /∈T (n)

ε (U, X, S, Y )},
(51)

E4 = {∃m̂Y �= 1 : (Un( j, 1), Xn(1, j, m̂Y , k), Sn , Y n)

∈ T (n)
ε (U, X, S, Y )}, (52)

E5 = {∃m̂ Z �= 1, m̂Y �= 1 :
(Un( j, m̂ Z), Xn(m̂ Z , j, m̂Y , k), Sn , Y n)

∈ T (n)
ε (U, X, S, Y )}, (53)

E6 = {∃m̂ Z �= 1 :
(Un( j, m̂ Z), Xn(m̂ Z , j, 1, k), Sn, Y n)

∈ T (n)
ε (U, X, S, Y )}. (54)

We define the error events at Decoder Z:

E7 = {∀ j ∈ {1, 2, . . . , 2nR̃Z } : (Un( j, 1), Zn) /∈ T (n)
ε (U, Z)},

(55)

E8 = {∃m̂ Z �= 1 : m Z ∈ {1, 2, . . . , 2n(RZ −C12)}
(Un( j, m̂ Z), Zn) ∈ T (n)

ε (U, Z)}. (56)

Then, by the union bound:

P(n)
e ≤ P(E1) + P(E2 ∩ Ec

1) + P(E3 ∩ (Ec
1 ∪ Ec

2)) + P(E4)

+ P(E5) + P(E6) + P(E7 ∩ (Ec
1 ∪ Ec

2)) + P(E8).

Now, consider:
1) For the encoder error, using the Covering Lemma [27],

P(E1) tends to zero as n → ∞ if in each bin associated
with m Z we have more than I (U ; S)+ δ(ε) codewords,
i.e., R̃Z > I (U ; S) + δ(ε).

2) For the second term, we have that
(Un, Sn) ∈ T (n)

ε (U, S), and Xn is generated i.i.d.
according to ∼ ∏n

i=1 p(xi |ui ). Hence, using the
Covering Lemma, we have that P(E2 ∩ Ec

1) tends
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to zero as n → ∞ if in each bin associated with
mY we have more than I (X; S|U) + δ(ε) codewords,
i.e., R̃Y > I (X; S|U) + δ(ε).

3) For the third term, note that (Xn, Un, Sn) ∈
T (n)

ε′ (U, S, X). Furthermore, Y n is generated i.i.d.
according to ∼ ∏n

i=1 p(yi |xi , si ) and ε > ε′.
Therefore, by the Conditional Typicality Lemma [27],
P(E3 ∩ (Ec

1 ∪ Ec
2)) tends to zero as n → ∞.

4) For the fourth term, note that if m̂Y �= 1,
then for any j ∈ {1, 2, . . . , 2nR̃Z } and any k ∈
{1, 2, . . . , 2nR̃Y }, Xn(1, j, m̂Y , k) is conditionally inde-
pendent of (Xn(1, j, 1, k), Sn, Y n) given Un(1, j) and is
distributed according to ∼ ∏n

i=1 p(xi |ui (1, j)). Hence,
by the Packing Lemma [27], P(E4) tends to zero as
n → ∞ if RY + R̃Y < I (X; S, Y |U) − δ(ε).

5) For the fifth term, note that for any m̂ Z �= 1, any
m̂Y �= 1, any j ∈ {1, 2, . . . , 2nR̃Z } and any k ∈
{1, 2, . . . , 2nR̃Y }, (Un(m̂ Z , j), Xn(m̂ Z , j, m̂Y , k)) are
conditionally independent of (Un(1, j), Xn(1, j, 1, k),
Sn, Y n). Hence, by the Packing Lemma [27],
P(E5) tends to zero as n → ∞ if RZ +
R̃Z + RY + R̃Y < I (U, X; Y, S) − δ(ε). This
bound, in addition to the bounds on R̃Z and R̃Y ,
gives us

RZ + RY < I (U, X; Y, S) − R̃Z − R̃Y − δ(ε)

< I (U, X; Y, S)

−I (U ; S) − I (X; S|U) − 3δ(ε)

= I (U, X; Y |S) − 3δ(ε)

= I (X; Y |S) − 3δ(ε).

6) For the sixth term, by the same considerations as for
the previous event, by the Packing Lemma we have
RZ + R̃Z < I (U, X; Y, S) − δ(ε) (which is already
satisfied).

7) For the seventh term, (Xn, Un, Sn) ∈ T (n)
ε (U, S, X).

In addition, Y n is generated i.i.d. according
to ∼∏n

i=1 p(yi |xi , si ), Zn is generated
∼∏n

i=1 p(zi |yi) = ∏n
i=1 p(zi |yi , xi , si , ui ) and ε > ε′.

Hence, by the Conditional Typicality Lemma [27]
P(E7 ∩ (Ec

1 ∪ Ec
2)) tends to zero as n → ∞.

8) For the eighth term, note that for any m̂ Z �= 1 and
any j ∈ {1, 2, . . . , 2nR̃Z }, Un(m̂ Z , j) is conditionally
independent of (Un(1, j), Zn). Hence, by the Packing
Lemma [27], P(E8) tends to zero as m → ∞ if the
number of codewords in each superbin is less than
I (U ; Z), i.e., RZ − C12 + R̃Z < I (U ; Z) − δ(ε).

Combining the results, we have shown that P(E) → 0 as
n → ∞ if

RZ ≤ I (U ; Z) − I (U ; S) + C12

RY ≤ I (X; Y |U, S)

RZ + RY ≤ I (X; Y |S).

The above bound shows that the average probability of
error, which, by symmetry, is equal to the probability for
an individual pair of codewords, (m Z , mY ), averaged over
all choices of code-books in the random code construction,

is arbitrarily small. Hence, there exists at least one code,
((2nRZ , 2nRY , 2nR12), n), with an arbitrarily small probability
of error. �

C. Converse Proof of Theorem 7

In the previous section, we proved the achievability part of
Theorem 7. In this section, we provide the upper bound on
the capacity region of the PDSD BC, i.e., we give the proof
of the converse for Theorem 7.

Proof: Given an achievable rate triplet, (RY , RZ , C12),
we need to show that there exists a joint distribution of the
form (15d), PS PU |S PX |S,U PY |X,S PZ |Y , such that

RZ ≤ I (U ; Z) − I (U ; S) + C12

RY ≤ I (X; Y |U, S)

RZ + RY ≤ I (X; Y |S).

To bound the rate RZ , consider:

n RZ − nεn
(a)≤ I (MZ ; Zn, M12)

= I (MZ ; Zn) + I (MZ ; M12|Zn)

≤ I (MZ ; Zn) + H (M12)

≤ I (MZ ; Zn) + nC12

=
n∑

i=1

I (MZ ; Zi |Zi−1) + nC12

≤
n∑

i=1

I (MZ , Zi−1; Zi) + nC12

=
n∑

i=1

[
I (MZ , Zi−1, Sn

i+1; Zi )

−I (Sn
i+1; Zi |MZ , Zi−1)

]
+ nC12

(b)=
n∑

i=1

[
I (MZ , Zi−1, Sn

i+1; Zi )

−I (Si ; Zi−1|MZ , Sn
i+1)

]
+ nC12

(c)=
n∑

i=1

[
I (MZ , Zi−1, Sn

i+1; Zi )

−I (Si ; Zi−1, MZ , Sn
i+1)

]
+ nC12

(d)=
n∑

i=1

[
I (Ui ; Zi) − I (Si ; Ui )

]
+ nC12 (57)

where
(a) follows from Fano’s inequality,
(b) follows from the Csiszar sum identity,
(c) follows from the fact that Si is independent of (MZ , Sn

i+1),
(d) follows from the choice of Ui = (MZ , Sn

i+1, Zi−1).
Hence, we have:

RZ ≤ 1

n

n∑

i=1

[I (Ui ; Zi) − I (Si ; Ui)] + C12 + εn . (58)
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Next, to bound the rate RY , consider:

n RY − nεn
(a)≤ I (MY ; Y n|MZ , Sn)

= I (MY , Xn(MY , MZ , Sn); Y n|MZ , Sn)

=
n∑

i=1

I (MY , Xn; Yi |MZ , Sn , Y i−1)

(b)=
n∑

i=1

I (MY , Xn; Yi |MZ , Sn , Y i−1, Zi−1)

=
n∑

i=1

[
H (Yi |MZ , Sn, Y i−1, Zi−1)

−H (Yi |MZ , Sn , Y i−1, Zi−1, MY , Xn)
]

≤
n∑

i=1

[
H (Yi |MZ , Si , Sn

i+1, Zi−1)

−H (Yi |MZ , Sn , Y i−1, Zi−1, MY , Xn)
]

(c)≤
n∑

i=1

[
H (Yi |MZ , Si , Sn

i+1, Zi−1)

−H (Yi |MZ , Si , Sn
i+1, Zi−1, Xi )

]

=
n∑

i=1

I (Yi ; Xi |MZ , Si , Sn
i+1, Zi−1)

(d)=
n∑

i=1

I (Yi ; Xi |Si , Ui )

where
(a) follows from Fano’s inequality,
(b) follows from the Markov Zi−1 − (MZ , Sn, Y i−1) − Yi ,
referred to as the degradedness property of the channel,
(c) follows from the properties of the channel,
(d) follows from the choice of Ui = (MZ , Sn

i+1, Zi−1).
Hence, we have:

RY ≤ 1

n

n∑

i=1

I (Yi ; Xi |Si , Ui ) + εn . (59)

To bound the sum of rates, RZ + RY , consider:

n(RZ + RY ) − nεn
(a)≤ I (MZ , MY ; Y n, Zn |Sn)
(b)= I (MZ , MY ; Y n|Sn)

= I (MY , MZ , Xn(MY , MZ , Sn); Y n|Sn)

=
n∑

i=1

I (MY , MZ , Xn; Yi |Sn, Y i−1)

=
n∑

i=1

[
H (Yi |Sn, Y i−1) − H (Yi |Sn, Y i−1, Xn , MY , MZ )

]

≤
n∑

i=1

[
H (Yi) − H (Yi |Sn, Y i−1, Xn, MY , MZ )

]

(c)≤
n∑

i=1

[
H (Yi) − H (Yi |Si , Xi )

]

=
n∑

i=1

I (Yi ; Xi |Si )

where
(a) follows from Fano’s inequality,
(b) follows from the physical degradedness and memoryless-
ness of the channel,
(c) follows from the properties of the channel.

Hence, we have:

RZ + RY ≤ 1

n

n∑

i=1

I (Yi ; Xi |Si ) + εn . (60)

We complete the proof by using standard time-sharing
arguments to obtain the rate bound terms given in (15). �

D. Proof of Achievability of Theorem 10

Let us prove the achievability of the region given
in Theorem 10.

Proof: Fix a joint distribution of the form (20c),
PS,Sd,U,X,Z ,Y = PS PSd ,U,X |S PY,Z |X,S , where PY,Z |X,S =
PY |X,S PZ |Y is given by the channel.

Code Construction: First, we start by generating the code-
book of the State Encoder. Randomly and independently gen-
erate 2nR̃12 sequences sn

d (l), l ∈ [1, 2nR̃12 ] i.i.d. ∼∏n
i=1 p(sd,i).

Partition the codewords, sn
d (l), among 2nC12 bins in their

natural ordering, such that each bin B(t), t ∈ [1, 2nC12]
contains the codewords associated with the index l ∈ [(t − 1)

2n(R̃12−C12) + 1, t2n(R̃12−C12)]. Reveal the codebook to the
Channel Encoder, Decoder Y and Decoder Z.

Second, we create the codebook for the Channel Encoder.
Generate 2nRZ bins, B(m Z ), m Z ∈ [1, 2nRZ ]. Let R̃Z and R̃Y

be two nonnegative real numbers. In each bin, gen-
erate 2nR̃Z codewords un( j, m Z), j ∈ [1, 2nR̃Z ] i.i.d.
∼∏n

i=1 p(ui). Third, for each codeword un( j, m Z), gener-
ate 2nRY satellite bins. In each satellite bin, generate 2nR̃Y

codewords xn(m Z , j, mY , k), where k ∈ [1, 2nR̃Y ], i.i.d.
∼∏n

i=1 p(xi(m Z , j, mY , k)|ui (m Z , j)).
Encoding:
1) State Encoder: Given sn , the State Encoder finds an

index l, such that

(sn
d (l), sn) ∈ T (n)

ε′ (Sd , S). (61)

If there is more than one such index, choose the one
for which l is of the smallest lexicographical order.
If there is no such index, select an index at random
from the bin B(t). The State Encoder sends the bin
index t .

2) Channel Encoder: First, note that the Channel Encoder
knows the sequence transmitted from the State
Encoder, sn

d (l), since it knows sn , and the State
Encoder’s strategy. To transmit (mY , m Z ), the encoder
first looks in the bin associated with the message
m Z for a codeword un( j, m Z), such that it is jointly
typical with the state sequence, sn , and the codeword
sn

d (l), i.e.

(un( j, m Z), sn, sn
d (l)) ∈ T (n)

ε′ (U, S, Sd ). (62)

If there is more than one such index, choose the one for
which j is of the smallest lexicographical order. If there
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is no such index, choose an arbitrary un from the bin m Z .
Next, the encoder looks for a sequence xn(m Z , j, mY , k)
(where j was chosen in the first stage), such that it is
jointly typical with the state sequence, sn , the codeword
sn

d (l) and the codeword un(m Z , j), i.e.,

(xn(m Z , j, mY , k), un(m Z , j), sn
d (l), sn)

∈ T (n)
ε′ (X, U, S, Sd ). (63)

If such a codeword, xn , does not exist, choose an
arbitrary xn from the bin mY (in such a case, the decoder
will declare an error). If there is more than one such
codeword, choose the one for which k is of the smallest
lexicographical order.

Decoding:
1) Let ε > ε′. Note that Decoder Y knows both the

sequence sn
d and sn . Since Decoder Y knows the

sequence sn , and the State Encoder’s strategy, it also
knows sn

d (similar to the Channel Encoder). Hence,
it looks for the smallest values of (m̂Y , m̂ Z ) for which
there exists a ĵ , such that

(un(m̂ Z , ĵ)), xn(m̂ Z , ĵ, m̂Y , k̂), sn
d , sn, yn)

∈ T (n)
ε (U, X, Sd , S, Y ). (64)

If no triplet or more than one such triplet is found, an
error is declared.

2) Decoder Z first looks for the unique index l̂ ∈ B(t),
such that

(sn
d (l̂), zn) ∈ T (n)

ε (Sd , Z). (65)

3) Once Decoder Z has decoded sn
d (l̂), it uses sn

d (l̂)
as side information to help the next decoding stage.
Hence, the second step is to look for the small-
est value of m̂ Z for which there exists a ĵ , such
that

(un(m̂ Z , ĵ)), zn, sd (l̂)) ∈ T (n)
ε (U, Z , Sd ). (66)

If no pair or more than one such pair is found, an error
is declared.

Analysis of the Probability of Error: Without loss of gener-
ality, we can assume that messages (m Z , mY ) = (1, 1) were
sent. We define the error event at the State Encoder:

E1 = {∀l ∈ [1, 2nR̃12 ] : (Sn
d (l), Sn) /∈ T (n)

ε′ (Sd , S)}. (67)

We define the error events at the Channel Encoder:

E2 = {∀ j ∈ [1, 2nR̃Z ] : (Un(1, j), Sn, Sn
d )

/∈ T (n)
ε′ (U, S, Sd )}, (68)

E3 = {∀k ∈ [1, 2nR̃Y ] : (Xn(1, j, 1, k), Un(1, j), Sn, Sn
d )

/∈ T (n)
ε′ (X, U, S, Sd )}. (69)

We define the error events at Decoder Y:

E4 = {∀ j ∈ [1, 2nR̃Z ] : (Un( j, 1), Xn(1, j, 1, k), Sn
d , Sn, Y n)

/∈ T (n)
ε (U, X, Sd , S, Y )}, (70)

E5 = {∃m̂Y �= 1 : (Un( j, 1), Xn(1, j, m̂Y , k), Sn
d , Sn , Y n)

∈ T (n)
ε (U, X, Sd , S, Y )}, (71)

E6 = {∃m̂ Z �= 1, m̂Y �= 1 :
(Un( j, m̂ Z), Xn(m̂ Z , j, m̂Y , k), Sn

d , Sn, Y n)

∈ T (n)
ε (U, X, Sd , S, Y )}, (72)

E7 = {∃m̂ Z �= 1 : (Un( j, m̂ Z), Xn(m̂ Z , j, 1, k), Sn
d , Sn, Y n)

∈ T (n)
ε (U, X, Sd , S, Y )}. (73)

We define the error events at Decoder Z:

E8 = {∀l ∈ [1, 2nR̃12] : (Sn
d (l), Zn) /∈ T (n)

ε (Sd , Z)}, (74)

E9 = {∃l̂ �= L, l̂ ∈ B(T ) : (Sn
d (l̂), Zn) ∈T (n)

ε (Sd , Z)}, (75)

E10 = {∀ j ∈ [1, 2nR̃Z ] : (Un( j, 1), Zn, Sn
d (l))

/∈ T (n)
ε (U, Z , Sd )}, (76)

E11 = {∃m̂ Z �= 1, (Un( j, m̂ Z), Zn, Sn
d (l))

∈ T (n)
ε (U, Z , Sd )}. (77)

Then, by the union of events bound:

P(n)
e ≤ P(E1) + P(E2 ∩ Ec

1) + P(E3 ∩ (Ec
1 ∪ Ec

2))

+ P(E4 ∩ (Ec
1 ∪ Ec

2 ∪ Ec
3)) + P(E5) + P(E6)

+ P(E7) + P(E8 ∩ (Ec
1 ∪ Ec

2 ∪ Ec
3)) + P(E9)

+ P(E10 ∩ (Ec
1 ∪ Ec

2 ∪ Ec
3)) + P(E11 ∩ Ec

1).

Now, consider:
1) For the error at the State Encoder, E1, by invoking the

Covering Lemma [27], we obtain that P(E1) tends to
zero as n → ∞ if R̃12 ≥ I (S; Sd ) + δ(ε′).

2) The probabilities of the errors P(E2 ∩ Ec
1),

P(E3 ∩ (Ec
1 ∪ Ec

2)), P(E4 ∩ (Ec
1 ∪ Ec

2 ∪ Ec
3)),

P(E5), P(E6) and P(E7) are treated identically to
their treatment in Section V-B, where they are shown
to tend to zero as n → ∞ . Therefore, the details are
omitted.

3) For the eighth term, we have that (Xn, Un, Sn, Sn
d ) ∈

T (n)
ε (X, U, S, Sd ). In addition, Y n is generated

i.i.d. according to ∼∏n
i=1 p(yi |xi , si ), and Zn

is generated according to ∼∏n
i=1 p(zi |yi) =

∼∏n
i=1 p(zi |yi , xi , si , ui , sd,i ). Since ε > ε′, by the

Conditional Typicality Lemma [27], P(E8∩
(Ec

1 ∪ Ec
2 ∪ Ec

3)) tends to zero as n → ∞.
4) For the ninth error expression, E9, we have that

P(E9) = P(∃l̂ �= L, l̂ ∈ B(T ) :
(Sn

d (l̂), Zn) ∈ T (n)
ε (Sd , Z))

≤ P(∃l̂ ∈ B(1) : (Sn
d (l̂), Zn) ∈ T (n)

ε (Sd , Z))

[27, Lemma 11.1.]. Therefore, since the sequence Sn
d (l̂)

is independent of Zn , by the Packing Lemma [27],
P(E9) tends to zero as n → ∞ if R̃12 − C12 ≤
I (Z; Sd ) + δ(ε).

5) For the tenth term, we again note that the random
variables (U, Z , S, X, Sd ) are generated i.i.d.. Hence,
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since ε > ε′ and by the Conditional Typicality
Lemma [27], P(E10 ∩ (Ec

1 ∪ Ec
2 ∪ Ec

3)) tends to zero as
m → ∞.

6) For the eleventh term, note that for any m̂ Z �= 1 and
any j ∈ [1, 2nR̃Z ], Un(m̂ Z , j) is conditionally inde-
pendent of (Un(1, j), Zn, Sn

d ). Hence, by the Packing
Lemma [27], P(E11 ∩ Ec

1) tends to zero as m → ∞ if
RZ + R̃Z < I (U ; Z , Sd ) − δ(ε).

Combining the results, we have shown that P(E) → 0 as
n → ∞ if

RZ ≤ I (U ; Z , Sd ) − I (U ; S, Sd )

RY ≤ I (X; S, Sd , Y |U) − I (X; S, Sd |U)

RZ + RY ≤ I (U, X; S, Sd , Y ) − I (U, X; S, Sd )

C12 ≥ I (S; Sd ) − I (Z; Sd ).

Remark 14: Rearranging the expressions, we obtain

RZ ≤ I (U ; Z , Sd ) − I (U ; S, Sd ) (78)

RY ≤ I (X; Y |U, S, Sd ) (79)

RZ + RY ≤ I (U, X; Y |S, Sd ) (80)

C12 ≥ I (S; Sd ) − I (Z; Sd ). (81)

Note that the bound on the rate sum, (80), is redundant and
can be removed, since:

RZ + RY ≤ I (U, X; Y |S, Sd )

= I (U ; Y |S, Sd ) + I (X; Y |U, S, Sd )

= I (U ; Y, S, Sd ) − I (U ; Sd , S) + I (X; Y |U, S, Sd ),

in addition to RY satisfying (79) and RZ satisfying (78),
where (78) can be bounded by

RZ ≤ I (U ; Z , Sd ) − I (U ; S, Sd )

≤ I (U ; Y, Sd ) − I (U ; S, Sd )

≤ I (U ; Y, Sd , S) − I (U ; S, Sd ).
The above bound shows that the average probability of

error, which, by symmetry, is equal to the probability for
an individual pair of codewords, (m Z , mY ), averaged over
all choices of code-books in the random code construction,
is arbitrarily small. Hence, there exists at least one code,
((2nRZ , 2nRY , 2nR12), n), with an arbitrarily small probability
of error. �

E. Converse Proof of Theorem 10

In Section V-D, the achievability Theorem 10 was shown.
To finish the proof, we provide the upper bound on the capacity
region.

Proof: Given an achievable rate triplet (C12, RZ , RY ),
we need to show that there exists a joint distribution of the
form (20c), PS PSd ,U,X |S PY |X,S PZ |Y , such that

RZ ≤ I (U ; Z |Sd ) − I (U ; S|Sd )

RY ≤ I (X; Y |U, S)

and

C12 ≥ I (S; Sd ) − I (Z; Sd ).

For C12 consider:

nC12

≥ H (M12)

≥ I (M12; Sn)

(a)=
n∑

i=1

I (M12, Si−1; Si )

=
n∑

i=1

[
I (M12, Si−1, Zn

i+1; Si ) − I (Zn
i+1; Si |M12, Si−1)

]

(b)=
n∑

i=1

[
I (M12, Si−1, Zn

i+1; Si ) − I (Zi ; Si−1|M12, Zn
i+1)

]

≥
n∑

i=1

[
I (M12, Si−1, Zn

i+1; Si ) − I (Zi ; Si−1, M12, Zn
i+1)

]

(c)=
n∑

i=1

[
I (Sd,i ; Si ) − I (Zi ; Sd,i)

]

where
(a) follows since Si is independent of Si−1,
(b) follows from the Csiszar sum identity,
(c) follows from the definition of the auxiliary random vari-
able, Sd = (M12, Sn

i+1, Zi−1).
Hence, we have:

C12 ≥ 1

n

n∑

i=1

I (Sd,i ; Si ) − I (Zi ; Sd,i ). (82)

To bound the rate RZ , consider:

n RZ − nεn
(a)≤ I (MZ ; Zn|M12)

=
n∑

i=1

I (MZ ; Zi |M12, Zi−1)

=
n∑

i=1

[
I (MZ , Sn

i+1; Zi |M12, Zi−1)

−I (Sn
i+1; Zi |MZ , M12, Zi−1)

]

(b)=
n∑

i=1

[
I (MZ , Sn

i+1; Zi |M12, Zi−1)

−I (Si ; Zi−1|MZ , M12, Sn
i+1)

]

(c)=
n∑

i=1

[
I (MZ , Sn

i+1; Zi |M12, Zi−1)

−I (Si ; Zi−1, MZ |M12, Sn
i+1)

]

=
n∑

i=1

[
I (Sn

i+1; Zi |M12, Zi−1)

+I (MZ ; Zi |M12, Zi−1, Sn
i+1)

−I (Si ; Zi−1, MZ |M12, Sn
i+1)

]

(d)=
n∑

i=1

[
I (Si ; Zi−1|M12, Sn

i+1)

+I (MZ ; Zi |M12, Zi−1, Sn
i+1)

−I (Si ; Zi−1, MZ |M12, Sn
i+1)

]
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=
n∑

i=1

[
I (MZ ; Zi |M12, Zi−1, Sn

i+1)

−I (Si ; MZ |Zi−1, M12, Sn
i+1)

]

(e)=
n∑

i=1

[
I (Ui ; Zi |Sd,i ) − I (Si ; Ui |Sd,i )

]
(83)

where
(a) follows from Fano’s inequality,
(b) follows from the Csiszar sum identity,
(c) follows from the fact that Si is independent of MZ given
(MZ , M12, Sn

i+1),
(d) follows from using the Csiszar sum identity,
(e) follows from the definition of the auxiliary random vari-
ables Sd = (M12, Sn

i+1, Zi−1) and Ui = MZ .
Hence, we have:

RZ ≤ 1

n

n∑

i=1

[I (Ui ; Zi |Sd) − I (Si ; Ui |Sd)] + C12 + εn . (84)

Next, to bound the rate RY consider:

n RY − nεn

(a)≤ I (MY ; Y n|MZ , Sn)

= I (MY , Xn(MY , MZ , Sn); Y n|MZ , Sn)

=
n∑

i=1

I (MY , Xn; Yi |MZ , Sn, Y i−1)

(b)=
n∑

i=1

I (MY , Xn; Yi |MZ , Sn, M12, Y i−1)

(c)=
n∑

i=1

I (MY , Xn; Yi |MZ , Sn, M12, Y i−1, Zi−1)

=
n∑

i=1

[
H (Yi |MZ , Sn, M12, Y i−1, Zi−1)

−H (Yi |MZ , Sn , M12, Y i−1, Zi−1, MY , Xn)
]

(d)≤
n∑

i=1

[
H (Yi |MZ , Si , Sd,i )

−H (Yi |MZ , Sn , M12, Y i−1, Zi−1, MY , Xn)
]

(e)≤
n∑

i=1

[
H (Yi |MZ , Si , Sd,i )

−H (Yi |MZ , Si , Sd,i , Xi )
]

=
n∑

i=1

I (Yi ; Xi |MZ , Sd,i , Si )

( f )=
n∑

i=1

I (Yi ; Xi |Ui , Sd,i , Si ) (85)

where
(a) follows from Fano’s inequality,
(b) follows from the fact that M12 is a function of Sn ,
(c) follows from the degradedness property of the channel,

(d) follows from the fact that conditioning reduces entropy
and the definition of the auxiliary random variable Sd =
(M12, Sn

i+1, Zi−1),
(e) follows from the properties of the channel,
( f ) follows from the choice of Ui = MZ .

Hence, we have:

RY ≤ 1

n

n∑

i=1

I (Yi ; Xi |Si , Ui ) + εn . (86)

We complete the proof by using standard time-
sharing arguments to obtain the rate bounds terms given
in Theorem 10. �
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