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Source Coding When the Side Information
May Be Delayed
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Abstract—For memoryless sources, delayed side information at
the decoder does not improve the rate-distortion function. How-
ever, this is not the case for sources with memory, as demonstrated
by a number of works focusing on the special case of (delayed) feed-
forward. In this paper, a setting is studied in which the encoder is
potentially uncertain about the delay with which measurements of
the side information, which is available at the encoder, are acquired
at the decoder. Assuming a hidden Markov model for the source
sequences, at first, a single-letter characterization is given for the
setup where the side information delay is arbitrary and known at
the encoder, and the reconstruction at the destination is required
to be asymptotically lossless. Then, with delay equal to zero or one
source symbol, a single-letter characterization of the rate-distor-
tion region is given for the case where, unbeknownst to the encoder,
the side information may be delayed or not. Finally, examples for
binary and Gaussian sources are provided.

Index Terms—Causal conditioning, hidden Markov model,
Markov Gaussian process, multiplexing, rate-distortion function,
strictly causal side information.

I. INTRODUCTION

C ONSIDER a sensor network in which a sensor measures
a certain physical quantity over time .

The aim of the sensor is communicating a symbol-by-symbol
processed version of the measured se-
quence to a receiver. As an example, each
element can be obtained by quantizing or denoising , for

. To this end, based on the observation of and
, the sensor communicates a message of bits to the

receiver ( is the message rate in bits per source symbol). The
receiver is endowed with sensing capabilities, and hence, it can
measure the physical quantity as well. However, as the re-
ceiver is located further away from the physical source, such
measure may come with some delay, say for some .
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Fig. 1. Source coding with delayed side information at the decoder. The side
information is fully available at the encoder.

Fig. 2. Source coding where side information at the decoder may be delayed
and additional information can be delivered when side information is not de-
layed. The side information is fully available at the encoder.

Assuming that at time the decoder must put out an estimate
of the th source symbol by design constraints, it follows

that the estimate can be made to be a function of the message
and of the delayed side information

(see [1] for an illustration). Following related literature (see,
e.g., [2]), we will refer to as the delay for simplicity. Delay
may or may not be known at the sensor.
The situation described above can be illustrated schemati-

cally as in Fig. 1 for the case in which the delay is known at the
encoder. In Fig. 1, the encoder (”Enc”) represents the sensor and
the decoder (”Dec”) the receiver. The decoder at time (more
precisely, ) has access to delayed side information
with delay . Fig. 2 accounts for a setting where the side in-
formation at the decoder, unbeknownst to the encoder, may be
delayed by or not delayed, where the first case is modeled by
Decoder 1 and the second by Decoder 2. Note that, in the latter
case, the receiver has available the sequence
at time . For added generality, in the setting in Fig. 2, we further
assume that the encoder is allowed to send additional informa-
tion in the form of a message of bits when the side
information is not delayed. This can be justified in the sensor ex-
ample mentioned above, as a nondelayed side information may
entails that the receiver is closer to the transmitter and is thus
able to decode an additional message of rate (bits/source
symbol).

A. Preliminary Considerations and Related Work

To start, let us first assume that sequences and are
memoryless sources so that the entries are arbitrarily
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correlated for a given index but independent identically dis-
tributed (i.i.d.) for different . To streamline the dis-
cussion, the following lemma summarizes the optimal tradeoff
between rate and distortion , as measured by a distortion
metric , for the point-to-point setting of Fig. 1 with mem-
oryless sources.
Lemma 1 [3]–[5]: For memoryless sources, and zero delay,

i.e., , the rate-distortion function for the point-to-point
system in Fig. 1 is given by t

(1)

This result remains unchanged even if the decoder has access
to noncausal side information, i.e., if the reconstruction can
be based on the entire sequence , rather than only . In-
stead, for strictly positive delay , the rate-distortion func-
tion is the same as without side information, namely

.1

Similar conclusions can be easily shown to apply also for
the more general model of Fig. 2, as it will be discussed in the
paper (see Section IV). Specifically, if and the sources
are memoryless, the rate-distortion function for the system of
Fig. 2 with reduces to the one obtained by Kaspi in [6]
for a model in which decoder 1 has no side information, and,
for general , the rate-distortion region coincides with
the one obtained in [7] for a model with no side information at
decoder 1.
We have seen in Lemma 1 that, for memoryless sources, no

advantages can be accrued by leveraging a (strictly) delayed
side information, i.e., with . However, this conclusion
does not generally hold if the sources have memory. In this con-
text, a number of works have focused on the special case of the
scenario of Fig. 1 where for . This en-
tails that the decoder observes sequence itself, but with a
delay of symbols. This setting is typically referred to as source
coding with feedforward, and was introduced in [8]. Venkatara-
manan and Pradhan [1] derived the rate-distortion function for
this problem (i.e., Fig. 1 with ) for ergodic and sta-
tionary sources in terms of multiletter mutual informations. The
result was also extended to arbitrary sources using informa-
tion-spectrum methods. Achievability was obtained via the use
of a codebook of codetrees. The function was explicitly evalu-
ated for some special cases in [9] and [11] (see also [10]), and
[9] proposed an algorithm for its numerical calculation.
The general set-up of Fig. 1 with was studied in [2]

assuming stationary and ergodic sources and . The rate-
distortion function was expressed in terms of multiletter mutual
informations. No specific examples were provided for which
the function is explicitly computable. We finally remark that,
for more complex networks than the ones studied here, strictly
delayed side information may be useful even in the presence of
memoryless sources. This was illustrated in [12] for a multiple
description problem with feedforward.

1The first part of the Lemma is due to [3] and [4], while the second can be
derived as in [5, Observation 2].

Fig. 3. Graphical illustration of the assumed hidden Markov model for the
sources.

B. Contributions

The goal of this study is to characterize the rate-distortion
tradeoffs for the setting in Fig. 1 and the more general setup in
Fig. 2 for a specific class of sources and . Specifically,
we assume that is a Markov chain, and is such that
is obtained by passing through a channel for

, as illustrated in Fig. 3. The process is thus a hidden
Markov model. This model complies with the type of sensor
network scenarios described above, where is the physical
quantity of interest, modeled as a Markov chain, and is a
symbol-by-symbol processed version of .
The main contributions and the paper organization are as

follows. The system model in described Section II. Then, the
source statistics described above:
1) We derive a single-letter characterization of the minimal
rate (bits/source symbol) required for asymptotically loss-
less compression in the point-to-point model of Fig. 1 for
any delay (see Section III-A). Achievability is
based on a novel scheme that consists of simple multi-
plexing/demultiplexing operations along with standard en-
tropy coding techniques;

2) We derive a single-letter characterization of the minimal
rate (bits/source symbol) required for lossy compression
for the point-to-point model of Fig. 1 and, more generally,
for the model of Fig. 2 in which the side information may
be delayed, for delays and (see Section IV);

3) We solve a number of specific examples, namely binary-
alphabet sources with Hamming distortion and Gaussian
sources with minimum mean square error distortion, and
present related numerical results (see Section V).

II. SYSTEM MODEL

We present the system model for the scenario of Fig. 2. As
detailed below, the scenarios of Fig. 1 is obtained as a special
case. The system is characterized by a delay ; finite al-
phabets , , , ; conditional probabilities , with

, and , with and (i.e., we have
and for all );

and distortion metrics : ,
such that for all

for . As explained below, the subscript
“1” in indicates that denotes one-step transi-
tion probabilities.
The random process ,

is a stationary and ergodic Markov chain with transition
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probability . We define
the probability and also the -step tran-
sition probability , which
are both independent of by the stationarity of . These
quantities can be calculated using standard Markov chain
theory from the transition matrix associated with
(see, e.g., [22]). We also set, for notational convenience,

. Sequence is thus dis-
tributed as for any integer

.
The random process is such

that vector , for any integer ,
is jointly distributed with so that

(2)

In other words, process cor-
responds to a hidden Markov model with underlying Markov
process given by . We now define encoder and decoders for
the setting of Fig. 2. Specifically, a code
is defined by: 1) an encoder function

(3)

which maps sequences and into messages
and ; 2) a sequence of decoding functions for
decoder 1

(4)

for , which, at each time , map message , or rate
[bits/source symbol], and the delayed side information

into the estimate ; and 3) a sequence of decoding function
for decoder 2

(5)

for , which, at each time , map messages , or rate
, and , of rate or rate , and the nondelayed side infor-

mation into the estimate . In (3)–(5), for integer with
, we have defined as the interval

with if .2 Encoding/decoding functions (3)–(5)
must satisfy the distortion constraints

(6)

Note that these constraints are fairly general in that they allow
us to impose not only requirements on the lossy reconstruction
of or (obtained by setting independent of
or , respectively), but also on some function of both and
(by setting to be dependent on such a function of

).

2As it is standard practice, and are implicitly considered to be
rounded up to the nearest larger integer.

Given a delay , for a distortion pair , we say
that rate pair is achievable if, for every and
sufficiently large , there exists a
code. We refer to the closure of the set of all achievable rates
for a given distortion pair and delay as the rate-
distortion region .
From the general description above for the setting of

Fig. 2, the special case of Fig. 1 is produced by ne-
glecting the presence of decoder 2, or equivalently by
choosing . In this case, the rate-distortion re-
gion is fully characterized by a function
as .
Function hence characterizes the infimum of rates
for which the pair is achievable, and is referred to
as the rate-distortion function for the setting of Fig. 1. For the
special case of the model in Fig. 2 in which , we define
the rate-distortion function in a similar way.
Notation: For integer with , we define

; if instead , we set . We
will also write as for simplicity of notation. Given a se-
quence and a set ,
we define sequence as where

. Random variables are denoted with capital
letters and corresponding values with lowercase letters. Given
random variables, or more generally vectors, and we will
use the notation or for , and
or for , where the latter notations are
used when the meaning is clear from the context. Given set ,
we define as the -fold Cartesian product of . We denote
any function of that tends to zero as as . When
refer to -typical sequences using the notion of strong typicality
as in [14].

III. POINT-TO-POINT MODEL

In this section, we study the point-to-point model in Fig. 1.

A. Lossless Compression

We start by characterizing the rate-distortion function
for any delay under the Hamming distortion

metric for . The Hamming distortion metric is defined
as , where if is true and

otherwise. This implies that the distortion constraint
(6) for becomes

(7)

In other words, from the definition of achievability given above,
we impose that the sequence be recovered with vanishingly
small average symbol error probability as . We refer to
this scenario as asymptotically lossless, or lossless for short.
We have the following characterization of .
Proposition 1: For any delay , the rate-distortion func-

tion for the setup in Fig. 1 under Hamming distortion at
is given by

(8)
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where the conditional entropy is calculated with respect to the
distribution

(9)

(10)

The proof of converse of the proposition above is based on
an appropriate use of the Fano inequality and is reported in
Appendix A. To prove the direct part of the proposition, we pro-
pose a simple achievable scheme, which, to the best of the au-
thors’ knowledge, has not appeared before, in Section III-B.
Remark 1: Expression (8) consists of a conditional entropy of
random variables, namely . These vari-

ables are distributed as the corresponding entries in the random
vectors and , as per (9)–(10) [cf. (2)].We have, therefore,
used the same notation for the involved random variables as in
Section II. Proposition 1 provides a “single-letter” characteriza-
tion of for the setting of Fig. 1, since it only involves a
finite number of variables.3 This contrasts with the general char-
acterization for stationary ergodic processes of given in
[2], which is a “multiletter” expression, whose computation can
generally only attempted numerically using approaches such as
the ones proposed in [9]. Note that a multiletter expression is
also given in [11] to characterize for i.i.d. sources with
negative delays . Finally, it should be emphasized that
the simple characterization (8) for the scenario of interest here
hinges on the assumed statistics of the sources .
Remark 2: By setting in (8), we obtain

. This result generalizes [11, Remark 3, p. 5227] from
i.i.d. sources to the hidden Markov model (2) con-
sidered here. Note that, for , we instead obtain

. As another notable special case, if side informa-
tion is absent, or equivalently , in accordance with
well-known results, we obtain that equals the entropy
rate (see, e.g., [13])

(11)

In fact, we have

(12)

by [13, Th. 4.5.1].
Remark 3: Is delayed side information useful (when known

also at the encoder)? That this may be the case follows from the
inequality

(13)

since is the required rate without side information. This
result is proved by the chain of inequalities

, where the first inequality follows by
the data processing inequality and the second by conditioning

3It might be more accurately referred to as a “finite-letter” characterization.

reduces entropy. However, inequality (13) may not be strict,
and thus, side information may not be useful. A first example
is the case where is an i.i.d. process, which is obtained by
making independent of . As another example, consider
the setting of source coding with feedforward [1], [8], i.e.,
. In this case, our assumption (2) entails that is a Markov

chain, and we have
for . Therefore, delayed feedforward (with )

is not useful for the lossless compression of Markov chains, as
already shown in [8]. This conclusion need not hold for lossy
compression (i.e., for ) [8] (see also Section V-A).
Remark 4: If , are general jointly stationary and er-

godic processes (and not necessarily stationary ergodic hidden
Markov models), one can adapt in a straightforward way the
proofs of Appendix A and Section III-B, and conclude that the
rate distortion function can be written as

(14)

where is the causally conditioned entropy
(see, e.g., [24]).4

Comparing (14) with the rate necessary in the
absence of any side information, we conclude that the reduction
in the compression rate obtained by leveraging delayed side
information at the decoder, when side information is known at
the encoder, is given for stationary and ergodic processes by

(15)

In (15), we have used the definition of directed mutual infor-
mation (see, e.g.,
[24]). Note that the rate gain (15) complements the results given
in [24] on the interpretation of the directed mutual information
(see also next remark).
Remark 5: Consider a variable-length (strictly) lossless

source code that operates symbol by symbol such that, for every
symbol , it outputs a string of bits ,
which is a function of and . Encoding is constrained so
that the code for each is prefix-free.
The decoder, based on delayed side information, can then
uniquely decode each codeword as soon as it is
received. Following the considerations in [24, Sec. IV], it is
easy to verify that rate [and, more generally, (14)] is also
the infimum of the average rate in bits/source symbol required
by such code. Moreover, it is possible to construct universal
context-based compression strategies by adapting the approach
in [25].
We refer to Section V for some examples that further illustrate

some implications of Proposition 1.

B. Proof of Achievability for Proposition 1

Proof: (Achievability) Here, we propose a coding scheme
that achieves rate (8). The basic idea is a nontrivial extension
of the approach discussed in [11, Remark 3, p. 5227] and is
described as follows. A block diagram is shown in Fig. 4 for
encoder [see Fig. 4(a)] and decoder [see Fig. 4(b)]. We first de-
scribe the encoder, which is illustrated in Fig. 4(a). To encode

4The limit exists because the sequence is nonincreasing and bounded below.




