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A Single-Letter Upper Bound on the Feedback
Capacity of Unifilar Finite-State Channels
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Abstract— An upper bound on the feedback capacity of unifilar
finite-state channels (FSCs) is derived. A new technique, called
the Q-context mapping, is based on a construction of a directed
graph that is used for a sequential quantization of the receiver’s
output sequences to a finite set of contexts. For any choice of
Q-graph, the feedback capacity is bounded by a single-letter
expression, Cfb ≤ sup I (X, S; Y | Q), where the supremum is over
p(x|s, q) and the distribution of (S, Q) is their stationary distri-
bution. It is shown that the bound is tight for all unifilar FSCs,
where feedback capacity is known: channels where the state is
a function of the outputs, the trapdoor channel, Ising channels,
the no-consecutive-ones input-constrained erasure channel, and
the memoryless channel. Its efficiency is also demonstrated by
deriving a new capacity result for the dicode erasure channel;
the upper bound is obtained directly from the above-mentioned
expression and its tightness is concluded with a general sufficient
condition on the optimality of the upper bound. This sufficient
condition is based on a fixed point principle of the BCJR equation
and, indeed, formulated as a simple lower bound on feedback
capacity of unifilar FSCs for arbitrary Q-graphs. This upper
bound indicates that a single-letter expression might exist for the
capacity of finite-state channels with or without feedback based
on a construction of auxiliary random variable with specified
structure, such as the Q-graph, and not with i.i.d distribution.
The upper bound also serves as a non-trivial bound on the
capacity of channels without feedback, a problem that is still
open.

Index Terms— Converse, dicode erasure channel, feedback
capacity, finite state channels, trapdoor channel, unifilar chan-
nels, upper bound.

I. INTRODUCTION

AFINITE-STATE channel (FSC) is a mathematical model
for channels with memory that has been applied to

wireless communications [1], [2] and magnetic recording [3].
In this model, the channel memory is encapsulated in a state
which takes values from a finite set. In this paper, we focus on
unifilar FSCs with feedback, as described in Fig. 1, where the
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Fig. 1. Unifilar FSC with feedback.

new channel state is a time-invariant function of the previous
state, the current input and the current output.

The feedback capacity of FSCs has been investigated
in [4]–[6] and still has no simple closed-form expression. For
the special case of unifilar FSCs, it was shown in [7] that the
feedback capacity is:

Cfb = lim
N→∞ sup

{p(xt |st−1,yt−1)}N
t=1

1

N

N∑

i=1

I (Xi , Si−1; Yi |Y i−1).

(1)

As can be seen from the capacity formula, this capacity expres-
sion is very hard to compute in a straightforward manner.
However, it was shown in [6] and [7] that the capacity can
be formulated as a dynamic programming (DP) optimization
problem; this has benefits such as efficient algorithms for
estimating the capacity and analytical tools for calculating
capacity.

The relationship between the feedback capacity of FSCs
and DP first appeared in Tatikonda’s thesis [8]. The need for
this formulation arises from difficulties in the computability
of the capacity expression as can be seen in (1). In [9], a DP
formulation of a sub-family of unifilar FSCs was given, where
the state can be computed at the decoder. It was shown that
the DP can be analytically solved under mild conditions on
the channel, resulting in a computable capacity expression.
DP formulations of feedback capacities appeared also for
channels where the state is determined by the inputs [10],
Markov channels [6] and Gaussian channels with stationary
noise [11].

A typical approach for solving DP problems is the
well-known Bellman equation. Loosely speaking, one should
find a constant and a function which satisfy some fixed point
equation; the constant is then the optimal reward (equiva-
lent to the feedback capacity). This approach led to explicit
capacity expressions for the trapdoor channel [7], the Ising
channel [12], [13], the input-constrained erasure channel [14]

0018-9448 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SABAG et al.: SINGLE-LETTER UPPER BOUND ON THE FEEDBACK CAPACITY OF UNIFILAR FSCs 1393

and the input-constrained binary symmetric channel [15]. The
difficulty in the Bellman equation based approach lies in the
fact that the state space of the DP problem is uncountably
infinite, so finding a function which satisfies this equation is
a challenging task.

Nevertheless, computer-based simulations of DP provide
crucial insights into the feedback capacity of a particular
channel. Specifically, implementation of the value-iteration
algorithm together with DP simulation can be used to derive an
analytic expression for the feedback capacity. The numerical
results naturally provide a lower bound on the feedback
capacity, so it remains to provide an upper bound. One option
is solving the Bellman equation but this is quite challenging
so an alternative method to calculate tight upper bounds on the
feedback capacity is desirable. Our main result is a derivation
of a simple upper bound on the feedback capacity of unifilar
FSCs.

The derivation of the upper bound is initiated with an
almost trivial inequality which, for a sequence of deterministic
mappings {�i }i≥1, is given by

H (Yi |Y i−1) = H (Yi |Y i−1,�i−1(Y
i−1))

≤ H (Yi |�i−1(Y
i−1)).

The equality follows from the fact that �i−1(Y i−1) is a
deterministic function of Y i−1, and the inequality follows from
the fact that conditioning reduces entropy. A naive choice of
the mappings {�i }i≥1 can result in an equality in this upper
bound; for example, if the mapping �i−1 returns a constant
then the above inequality becomes H (Yi |Y i−1) ≤ H (Yi)
which is known to be a tight upper bound for the memoryless
channel where i.i.d. outputs process is optimal. For non-trivial
FSCs, this naive choice results an upper bound that is not
tight. Throughout this paper, it will be shown that a structured
mapping may improve the upper bound performance.

Our derivation is based on a new technique called the
Q-context mapping which is defined by the sequence of
functions {�i }i≥1 that transform the history of the output
process into a Markov chain. Specifically, a time-invariant
Q-context mapping is described by a directed graph (called
the Q-graph) and it has the property that the outgoing edges
per node are labelled with all possible channel outputs. Then,
given an initial node on the graph, any-length sequence can
be mapped into a unique node by walking along the labelled
edges until the sequence ends. Thus, the Q-graph describes a
sequential quantization of output sequences to the set of nodes
which are called contexts.

Combining the Q-context mapping technique with the
capacity expression in (1) leads to our main result, a single-
letter upper bound on the feedback capacity of unifilar FSCs:

Cfb ≤ sup
p(x |s,q)

I (X, S; Y |Q), (2)

for all Q-graphs, where the distribution of (S, Q) is given
by the stationary distribution induced by the time-invariant
Q-context mapping. It is shown that the upper bound is tight
for all unifilar FSCs where the feedback capacity is already
known and, obviously, for the memoryless channel with feed-
back. Therefore, the derived upper bound also provides a

unified expression for all feedback capacities known so far.
This result provides hope that the feedback capacity of general
FSCs might be characterized by a single-letter expression,
which would be quite surprising.

Throughout the paper, we demonstrate that the bound is
tight for a proper choice of the Q-graph for any channel
where the state is computable at the decoder [9], the trapdoor
channel [7], the input-constrained binary erasure chan-
nel (BEC) [14] and Ising channels [12], [13]. These derivations
also serve as an easily implemented and alternative converse
proof for these capacity results.

It is also demonstrated that the upper bound can be used
to derive new results, such as the feedback capacity of the
dicode erasure channel (DEC). The DEC is a simplified
model of the known dicode channel with additive white
Gaussian noise (AWGN), which was studied in [16] and [17].
DP-based simulations for this channel show that the optimal
policy only visits a finite subset of the state space and the
actions associated with those states are unconstrained. Since
actions are unconstrained, the solution of the Bellman equation
is very challenging, if not impossible. However, since the set
of visited states is finite, it is possible to extract a Q-graph
from this simulation and to derive a simple upper bound on
the capacity. Its tightness follows from checking a sufficient
condition that implies the upper bound in (2) is achievable.

The sufficient condition is based on an invariant-property of
the BCJR equation for the channel state estimation, p(st |yt).
Roughly speaking, the condition states that, for a Q-graph and
some input distribution p(x |s, q), if the state estimate p(st |yt )
depends only on the Q-context �t (yt) and not on the entire
sequence yt , then I (X, S; Y |Q) is an achievable rate. This
condition is easy to verify using the BCJR forward-recursive
equation for unifilar FSCs and may be exploited in two ways.
The first is to verify that the upper bound is tight, as is done for
the DEC. The second is to provide a computable lower bound
for an arbitrary Q-graph and input p(x |s, q) that satisfy the
condition.

The remainder of the paper is organized as follows.
Section II defines notation and provides mathematical back-
ground. Section III states our main result on the upper bound
and the sufficient condition for the tightness of this bound.
In Section IV, several examples of unifilar FSCs are studied
and it is shown that the upper bound is tight. In Section V, we
provide a detailed proof of the main result. Finally, the paper
is concluded in Section VI.

II. NOTATION AND PRELIMINARIES

Random variables are denoted by upper-case letters, such as
X , while realizations are denoted by lower-case letters, e.g.,
x and calligraphic letters, e.g., X , denote sets. We use Xn to
denote the n-tuple (X1, . . . , Xn) and xn to denote vectors of
n elements, i.e., xn = (x1, x2, ..., xn). The binary entropy is
denoted by H2(α) = −α log2 α − (1 − α) log2(1 − α), where
α ∈ [0, 1]. Finally, H3(α1, α2) = −α1 log2 α1 − α2 log2 α2 −
(1 − α1 − α2) log2(1 − α1 − α2) denotes the ternary entropy
function for scalars α1, α2 ∈ [0, 1] satisfying α1 + α2 ≤ 1.
The quaternary entropy function, H4(α1, α2, α3), is defined
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in a similar manner. Probability mass functions (PMFs) are
denoted by p(X = x), the conditional probability of X = x
given Y = y is denoted by p(X = x |Y = y) and the joint
distribution is denoted as p(X = x, Y = y); when the random
variable is clear from the context we use the short hands p(x),
p(x |y) and p(x, y), respectively. The (|S| − 1)-dimensional
simplex is denoted by Z .

A. Unifilar Finite-State Channels

A finite state channel is defined by the triplet (X ×
S, p(y, s|x, s′),Y × S) where X is the channel input, Y is
the channel output, S′ is the channel state at the beginning
of the transmission and S is the channel state at the end of
the transmission. The cardinalities X ,Y,S are assumed to be
finite. At each time t , the channel has the property

p(st , yt |xt , st−1, yt−1) = p(st , yt |xt , st−1).

An FSC is called unifilar if the new channel state, st , is given
by a time-invariant function f (xt , yt , st−1) of the input, output,
and previous state.

The input to the channel at time t , xt , depends both on the
message m and on the output tuple yt−1. A unifilar channel
is strongly connected if for all s, s′ ∈ S, there exist T and
{p(xt |st−1)}T

t=1 such that
∑T

t=1 p(St = s|S0 = s′) > 0. It is
also assumed that the initial state, s0, is available to both the
encoder and the decoder.

The capacity of the unifilar FSC is given by the following
theorem:

Theorem 1 ([7, Th. 1]): The feedback capacity of a
strongly connected unifilar FSC, where s0 is available to both
to the encoder and the decoder, can be expressed by

Cfb = lim
N→∞ sup

{p(xt |st−1,yt−1)}N
t=1

1

N

N∑

i=1

I (Xi , Si−1; Yi |Y i−1).

B. Labelled Directed Graphs

A labelled directed graph is defined by a set of nodes, a
set of directed edges, and a label function mapping edges to
labels. Node i is said to communicate with node j if there
exists a path from i to j . This definition leads to an equivalence
relation: two nodes i, j lie in the same communicating class
if i communicates with j and vice versa. A communicating
class is said to be closed if there are no outgoing edges from
this class. A graph is irreducible if all nodes in the graph
communicate.

For a closed communicating class, the period of a node is
defined as the gcd of all natural numbers, n, such that there is a
loop to this node with length n. It can be shown that the period
is a class property, that is, all nodes in a closed communicating
class have equal periods. A closed class is aperiodic if it has
a period of 1.

One useful property of irreducible graphs with period D
is that the graph can be partitioned uniquely into D disjoint
subsets A0, A1, . . . , AD−1 on a cycle, i.e., all edges from Ai

lead to A(i+1) mod D .

Fig. 2. An example for a Q-graph with |Q| = 2, and Y = {0, 1, ?}.

C. Q-Context Mapping

The upper bound in this paper is based on the inequality:

H (Yi |Y i−1) ≤ H (Yi |�i−1(Y
i−1)), i ∈ N,

which holds for any set of mappings �i−1 : Y i−1 → Q. The
context of the sequence yi−1 is defined as qi−1 � �i−1(yi−1).

Our interest is limited to the set of mappings which can
be described by a time-invariant function g : Q × Y → Q,
where �i (yi) = g(�i−1(yi−1), yi ) for all i . The Q-context
mapping is defined by a function g(·, ·) or, equivalently, by a
Q-graph with |Q| nodes, each taking a realization q ∈ Q; an
edge q → q ′ with label y exists if q ′ = g(q, y). It is assumed
that the Q-graph is finite and irreducible. These definitions
imply that each node in the Q-graph has |Y| outgoing edges.
An example for a Q-graph is illustrated in Fig. 2.

The next step is to embed the FSC characterization into the
Q-graph. This is done by constructing a new directed graph
which includes the entire information on the Q-graph and the
channel states evolution. An (S, Q)-graph is constructed as
follows:

1) Each node in the Q-graph is split into |S| new nodes,
which are represented by the pairs (s, q) ∈ S × Q.

2) An edge (s, q) → (s′, q ′) with a label (x, y) exists if and
only if there exists a pair (x, y) such that s′ = f (s, x, y),
q ′ = g(q, y), and p(y|x, s) > 0.

The (S, Q)-graph might have more than a single closed
communicating class. It is then clear that if the initial pair
(s0, q0) lies in a closed communicating class, then all other
classes will never be reached. Recall that s0 is given by
the problem, while the initial context q0 can be chosen. The
following lemma formalizes a few properties of the (S, Q)-
graph that will be used to simplify our analysis.

Lemma 1: There exists at least one closed communicating
class in the (S, Q)-graph. For every s ∈ S (or q ∈ Q) and
for every closed communicating class, C, there exists q ∈ Q
(or s ∈ S) such that (s, q) ∈ C.
The proof of Lemma 1 appears in Appendix A. The freedom of
choosing q0, together with Lemma 1, verifies that for a given
s0 there always exists q0 such that (s0, q0) lies within any of
the closed classes. Therefore, we will assume throughout this
paper that the (S, Q)-graph has a single closed communicating
class only. There is no concrete example where the initial
closed class effects the upper bound, but one should be aware
that if different closed classes give different upper bounds,
then each value is a valid upper bound.

In order to present the (S, Q)-graph as a Markov chain
on S × Q, probabilities should be assigned on the edges.
For a given input matrix p(x |s, q), an outgoing edge from
(s, q) that is labelled by (x, y) will have a probability of
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p(y|x, s)p(x |s, q). This assignment might effect the structure
of the (S, Q)-graph; specifically, if an edge has p(x |s, q) = 0
then it can be removed. Denote by A(p(x |s, q)) the (S, Q)-
graph after edge removal and define

Pπ � {p(x |s, q) : A(p(x |s, q)) has a single closed class}.(3)

The subscript π emphasizes that for all p(x |s, q) ∈ Pπ there
exists a unique stationary distribution on the (S, Q)-graph that
is denoted by π(S = s, Q = q), or for short as π(s, q).
This stationary distribution can be calculated directly on the
induced single closed class, as all other nodes are inessential
and have zero probability.

III. MAIN RESULT

The following theorem is our main result.
Theorem 2: If the initial state s0 is available to both the

encoder and decoder, then the feedback capacity Cfb of a
strongly connected unifilar FSC satisfies

Cfb ≤ sup
p(x |s,q)∈Pπ

I (X, S; Y |Q), (4)

for all irreducible Q-graphs with q0 such that (s0, q0)
lies in an aperiodic closed communicating class. The ran-
dom variables Y, X, S, Q are associated with the time-
invariant system and the joint distribution is p(y, x, s, q) =
p(y|x, s)p(x |s, q)π(s, q) where π(s, q) is the stationary dis-
tribution of the (S, Q)-graph associated with the initial vertex
(s0, q0).

Remark 1: The random variable Q is an auxiliary random
variable (RV) representing the comon knowledge that is shared
by the encoder and decoder. Here, the implied sequence
of auxiliary RVs has memory induced by the structure of
the chosen Q-graph and is encapsulated in its stationary
distribution. In contrast, auxiliary RVs are typically chosen to
be independent and identically distributed (i.i.d.). For example,
consider the Wyner-Ziv and Gelfand-Pinsker models.

The auxiliary RV in (4) can be thought of as a dual version
of the conventional auxiliary RV in capacity expressions;
mostly, in capacity expressions, any choice of auxiliary RV
distribution results an achievable rate (i.e., a lower bound),
while in (4) any choice of an auxiliary Q-graph results an
upper bound.

In standard derivations of upper bounds on capacities, it is
shown that auxiliary RVs exist, while in (4) the upper bound
holds for all irreducible Q-graphs. Indeed, if it could be shown
that there is always an optimal Q-graph with a finite number
of graph nodes, then minimizing over all possible Q-graphs
would transform (4) into a single-letter capacity formula for
any unifilar FSC with feedback.

Remark 2: The restriction on the input distributions in Pπ

implies that a unique stationary distribution exists. Note that
the stationary distribution π(s, q) depends on the value of
p(x |s, q), and can be found as the unique solution of

π(s′, q ′) =
∑

(s,q)∈G

π(s, q)
∑

y:g(q,y)=q ′
∑

x : f (x,y,s)=s ′
p(x |s, q)p(y|x, s).

Remark 3: As discussed in Section II, if the (S, Q)-graph
contains more than a single closed class, then the upper
bound holds for all closed communicating classes which are
aperiodic. This fact follows from Lemma 1, where it is shown
that each closed class contains all s0 ∈ S and all q0 ∈ Q.

Remark 4: Since the transmitter is free to ignore the feed-
back, the feedback capacity is greater than or equal to the
non-feedback capacity. Thus, Theorem 2 also provides a
computable and non-trivial upper bound on the non-feedback
capacity of a unifilar FSC, which remains an open problem.

Remark 5: An efficient method for finding the optimal
Q-graph is to study the corresponding DP. Standard simu-
lations (see [7], [12], [14]) produce a histogram of the DP
states that are visited under an estimated optimal policy. The
inaccuracy of such simulations follows from the required
quantization of the DP parameters.

When the resulting histogram of the DP states is discrete,
i.e., only a finite number of DP states are visited, then a
Q-graph can be extracted from the DP simulation. Specifically,
each visited DP state is taken as a node in the Q-graph and the
labelled edges are the evolution of the DP states as a function
of the outputs.
In the following section, a sufficient condition for the optimal-
ity of the upper bound is provided.

A. Lower Bound on Capacity

Before presenting the lower bound, the BCJR recursive
equation of the channel state estimation is derived. For the
outputs tuple yt , and st ∈ S, this gives

p(st |yt) = p(st , yt |yt−1)

p(yt |yt−1)

=
∑

xt ,st−1
p(st , yt , xt , st−1|yt−1)

∑
st ,xt ,st−1

p(st , yt , xt , st−1|yt−1)
. (5)

This is a forward-recursive equation in the sense that with a set
of scalars {p(st−1|yt−1)}st−1∈S and an output symbol, yt , one
can compute the set {p(st |yt )}st∈S . Note that the collection
of scalars p(st−1|yt−1) is an element from Z (recall that Z
denotes the (|S| − 1)-dimensional simplex). For each input,
p(x |s, q), one can write the BCJR equation in (5) as a mapping
Bs : Z ×Y → [0, 1] where the subscript s stands for the state
whose probability is being estimated.

Given an irreducible Q-graph, an input distribution
p(x |s, q) ∈ Pπ is said to be an aperiodic input if its
corresponding (S, Q)-graph is aperiodic. Each aperiodic input
induces a stationary distribution, π(s, q), and we say that an
aperiodic input is BCJR-invariant if its state probability vector,
π(S|Q = q) � {π(S = s|Q = q)}s∈S , satisfies

π(S = s|Q = g(q, y)) = Bs(π(S|Q = q), y)

for all s, q ∈ S × Q and y ∈ Y , where g(q, y) is the context
that is calculated from the node q and the output y.

The following theorem provides a lower bound on feedback
capacity.

Theorem 3: The feedback capacity of unifilar FSCs is
bounded by

Cfb ≥ I (X, S; Y |Q), (6)
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for all aperiodic inputs, p(x |s, q) ∈ Pπ , that are BCJR-
invariant.

Remark 6: Theorem 3 acts as a complementary tool for the
upper bound in Theorem 2. One application is to evaluate
the upper bound from Theorem 2 for some Q-graph and
then to verify its optimality by the BCJR-invariant property.
However, there are cases where the upper bound is tight and
the corresponding BCJR-invariant property is not satisfied;
therefore, this property is a sufficient but not necessary for
the optimality of the upper bound. Nevertheless, the above
statement suggests a lower bound for all aperiodic inputs, so
it can be exploited as a lower bound with an arbitrary aperiodic
input, as we will see in Section IV-B.

IV. EXAMPLES

This section covers several examples from the literature
where the capacity of a unifilar FSC is known.

A. Channel State is a Function of the Outputs

In [9], a unifilar FSC where the channel state is available
to all parties and evolves according to p(st+1|xt , st ) was
studied. It was shown that this class of FSCs is, indeed,
equivalent to a unifilar FSC where the channel state is the
last output, i.e., si = yi . The authors showed that for channels
with strongly irreducible and aperiodic states,1 the capacity
is given by Cfb = maxp(x |s) I (X; Y |S), where p(y, x, s) =
p(y|x, s)p(x |s)π(s).

To apply Theorem 2 for this case, the Q-graph is taken as
the states graph since states can be computed from outputs.
If the channel states form an aperiodic graph, then Theorem
2 gives

Cfb ≤ supp(x |s)∈Pπ
I (X; Y |S). (7)

Note that the derived bound (7) holds for outputs that
are strongly connected and form an aperiodic graph, while
in [9], the outputs are assumed to be strongly irreducible and
aperiodic, which is a stronger property.

B. Input-Constrained BEC

The setting consists of a BEC, where inputs must admit
the (1,∞)-RLL constraint, i.e., the input sequence does not
contain consecutive ones. This setting does not fall into the
classical definition of unifilar FSCs. However, it is possible to
convert the input constraint into a channel state, si = xi , and to
derive the upper bound in Theorem 2, when the maximization
is over constrained inputs. The feedback capacity of this
channel was found in [14] using an explicit and tedious
solution for the Bellman equation.

The following result is a re-statement of the known feedback
capacity.

Theorem 4 ([14, Th. 1]): The feedback capacity of the
input-constrained BEC is

CicBEC = max0≤p≤0.5
H2(p)
1

1−ε +p
. (8)

1A channel is strongly irreducible if the graph with |S| nodes (each
corresponds to an output) and the edge s′ → s exists if p(s|x, s′) > 0
for all x , is irreducible. Strong aperiodicity is defined in a similar manner.

Fig. 3. The (S, Q)-graph for the input-constrained BEC for the Q-graph in
Fig. 2. Each edge is labelled by a pair (x, y), where φ stands for the “don’t
care" symbol, i.e., all possible outputs.

Here, we will provide an alternative proof for Theorem 4:
the upper bound is shown by applying Theorem 2 with the Q-
graph presented in Fig. 2, while the lower bound is achieved
by applying Theorem 3 with a new Q-graph that is presented
in Fig. 4.

Remark 7: In this example, the BCJR-invariant property is
not satisfied for the graph that is presented in Fig. 2 and,
therefore, this is a sufficient but not a necessary condition
for the tightness of the upper bound. On the other hand,
calculation of the upper bound with the Q-graph in Fig. 4
results in a tight upper bound as well; however, it is preferable
to calculate the upper bound using a Q-graph with the fewest
nodes.

Upper Bound: The (S, Q)-graph for the Q-graph from
Fig. 2 is presented in Fig. 3. There is a single closed class in
this graph consisting of all nodes but (Q = 2, S = 0), and this
class is aperiodic since there is a loop of length 1. Since inputs
are constrained, we have p(X = 1|S = 1, Q = q) = 0 for all
q and, therefore, the matrix p(x |s, q) can be parameterized
with a single parameter a � p(X = 1|S = 0, Q = 1).

Calculation of the stationary distribution for the (S, Q)-
graph gives [π0,1, π1,1, π1,2] =

[
1

1+a , εa
1+a , (1−ε)a

1+a

]
, where we

use the shorthand πi, j = π(S = i, Q = j). Then, one can
calculate the conditional distribution,

p(Y = 1|Q = 1) = p(Y = 1, X = 1, S = 0|Q = 1)

= (1 − ε)a
π0,1

π0,1 + π1,1

= (1 − ε)a

1 + εa
. (9)

By Theorem 2, we have:

CicBEC

≤ sup
p(x |s,q)∈Pπ

I (X, S; Y |Q)

= sup
p(x |s,q)∈Pπ

H (Y |Q) − H2(ε)
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Fig. 4. Q-graph for the input-constrained BEC with an output alphabet
Y = {0, 1, ?}. Each node in the Q-graph can be interpreted by the corre-
sponding decoder’s knowledge: when Q = 1 (or Q = 2), the decoder knows
that the state is S = 1(or S = 0), while in Q = 3 the decoder does not know
the channel state.

(a)= max
0≤a≤1

[π0,1 + π1,1]H3

(
(1 − ε)a

1 + εa
, ε

)
+ π1,2 H2(ε)−H2(ε)

(b)= max
0≤a≤1

1 + εa

1 + a
(1 − ε)H2

(
a

1 + εa

)

(c)≤ max
0≤p≤1

H2(p)
1

1−ε + p
,

where (a) follows from π0,2 = 0 and substituting (9),
(b) follows from the identity H3((1 − ε)x, ε) = H2(ε) +
(1 − ε)H2(x), for all x ∈ [0, 1], and

∑
i, j πi, j = 1. Next, (c)

follows by changing the maximization variable to p � a
1+εa

and then expanding the new maximization domain to [0, 1].
Finally, the given expression holds because the function is
decreasing for p > 0.5. �

Lower Bound: consider the Q-graph that is presented in
Fig. 4 with inputs that are given by p(X = 1|S = 0, Q =
2) = p and p(X = 1|S = 0, Q = 3) = p

1−p where
p ∈ [0, 0.5].

Construction of the (S, Q)-graph reveals that the pairs (S =
0, Q = 1) and (S = 1, Q = 2) cannot be reached, while the
stationary distribution of the other pairs is positive and equals:

π1,1 = ε̄ p

1 + ε̄ p

π0,2 = ε̄

1 + ε̄ p

π0,3 = ε(1 − p)

1 + ε̄ p

π1,3 = εp

1 + ε̄ p
, (10)

where πi, j = π(S = i, Q = j). By (10), it can be calculated
that

π(S = 0|Q = 1) = 0

π(S = 0|Q = 2) = 1

π(S = 0|Q = 3) = 1 − p.

Fig. 5. DEC with erasure probability ε.

Since |S| = 2, the value of π(S = 0|Q = i) determines
uniquely the value of π(S = 1|Q = i) and it is sufficient to
show the BCJR-invariant property for π(S = 0|Q = i). The
BCJR equation can then be written as:

p(S = 0|Q = g(i, y))

=
⎧
⎨

⎩

1 if Y = 0,
1 − p(X = 1, S = 0|Q = i) if Y =?,

0 if Y = 1,

where p(X = 1, S = 0|Q = i) = π(S = 0|Q = i)p(X =
1|S = 0, Q = i). We show the BCJR-invariant property for
each node: the node Q = 1 has input edges that are labeled
by Y = 1 only and, therefore, p(S = 0|Q = g(i, 1)) = π
(S = 0|Q = 1) = 0 for i = 2, 3, as required. For the node
Q = 2, all incoming edges are labelled by Y = 0 except for
the edge (Q = 1) → (Q = 2) that is labelled with Y =?. For
this edge, calculation gives that 1 − π(S = 0|Q = 1)p(X =
1|S = 0, Q = 1) = 1 and it can be concluded that the node
Q = 2 is BCJR-invariant as well. Finally, Q = 3 has two
incoming edges that satisfy 1−π(S = 0|Q = 2)p(X = 1|S =
0, Q = 2) = 1 − π(S = 0|Q = 3)p(X = 1|S = 0, Q = 3) =
1 − p.

By Theorem 3,

CicBEC ≥ I (X, S; Y |Q)

= (1 − ε)

[
ε̄

1 + ε̄ p
H2(p) + ε

1 + ε̄ p
H2(p)

]

= H2(p)
1

1−ε + p
. (11)

Since the lower bound (11) holds for all p ∈ [0, 0.5], max-
imization on this parameter can be performed and concludes
the proof of this theorem. �

C. Dicode Erasure Channel (DEC)

The DEC [16], [18], as described in Fig. 5, is a simpli-
fied version of the well-known dicode channel with AWGN.
Specifically, a binary input goes through a discrete-time linear
filter described by 1− D, i.e., the filter outputs xi −xi−1 on the
real line, and this is then transmitted on an erasure channel.

Inputs are taken from X = {0, 1}, while outputs take values
in Y = {−1, 0, 1, ?}. The channel output is yi = xi − xi−1
with probability 1 − ε, and equals yi =? with probability ε,
where ε is a parameter in [0, 1]. It is evident that the DEC
is a unifilar FSC if the channel state is taken as the previous
input, i.e., si = xi .

The following theorem encapsulates the feedback capacity
for the DEC.
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Fig. 6. Q-graph for the DEC with an output alphabet Y = {0, 1,−1, ?}.

Theorem 5 (DEC Capacity): The feedback capacity of the
DEC is:

CDEC = max
0≤p≤1

(1 − ε)
p + εH2(p)

ε + (1 − ε)p
. (13)

Theorem 5 is obtained by calculating the upper bound with
the Q-graph from Fig. 6, and the lower bound follows from
the sufficient condition provided in Theorem 3. Indeed, this
Q-graph has a nice interpretation as Q = 1 and Q = 2
correspond to a perfect knowledge of the channel state by
the decoder, while Q = 3 implies that the decoder does not
know the channel state.

Proof of Theorem 5: For the Q-graph in Fig. 6, its
corresponding (S, Q)-graph can be described with a matrix.
Each input to the matrix corresponds to a pair (x, y) of input
and output, and we use φ as a notation for all possible channel
outputs.

(S, Q) (0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3)

(0, 1) (0, 0) − − (1, 1) (0, ?) (1, ?)
(1, 1) (0,−1) (1, 0) − − (0, ?) (1, ?)
(0, 2) − − (0, 0) (1, 1) (0, ?) (1, ?)
(1, 2) (0,−1) − − (1, 0) (0, ?) (1, ?)
(0, 3) − − − (1, 1) (0, φ) (1, ?)
(1, 3) (0,−1) − − − (0, ?) (1, φ)

From the matrix above, it can be noted that the nodes (S = 1,
Q = 1) and (S = 0, Q = 2) are not in the single closed
communicating class that is formed by all other states. This
closed class is aperiodic since there is a loop with length 1
for the node (S = 0, Q = 1).

By exploiting the symmetry of the channel and the (S, Q)-
graph, the maximization on input distributions can be limited
to:

p(X = 0|S = 0, Q = 1) = p(X = 1|S = 1, Q = 2) = a

p(X = 1|S = 0, Q = 3) = p(X = 0|S = 1, Q = 3) = p,

where a, p ∈ [0, 1] are the parameters of the input distribution.
It follows that the stationary distribution is:

π0,1 = (1 − ε)p

2ε + 2(1 − ε)p

π1,2 = (1 − ε)p

2ε + 2(1 − ε)p

π0,3 = ε

2ε + 2(1 − ε)p

π1,3 = ε

2ε + 2(1 − ε)p
, (14)

where πi, j = π(S = i, Q = j).
Consider the following chain of equalities:

H (Y |Q)

=
3∑

q=1

(π0,q + π1,q)H (Y |Q = q)

(a)= (1 − ε)p

ε + (1 − ε)p
H3((1 − ε)a, (1 − ε)(1 − a))

+ ε

ε + (1 − ε)p
H4

(
ε, (1 − ε)

p

2
, (1 − ε)

p

2

)

(b)= (1 − ε)

[
(1 − ε)pH2(a)

ε + (1 − ε)p
+ εH3

( p
2 , p

2

)

ε + (1 − ε)p

]
+ H2(ε)

(c)= (1 − ε)

[
(1 − ε)pH2(a)

ε + (1 − ε)p
+ ε(p + H2(p))

ε + (1 − ε)p

]
+ H2(ε),

(15)

where (a) is obtained by substituting the stationary distribution
from (14), (b) follows from the identity H3((1 − δ)γ, (1 −
δ)(1 − γ )) = H2(δ) + (1 − δ)H2(γ ) by choosing δ = ε, γ =
a. Finally, (c) follows from the above identity by choosing
1 − δ = p and γ = 1

2 .
The upper bound on the capacity can then be established:

CDEC ≤ sup
p(x |s,q)∈Pπ

I (X, S; Y |Q)

(a)= max
(a,p)∈[0,1]2

H (Y |Q) − H (Y |X, S, Q)

(b)= max
(a,p)∈[0,1]2

(1 − ε)

[
(1−ε)pH2(a)

ε+(1−ε)p
+ ε(p+H2(p))

ε+(1−ε)p

]

(c)= max
p∈[0,1](1 − ε)

p + εH2(p)

ε + (1 − ε)p
,

where (a) follows from H (Y |X, S, Q) = H2(ε), (b) follows
from (15) and H (Y |X, S, Q) = H2(ε) and (c) follows from
H2(a) ≤ 1.

For the lower bound on feedback capacity, we simply take
the maximizing distribution from the upper bound p(X =
0|S = 0, Q = 1) = p(X = 1|S = 1, Q = 2) = 0.5 and
p(X = 1|S = 0, Q = 3) = p(X = 0|S = 1, Q = 3) = p for
some p ∈ [0, 1] and show that the BCJR-invariant property is
satisfied. This input distribution is an aperiodic input since
the (S, Q)-graph has a loop with length 1. The stationary
distribution that is given in (14) gives that [π(S = 0|Q = 1),
π(S = 0|Q = 2), π(S = 0|Q = 3)] = [1, 0, 0.5]. The BCJR
equation is then calculated in (12), as shown at the top the
next page.

To show the BCJR-invariant property, it is convenient to
treat each output observation separately. First, it is easy to
note that all edges with Y = −1 or Y = 1 lead to Q = 1 and
Q = 2, respectively, which approves the invariant property
since π(S = 0|Q = 1) = 1 and π(S = 0|Q = 2) = 0. For
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p(S = 0|Q =g(q, y))=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if y = −1,

0 if y = 1,

π(S = 0|Q = q)p(X = 0|S = 0, Q = q) + π(S = 1|Q = q)p(X = 1|S = 0, Q = q) if y =?,
π(S = 0|Q = q)p(X = 0|S = 0, Q = q)

π(S = 0|Q = q)p(X = 0|S = 0, Q = q) + π(S = 1|Q = q)p(X = 1|S = 1, Q = q)
if y = 0.

(12)

Fig. 7. Q-graph for the trapdoor channel.

the output Y =?, one can show that π(S = 0‖Q = i)p(X =
0|S = 0, Q = i)+π(S = 1|qi)p(X = 1|S = 0, Q = i) = 0.5,
for i = 1, 2, 3. For the output Y = 0, the BCJR-invariant
property can be established in a similar manner and this
concludes that the input is BCJR-invariant. Since we used
the Q-graph and the maximizer of the upper bound, there
is no need to calculate the expression I (X, S; Y |Q) since,
obviously, it equals the upper bound.

D. Trapdoor Channel

The trapdoor channel was invented by Blackwell [19] in
1961. The capacity of this channel has been investigated
in several papers and still remained an open problem. The
channel has S = X = Y = {0, 1}. The output of the
channel yt is equal to st−1 with probability p and equals
xt with probability 1 − p. Here, p is the channel parameter
and can take any value in [0, 1]. Finally, the channel state is
st = st−1 ⊕ xt ⊕ yt , where ⊕ is the XOR operation.

In [7], the feedback capacity for the trapdoor channel with
parameter p = 0.5 was shown to be log2 φ, where φ is the
known golden ratio. The solution relied on a DP formulation of
the problem and finding a solution to the Bellman equation.
Here, we provide an alternative converse for p = 0.5 that
simplifies the proof in [7].

Applying Theorem 2 with the Q-graph in Fig. 7 gives the
following.

Theorem 6 (Upper Bound): The feedback capacity of the
trapdoor channel is bounded by

CTrap(p) ≤ max
(α1,α2,α3)∈[0,1]3

2(κ1 + κ2)H2

(
κ1(1 − α1(1 − p)) + κ2(1 − p)α2

κ1 + κ2

)

− 2H2(p)(κ1α1 + κ2α2 − 0.5α3) + 2κ3, (16)

where

δ = 4α1 p − 2α3 + 2

+ 2(1 − p)[α1 − α2 + α1α3 − α1α2 + α2α3]
κ1 = (1 − α3)(1 − α2(1 − p))

δ

Fig. 8. Expanded Q-graph for the trapdoor channel.

κ2 = α1(p + α3(1 − p))

δ

κ3 = α1(1 − α2(1 − p))

δ
.

The proof of Theorem 6 is omitted and follows by direct
application of Theorem 2 with the Q-graph from Fig. 7.
A special case of Theorem 6 is when p = 0.5 and careful
calculation gives

Corollary 1 (Upper Bound, p=0.5): The feedback capacity
of the trapdoor channel with p = 0.5 is bounded by

CTrap(0.5) ≤ log2 φ. (17)

Therefore, it follows that the upper bound from Theorem 6
is tight for p = 0.5. Note that, at this point, the tightness of
the upper bound follows from our previous knowledge of the
feedback capacity in [7]. Next, we use Theorem 3 to show that
log2 φ is achievable not only for p = 0.5 but for all p ∈ [0, 1].

Theorem 7 (Lower Bound): The feedback capacity of the
trapdoor channel is bounded by

CTrap(p) ≥ log2 φ, (18)

for all p.
Corollary 1 and Theorem 7 provide an alternative proof for the
feedback capacity presented in [7]. The proofs of Corollary 1
and Theorem 7 appear in Appendix C and Appendix D,
respectively.

Let us extend our realm of interest to a general parameter;
numerical evaluation of Theorem 6 and a lower bound that
is obtained from DP simulations give the plotted results in
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Fig. 9. A comparison between a lower bound (LB) on the feedback capacity
that is achieved from DP simulation, and two upper bounds that were obtained
from Theorem 2. In (a), the upper bound is calculated with the Q-graph
(Fig. 7), while in (b) the upper bound is calculated with the expanded
Q-graph (Fig. 8).

Fig. 9. Coarse inspection shows that the upper bound and
the lower bound do not coincide in general, except for when
p = 0.5. Now, an expanded Q-graph is introduced in Fig. 8
and is plotted in Fig. 9 with the same lower bound from DP
simulations. It can be seen that the new upper bound shows a
significant improvement in comparison with the upper bound
in Fig. 9.

V. PROOF OF THEOREM 2

An outline of the proof of Theorem 2 is given here and
comprises three building blocks appearing in Lemmas 2 - 4.
The first step expresses the essence of our bound and is
encapsulated in the following lemma:

Lemma 2 (Step 1): For a strongly connected unifilar FSC,
where s0 is available to both the encoder and the decoder,

Cfb ≤ sup
{p(xt |st−1,qt−1)}t≥1

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1),

(19)

for all Q-graphs. The joint distribution is calculated with
respect to p(s0, q0)

∏N
i=1 p(xi |si−1, qi−1)p(yi |xi , si−1)�{si =

f (si−1, xi , yi )}�{qi = g(qi−1, yi )}.
The proof of Lemma 2 appears in Section V-A.

The upper bound in Lemma 2 is still difficult to compute
since it is given by a limiting expression. The second step of
the proof is tedious but necessary for our derivation, as we
show that it is sufficient to restrict our maximization domain
to the stationary inputs distribution. This step relies heavily
on the DP formulation of the upper bound in (19); then, a
known result from the literature is used to show the existence
of an optimal stationary policy (equivalent to stationary inputs
distribution). This second step is precisely outlined as follows:

Lemma 3 (Step 2): It is sufficient to maximize the upper
bound in (19) over stationary input distributions, i.e.,

sup
{p(xt |st−1,qt−1)}t≥1

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

= sup
p(x |s,q)

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1), (20)

for all irreducible Q-graphs where q0 lies in an aperiodic
closed class. The input distribution in the RHS of (20) is
p(x |s, q) at all times.
The proof of Lemma 3 appears in Section V-B.

Finally, the calculation of the upper bound with stationary
inputs can be made; a minor restriction on the maximization
domain verifies the existence of a stationary distribution on
the (S, Q)-graph and, then,

Lemma 4 (Step 3):

sup
p(x |s,q)

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

≤ sup
p(x |s,q)∈Pπ

I (X, S; Y |Q), (21)

where Pπ is defined in (3). If the supremum is attained with
an aperiodic input then (21) holds with equality.
The proof of Lemma 4 appears in Section V-C.

A. Proof of Lemma 2 (Step 1):

The proof comprises of the following steps:

Cfb
(a)= lim

N→∞ sup
{p(xt |st−1,yt−1)}N

t=1

1

N

N∑

i=1

I (Xi , Si−1; Yi |Y i−1)

= lim
N→∞ sup

{p(xt |st−1,yt−1)}N
t=1

1

N

N∑

i=1

[
H (Yi |Y i−1)

− H (Yi |Xi , Si−1)
]

(b)≤ lim
N→∞ sup

{p(xt |st−1,yt−1)}N
t=1

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

(c)= lim
N→∞ sup

{p(xt |st−1,qt−1)}N
t=1

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)
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(d)= sup
{p(xt |st−1,qt−1)}t≥1

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1).

where

(a) follows from [7, Th. 1, eq. (18)];
(b) follows from the fact that conditioning reduces entropy

and from the Markov chain of the channel Yi −
(Xi , Si−1) − Y i−1 − �i−1(Y i−1) � Qi−1;

(c) follows from Lemma 5;
(d) follows from the arguments in [7, Lemma 4].

�
Lemma 5: Given (s0, q0), the maximization domain can be

restricted as

sup
{p(xt |st−1,yt−1)}N

t=1

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

= sup
{p(xt |st−1,qt−1)}N

t=1

N∑

i=1

I (Xi , Si−1; Yi |Qi−1), (22)

for all N.
Proof of Lemma 5: It is shown that the same objective is

achieved when exchanging the domain {p(xt |st−1, yt−1)}N
t=1

with the domain {p(xt |st−1, qt−1)}N
t=1; the second

domain is calculated as the marginal distribution of
{p(xt , st−1, yt−1)}N

t=1 that is induced by the first domain.
To this end, we show that two distributions
{p1(xt |st−1, yt−1)}N

t=1 and {p2(xt |st−1, yt−1)}N
t=1 with

the same induced marginal distribution { p̃(xt |st−1, qt−1)}N
t=1

have the same objective. The objective is determined by
{p(yt , xt , st−1, qt−1)}N

t=1 since the mutual information at each
time is a function of one instance from this set.

This is shown using induction: for n = 1, write
p(x1, y1, s0, q0) = p(y1|x1, s0) p̃(x1|s0, q0)p(s0, q0), indicat-
ing that reward depends on the marginal p̃ only. Assume
that {p(xt , yt , st−1, qt−1)}N

t=1 is induced by both input dis-
tributions and, thus, induce the same N-th objective. Let
us show that p(xN+1, yN+1, sN , qN ) depends on the mar-
ginal p̃ only. First, note that p(sN , qN ) is determined
by the N-th step since qN is a function of (qN−1, yN )
and sN is a function of (xN , yN , sN−1). Furthermore,
p(xN+1|sN , qN ) is identical under both input distributions
and p(yN+1|sN , xN+1, qN ) is given by the channel specifica-
tion. Thus, p(xN+1, yN+1, sN , qN ) is equal under both input
distributions.

B. Proof of Lemma 3 (Step 2):

In this section, the goal is to show that stationary inputs
are optimal for the upper bound derived in Lemma 2. The
first stage is to formulate the upper bound as a DP problem.
We then present a known result from the DP literature [20]
that states sufficient conditions for the existence of an optimal
stationary policy. Finally, it is proved that these conditions
are satisfied in our DP problem and, thus, the existence of an
optimal stationary policy is established.

1) DP Formulation: The DP definitions presented here
follow the formulation in [21]; similar formulations can also
be found in [6], [7], and [14].

Define the DP state at time t (prior to the t-th action) as the
probability vector zt−1 � p(st−1, qt−1) which takes values in
(|S| × |Q| − 1)-dimensional simplex; throughout this section
we denote the state space by Z . As the initial state, (s0, q0),
lies in a closed communicating class, A, the state space is
taken as the (|A| − 1)-dimensional unit simplex. Actions are
valid conditional distributions p(x |s, q) and, specifically, the
action at time t is ut � p(xt |st−1, qt−1). The reward gained
at time t is taken to be I (Xt , St−1; Yt |Qt−1). Note that this is
a deterministic DP as no disturbance is defined.

To show that the above definitions hold for the DP prop-
erties, we must verify that there exists a deterministic next-
state function and that the reward at time t is a function of
(zt−1, ut ):

Dynamics: We show that there exists a deterministic next-
state function, denoted by F(·), such that zt = F(zt−1, ut ).
Each state, zt , is a collection of the probabilities p(st , qt ), and
can be calculated as follows:

p(st , qt )

=
∑

yt ,xt ,st−1,qt−1

p(st , qt , yt , xt , st−1, qt−1)

=
∑

yt ,xt ,st−1,qt−1

p(st , qt |xt , yt , st−1, qt−1)p(yt |xt , st−1)

× p(xt |st−1, qt−1)p(st−1, qt−1)
(a)=

∑

yt ,xt ,st−1,qt−1

�{st = f (xt , yt , st−1)}�{qt = g(yt , qt−1)}

× p(yt |xt , st−1)p(xt |st−1, qt−1)p(st−1, qt−1), (23)

where step (a) follows from the facts that the state in a
unifilar channel is a function of the triplet (xt , yt , st−1), and the
Q-graph function g : Q × Y → Q. Recall that zt−1
consists of all entries p(st−1, qt−1) and the actions are ut =
p(xt |st−1, qt−1); therefore, each entry in zt is a time-invariant
function of the pair (zt−1, ut ).

Reward: Let us show that each reward is a func-
tion of the current state and the chosen actions. The
reward at time t is I (Xt , St−1; Yt |Qt−1) and is a func-
tion of p(yt , xt , st−1, qt−1), which can be written as
p(yt |xt , st−1)p(xt |st−1, qt−1)p(st−1, qt−1). The latter factor-
ization of the joint distribution is a function of the state
zt−1 = p(st−1, qt−1), the action ut = p(xt |st−1, qt−1) and
the channel p(yt |xt , st−1). From now on, we use the notation
R(z, u) for the mutual information that is achieved with a state
z and action u.

The DP formulation above implies that the optimal average
reward is

ρ∗ = sup
ω∞

lim inf
N→∞

1

N

N∑

t=1

I (Xt , St−1; Yt |Qt−1),

where ω∞ corresponds to a policy, i.e., an infinite sequence
of actions. Note that ρ∗ is equal to the upper bound in (19),
so this is an equivalent DP problem for the upper bound
calculation.
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In addition, we define for β < 1 and initial state ξ ∈ Z
their optimal discounted reward as

νβ(ξ) = sup
ω∞

∞∑

t=1

β t I (Xt , St−1; Yt |Qt−1).

2) Sufficient Conditions for the Existence of an Optimal
Stationary Policy:

(C1) The transition kernel is continuous with respect to weak
convergence in P(Z). In our case, the transition kernel
is defined by the function F(·, ·) in (23).

(C2) The state space, Z , is a locally compact space with a
countable base.

(C3) The multifunction U(z) is upper semi-continuous. The
notation U(z) stands for allowed actions at state z.
In our case, U(z) is the set of all conditional distributions
of the form p(x |s, q), i.e., the set of allowed actions
equals the full set of actions for all z.

(C4) The reward function R(z, u) is lower semi-continuous
in (z, u).

(C5) Let mβ = supz νβ(z); then supβ<1{mβ − νβ(z)} < ∞
for all z ∈ Z .

In [20], the above conditions were presented for a model
where the optimal average reward is defined as the mini-
mization over all policies. Since our model is defined as a
maximization problem, trivial modifications should be made
in (C3)-(C4); however, we will show that in our problem
these conditions are satisfied in both the upper and lower
cases.

Theorem 8 ([20, Th. 3.8]): If (C1)-(C5) are satisfied then
there exists an optimal stationary policy for the average
reward DP problem.

Returning to our problem, we will show that (C1)-(C5) are
satisfied and this leads to the conclusion that there exists an
optimal stationary policy.

Conditions (C1)-(C5) are satisfied in our problem:
(C1) The transition kernel is continuous with respect to

weak convergence if the following is satisfied: for all v(·) ∈
Cb(Z)(continuous and bounded functions on Z),

∫

Z
v(y)F(dy|·, ·) ∈ Cb(Z × U). (24)

The transition kernel, F(dy|z, u), is a dirac measure and,
therefore, integration over y (24) returns v(F(z, u)).

The function v(F(z, u)) is bounded since v(·) is bounded.
For the continuity, note that by (23) each element in F(z, u)
is continuous with respect to (z, u) (in any norm) since it is
a finite sum of elements in (z, u). Since the function v(·) is
continuous, the composition of F(z, u) into v(·) is continuous
in (z, u). To conclude, the composition v(F(z, u)) is bounded
and continuous with respect to (z, u).

(C2) The state space is the (|A| − 1)-dimensional unit
simplex. As the (|A| − 1) dimensional simplex is a closed
subset of the |A|-dimensional unit cube, it is locally compact
with a countable base.

(C3) The general scenario is where the action space can
depend on z; however, in our problem U(z) is constant in z
and, thus, trivially continuous in z.

(C4) The mutual information can be written as a sum
of entropies, where each entropy is continuous in the joint
distribution of (y, x, s, q) that is induced by (z, u); therefore,
it is both lower and upper semi-continuous.

(C5) By [20, Proposition 2.1], conditions (C1)-(C4) imply
that there exists an optimal stationary policy for the discounted
problem, which is denoted here as fβ = p∗

β(x |s, q). The policy
fβ implies a structure on the (S, Q)-graph and might result in
several closed communicating classes in the case where there
are edges with probability zero. Denote by A the (S, Q)-graph
after removing edges with p∗

β(x |s, q) = 0. It is convenient
to partition the analysis for two cases based on the structure
of A:

Case A: The graph induced by the policy fβ , A, has a
single closed communicating class.
Case B: The graph induced by the policy fβ , A, has more
than one closed communicating class.

Case A: With some abuse of terminology, we will refer
to A as the closed communicating class in the (S, Q)-graph,
since all nodes outside this class are inessential in the infinite-
horizon regime. Denote by T the transfer matrix induced by
fβ on the single closed class, and by D its period. Since A is
irreducible, the graph can be partitioned into A0, A1, . . . AD−1
disjoint classes on a cycle based on a period equivalence. The
stationary distribution of the Markov chain on A is denoted
by π fβ .

Consider the D-blocks Markov chain and, specifically,
a Markov chain with transition matrix T D . Since D is
the period of the original graph, the new Markov chain
implies D separate aperiodic and irreducible Markov chains.
Each Markov chain is on a class Ad and we denote
by π(Ad) the stationary distribution of each class Ad

where d ∈ [0 : D − 1].
For initial state ξ ∈ P(Z), denote its weights vector

as W (ξ) with d inputs, where the d-th input is wd (ξ) =∑
(s,q)∈Ad

ξ(s, q). Define for all k:

πk(ξ) �
[w[k](ξ)π(A0),w[k+1](ξ)π(A1), . . . , w[k+D−1](ξ)π(AD−1)],

(25)

where the indices with [·] are taken modulo D. Finally, the
vectors in (25) are used to define

νπ
β (ξ) =

∞∑

n=1

βn R(πn(ξ), fβ)

ν∗
β =

∞∑

n=1

βn R(π fβ , fβ).

The expression νπ
β (ξ) corresponds to the discounted reward

that is achieved with states that are moved periodically through
all possibilities in (25). The first step is to show that for a fixed
initial state, the actual reward and its corresponding periodic
reward, νπ

β (ξ) are bounded as follows:
Lemma 6: For all initial states, ξ ,

sup
β

|νβ(ξ) − νπ
β (ξ)| < ∞.
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The second step of the proof is to show that the achieved
periodic reward (which is a function of the initial state) is
bounded with respect to some constant quantity, which does
not depend on ξ :

Lemma 7: For all initial states, ξ ,

sup
β

|ν∗
β − νπ

β (ξ)| < ∞.

A direct conclusion from the above two lemmas is the required
condition (C5):

sup
β

|νβ(ξ) − νβ(ξ ′)|
(a)≤ 2 sup

β
max

ξ
|νβ(ξ) − ν∗

β |
(a)≤ 2 sup

β
max

ξ

(
|νβ(ξ) − νπ

β (ξ)| + |νπ
β (ξ) − ν∗

β |
)

(b)
< ∞,

where (a) follows from the triangle inequality and (b) follows
from Lemma 6 and Lemma 7.

The proofs of Lemma 6 and Lemma 7 appear in Appendix
E and Appendix F, respectively.

Their proof requires the following preliminaries on total-
variation distance and Markov chains.

Definition 1: For finite alphabet, X , and two PMFs, pX

and qX , the total-variation distance is

||pX − qX ||T V � 1
2

∑
x |p(x) − q(x)|.

The following Lemma summarizes two properties of the total-
variation distance:

Lemma 8 ([22, Lemma V.I–V.II]): For two joint PMFs,
pX,Y and qX,Y on a finite alphabet X×Y , their total variation
distance satisfies

‖pX − qX‖T V ≤ ‖pX,Y − qX,Y ‖T V ,

and the equality holds if p(y|x) = q(y|x).
The following is an upper bound on the convergence rate

of aperiodic Markov chains.
Lemma 9 ([23, Th. 4.9]): Let T be a transfer matrix of an

irreducible and aperiodic Markov chain on a finite space X
with a stationary distribution π . Then there exist constants
α ∈ (0, 1) and C > 0 such that

max
ξ∈P(X)

‖ξT n − π‖T V ≤ Cαn .

The Markov chain in our problem is not necessarily aperi-
odic; therefore, a slight adaptation of Lemma 9 for the periodic
case is now given.

Lemma 10 (Convergence of Periodic Markov Chains): Let
T be a transfer matrix of an irreducible Markov chain with
period D on a space X . Then there exist constants α ∈ (0, 1)
and C > 0 such that for all ξ

‖ξT nD+k − πk(ξ)‖T V ≤ Cαn,

where πk(ξ) are defined in (25).

Proof of Lemma 10: For some k ∈ [0 : D − 1] and for all
ξ , consider

||ξT nD+k − πk(ξ)||T V

= 1

2

∑

(s,q)

|ξT nD+k(s, q) − πk(ξ)(s, q)|

=
∑

d

1

2

∑

(s,q)∈Ad

|ξT nD+k(s, q) − πk(ξ)(s, q)|

(a)=
∑

d

1

2

∑

(s,q)∈Ad

|ξT nD+k(s, q) − w[k+d](ξ)π(Ad)(s, q)|

=
∑

d

w[k+d](ξ)
1

2

∑

(s,q)∈Ad

∣∣∣∣
ξT nD+k(s, q)

w[k+d](ξ)
− π(Ad)(s, q)

∣∣∣∣

(b)=
∑

d

w[k+d](ξ)

∣∣∣∣

∣∣∣∣
ξT nD+k

w[k+d](ξ)
− π(Ad)

∣∣∣∣

∣∣∣∣
T V

(c)≤
∑

d

w[k+d](ξ)Cdαn
d

≤
∑

d

w[k+d](ξ) max
d

Cdαn
d

(d)

� Cαn,

where (a) follows by substituting Eq. (25), (b) follows by
the total-variation distance definition when conditioned on the
class Ad , (c) follows from Lemma 9 and (d) follows by∑

d w[k+d](ξ) = 1.
Case B: We give an outline of the proof for case B,

as it essentially follows the same steps used for Case A.
In this scenario, there are several closed communicating
classes, denoted by A1, . . . , Ak , and their corresponding peri-
ods are D1, . . . , Dk . The technique used in Case A is com-
posed of two steps: the first is to show that the reward is
bounded with a reward that has some periodic behavior, as
argued in Lemma 6, and the second step is to show that
this periodic reward is bounded with respect to some constant
quantity (with respect to the initial state).

The first step is addressed by studying the periodic behavior
of each closed class, as was done in Case A. Clearly, the
initial weight of each closed class is time-invariant since
weight cannot move between closed classes. It follows that
the common period of all classes is simply the multiplication
of all periods, i.e., D = ∏

i Di . This concludes the analysis
that is required for the first part of the proof. The second part
of the proof follows the lines used for the proof of Lemma 7;
specifically, the upper bound derivation can be followed with
the defined D, and the ε-policy construction is identical.

C. Proof of Lemma 4 (Step 3)

Before presenting the proof of Lemma 4, we impose a
restriction on the maximization domain:

Lemma 11: It is sufficient to take the supremum in (21) over
p(x |s, q) which lies in Pπ .

Proof of Lemma 11: In this proof, we will take the
maximizer of the LHS in (21), and show that there exists a
distribution from Pπ that induces the maximal reward.
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Let p∗(x |s, q) be a maximizer which implies two closed
communicating classes, A1 and A2, with average rewards, R1
and R2, respectively. Construct p̃(x |s, q) exactly as p∗(x |s, q),
but where positive probabilities are given for edges from A1
to A2. This modification is legitimate since the (S, Q)-graph
is irreducible. This modification did not effect the rewards for
initial states in A2, while the rewards of initial states in A1
might be changed.

By the optimality of p∗(x |s, q), the reward R1 cannot be
increased and, therefore, R1 = R2. Since R1 = R2, the policy
induced by p̃(x |s, q) ∈ Pπ achieves the same optimal rewards
as the maximizer. The above argument can be extended to any
number of closed communicating classes since the graph is
finite.

By the definition of the set Pπ , there is a single closed
communicating class for each input distribution p(x |s, q). Let
A denote the graph which describes the closed class and
let TA be its transition probability matrix. Since A is
irreducible, there exists a stationary distribution π =
[π1, π2, . . . , π|A|] which is the unique solution for the equation
πTA = π . Here, the stationary distribution is in the Cesàro
sum sense, i.e.,

lim
n→∞

1

n

n∑

m=1

T m
A =

⎛

⎜⎝
π1 π2 . . . π|A|
...

...
π1 π2 . . . π|A|

⎞

⎟⎠ .

Let |D| be the period of the graph A, and let A1, . . . A|D|
be the disjoint subsets of nodes based on a period equivalence.
The dependence of A, |D| and Ai on p(x |s, q) is omitted.

Proof of Lemma 4: Consider the following chain of
equalities:

sup
p(x |s,q)

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

(a)= sup
p(x |s,q)∈Pπ

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

(b)≤ sup
p(x |s,q)∈Pπ

lim inf
N→∞

1

N |D|
N |D|∑

i=1

I (Xi , Si−1; Yi |Qi−1)

(c)= sup
p(x |s,q)∈Pπ

lim inf
N→∞

1

N |D|
|D|∑

d=1

N−1∑

i=0

I (Xi|D|+d , Si|D|+d−1; Yi|D|+d |Qi|D|+d−1)

(d)= sup
p(x |s,q)∈Pπ

1

|D|
|D|∑

d=1

lim inf
N→∞

1

N

N−1∑

i=0

I (Xi|D|+d , Si|D|+d−1; Yi|D|+d |Qi|D|+d−1)

(e)= sup
p(x |s,q)∈Pπ

1

|D|
∑

d∈D
I (X, Sd ; Y |Qd)

( f )= sup
p(x |s,q)∈Pπ

I (X, S; Y |Q, D)

= sup
p(x |s,q)

H (Y |Q, D) − H (Y |X, S, Q, D)

(g)≤ sup
p(x |s,q)∈Pπ

H (Y |Q) − H (Y |X, S, Q)

= sup
p(x |s,q)∈Pπ

I (Y ; X, S|Q), (26)

where
(a) follows from Lemma 11;
(b) follows by taking the limit on a subsequence of N , i.e.,

the sequence |D|, 2|D|, . . . ;
(c) follows by re-indexing the summation in blocks of D

elements;
(d) follows by exchanging the order of the limit and sum due

to the limit existence of each term in the sum;
(e) follows by calculating the limit for a fixed d . Specifically,

the value of d determines a class Ad . The distribution
of p(si|D|+d−1, qi|D|+d−1) tends to the stationary dis-
tribution since the chain is aperiodic and irreducible.
This, in turn, gives that the distribution for each d is
pd(y, x, s, q) = p(y, x |s, q)πd(s, q), where

πd(s, q) =
⎧
⎨

⎩

π(s, q)∑
(s,q)∈Ad

π(s, q)
if (s, q) ∈ Ad;

0 otherwise.
.

(27)

(f) follows by defining a uniform RV, D, on [1 :
|D|]. The joint distribution is p(y, x, s, q, d) =
p(y, x |s, q)πd(s, q)p(d);

(g) follows from the Markov Y − (X, S) − D and the fact
that conditioning reduces entropy. This expression is
calculated with respect to p(s, q, x, y), which is the
marginal distribution of p(d)πd(s, q)p(x |s, q)p(y|x, s).
Explicit calculation gives that

p(s, q) =
∑

d

p(d)πd(s, q)

(∗)= 1

|D|
π(s, q)∑

(s,q)∈Ad
π(s, q)

(∗∗)= 1

|D|
π(s, q)

1
|D|

= π(s, q),

where (∗) is obtained by substituting the expression from
(27) and (∗∗) follows from

∑
(s,q)∈Ad

π(s, q) = 1
|D| , for

all d , since each class is on a cycle.
To conclude the proof, we have shown in (26) that
I (X, S; Y |Q) with π(s, q)p(x |s, q)p(y|x, s) is an upper
bound.

VI. CONCLUSIONS

An upper bound on the feedback capacity of unifilar FSCs
was derived. The upper bound is expressed as a computable
single-letter expression and it was shown how the bound
can be computed for known capacity results. Calculation of
the upper bound for the DEC resulted a new capacity result
together with the sufficient condition for the optimality of the
upper bound. For all studied channels, the optimal Q-graph
was obtained from DP simulations. A further direction that is
under investigation is a structured method for finding such an
optimal Q-graph without DP simulations.

The upper bound gives a useful insight into the structure
of optimal output processes. Specifically, as the bound is
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tight for all known capacities of unifilar FSCs, this provides
a unified structure for the optimal output processes. The
technique used in this paper might also be applied to any
entropy rate of a random process. Specifically, for the n-th
instance, H (Yn|Y n−1), the process history can be quantized
using a Q-graph. However, even for FSCs without feedback,
the obtained upper bound is not computable since the contexts
are not revealed to the encoder.

APPENDIX A
PROOF OF LEMMA 1

Each node has an outgoing edge since for each s there exists
(x, y) such that p(y|x, s) > 0. Therefore, each node (s, q) has
an outgoing edge (s, q) → (g(q, y), f (s, x, y)). It should be
clear that each node has at least one outgoing edge to another
node since, if a node (s, q) has edges to itself only, this means
that for all (x, y), s = f (x, y, s), implying |S| = 1. Therefore,
by the pigeonhole principle, there exists at least one closed
communicating class.

To show that each closed class has all q ∈ Q, recall that the
Q-graph is irreducible and, therefore, for each pair (q0, qn),
there exists a path q0 → qn labelled by y1 . . . yn such that qi =
g(yi , qi−1). For the first label, y1, there exists (x1, s1) such that
p(y1|x1, s1) > 0. Then, for a node (s, q1) in the closed class
there is an edge to ( f (y1, x1, s1), q2); this argument can be
repeated until a node of the form (·, qn) is reached. Since it
is a closed communicating class, each path leads to a node in
this class.

The proof that each closed class has all s ∈ S is similar
to the previous argument, but using the strongly connected
property of states, i.e., that the states graph is irreducible. For
each s, s′, there exists a path labelled by (x1, y1), (x2, y2), . . .
with probabilities p(yi |xi , si−1) > 0 such that s reaches s′.
Therefore, for each (s, q) there is a path to (s′, ·) for all s′. �

APPENDIX B
PROOF OF THEOREM 3

In this proof, we show that BCJR-invariant inputs induce
the Markov chain Yt − Qt−1 − Y t−1 for all t . This Markov
chain gives, in turn, that the feedback capacity expression with
the chosen input is I (X, S; Y |Q).

Since inputs p(x |s, q) are assumed to be aperiodic inputs,
it may be assumed that the initial distribution is π(s, q) since
it is reached with high probability. We will show by induction
that the value of the BCJR estimator is determined by a context
of sequence, i.e., p(St = s|Y t = yt) = π(S = s|Q = �(yt )).
At time t − 1, assume that p(St−1 = s|Y t−1 = yt−1) =
πS=s|Q=q for all s ∈ S, where q � �(yt−1). Then, one can
calculate at time t ,

p(St = s|Y t = yt )
(a)= Bs(π(S|Q = q, yt ))
(b)= π(S = s|Q = g(q, yt)),

where (a) follows from the induction hypothesis and the
forward-recursive relation, (5), and (b) follows from the
BCJR-invariant property.

From the induction proof above, we have that p(St−1 =
s|yt−1) = π(S = s|Q = q), so we can show the Markov

chain Yt − Qt−1 − Y t−1:

p(yt |yt−1, qt−1)

=
∑

st−1,xt

p(yt , xt , st−1|yt−1, qt−1)

=
∑

st−1,xt

p(yt |xt , st−1)p(xt |st−1, qt−1, yt−1)

× p(st−1|yt−1, qt−1)
(a)=

∑

st−1,xt

p(yt |xt , st−1)p(xt |st−1, qt−1)π(st−1|qt−1)

= p(yt |qt−1), (28)

where (a) follows from the fact that the input xt depends
on the pair (st−1, qt−1) only, and the from the above
inductive argument which shows that p(st−1|yt−1, qt−1) =
π(st−1|qt−1).

Finally, the theorem can be proved by the following chain
of inequalities

Cfb
(a)= sup

{p(xt |st−1,yt−1)}t≥1

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Y i−1)

(b)= sup
{p(xt |st−1,yt−1)}t≥1

lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1) − I (Yi ; Y i−1|Qi−1)

(c)≥ lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)− I (Yi ; Y i−1|Qi−1)

(d)= lim inf
N→∞

1

N

N∑

i=1

I (Xi , Si−1; Yi |Qi−1)

(e)= I (X, S; Y |Q),

where

(a) follows from the capacity formula from Theorem 1;
(b) follows from re-writing I (Xi , Si−1; Yi |Y i−1) =

H (Yi |Y i−1) − H (Yi |Xi , Si−1) and adding
H (Yi |Qi−1) − H (Yi |Qi−1);

(c) follows by taking the input distribution to be
p(xt |st−1, yt−1) = p(x |s, q) for all t ;

(d) follows from the Markov chain Yi − Qi−1 −Y i−1 in (28);
(e) follows from the aperiodic Markov chain on the state

space S ×Q) which induces its corresponding stationary
distribution.

�
APPENDIX C

PROOF OF COROLLARY 1

In this section we show that CTrap(0.5) ≤ log2 φ. The upper
bound on the capacity of the trapdoor channel with p = 0.5
from Theorem 6 is:

CTrap(0.5) ≤ max
(α1,α2,α3)∈[0,1]3

λ1(α1, α2, α3)

+ λ2(α1, α2, α3),
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where

λ1(α1, α2, α3) = 2(κ1 + κ2)H2

(
κ1(1 − 0.5α1) + 0.5κ2α2

κ1 + κ2

)

λ2(α1, α2, α3) = 2(κ3 − κ1α1 − κ2α2 − 0.5α3)

and

δ = 3α1 − α2 + α1α3 − α1α2 + α2α3 − 2α3 + 2

κ1 = (1 − α3)(1 − 0.5α2)

δ

κ2 = 0.5α1(1 + α3)

δ

κ3 = α1(1 − 0.5α2)

δ
.

The proof will follow from the facts that λ2(·) ≤ 0 and
λ1(·) ≤ log φ. Let us begin with λ2(·) that is equal to

α2α3−α1α2−α1α3−2α3−α1α
2
3 −α2α

2
3 +2α2

3 −α1α2α3

δ
.

(30)

Since δ > 0, it is sufficient to verify that the numerator is
always negative; to this end, we write the numerator of (30)
as a polynomial of α3 when α1, α2 are some parameters:

α2
3(2 − α1 − α2) + α3(−2 − α1 + α2 − α1α2) − α1α2.

The coefficient of α2
3 is always positive and, therefore, it is

a convex function. It can also be noted that the function is
negative at both boundaries, α3 = 0 and α3 = 1, thus, for
α3 ∈ [0, 1] the function λ2(·) is upper bounded with zero.

Let us provide an upper bound for λ1(α1, α2, α3):

λ1(α1, α2, α3) = 2(κ1 + κ2)H2

(
κ1(1 − 0.5α1) + κ20.5α2

κ1 + κ2

)

(a)= 2(κ1 + κ2)H2

(
κ10.5α1 + κ2(1 − 0.5α2)

κ1 + κ2

)

(b)= 2(κ1 + κ2)H2

(
κ3

κ1 + κ2

)

(c)= 2(κ1 + κ2)H2

(
0.5 − (κ1 + κ2)

κ1 + κ2

)

(d)= 2
1

2(p + 1)
H2 (p)

(e)≤ max
0≤p≤1

H2(p)

1 + p
= log2 φ,

where
(a) follows from the symmetry of the binary entropy function,

i.e., H2(p) = H2(1 − p);
(b) follows from κ10.5α1 + κ2(1 − 0.5α2) = κ3;
(c) follows from κ1 + κ2 + κ3 = 0.5;

(d) follows by defining a new variable p(α1, α2, α3) =
0.5−(κ1+κ2)

κ1+κ2
;

(e) follows by taking the maximum over p, which is obvi-
ously restricted to [0, 1].

Finally, we can show that

CTrap(p)

≤ max
(α1,α2,α3)∈[0,1]3

λ1(·) + λ2(·)
≤ max

(α1,α2,α3)∈[0,1]3
λ1(·) + max

(α1,α2,α3)∈[0,1]3
λ2(·)

(a)≤ log2 φ,

where (a) follows from the derived upper bounds on each
function separately. �

APPENDIX D
PROOF OF THEOREM 7

The proof is based on Theorem 3 with the Q-graph from
Fig. 8 and the following input distribution:

p(X = 0|S = 0, Q = 1) = 1

p(X = 0|S = 0, Q = 2) = 1

p(X = 0|S = 0, Q = 3) = zp

1 − (1 − p)z

p(X = 0|S = 0, Q = 4) = zp

1 − (1 − p)z

p(X = 1|S = 1, Q = 1) = zp

1 − (1 − p)z

p(X = 1|S = 1, Q = 2) = zp

1 − (1 − p)z
p(X = 1|S = 1, Q = 3) = 1

p(X = 1|S = 1, Q = 4) = 1,

where z is a parameter in [0, 1] and p is the channel parameter.
Straightforward calculation gives that [π(S = 0|Q = 1),
π(S = 0|Q = 2), π(S = 0|Q = 3), π(S = 0|Q = 4)] =
[(1 − p)z, 1 − z, z, 1 − (1 − p)z].

The BCJR equation can be written as (29), as shown at the
bottom of this page. where δi = π(S = 0|Q = i)p(X =
0|S = 0, Q = i) and γi = π(S = 1|Q = i)p(X = 1|S =
1, Q = i). The explicit calculation of the BCJR-invariant
property is omitted here as it is identical to the calculations
for the DEC and the input-constrained BEC.

For simplicity, we denote α � zp
1−(1−p)z which can take any

value on [0, 1], and then we have the stationary vector of the
Q-graph:

[π(Q = 1), π(Q = 2), π(Q = 3), π(Q = 4)]
=

[
1 − α

4 − 2α
,

1

4 − 2α
,

1

4 − 2α
,

1 − α

4 − 2α

]
,

p(S = 0|Q = g(i, y)) =

⎧
⎪⎨

⎪⎩

δi

(1 − p)(δi − γi ) + pπ(S = 0|Q = i) + (1 − p)π(S = 1|Q = i)
if y = 0,

(1 − p)(π(S = 0|Q = i) − δi ) + p(π(S = 1|Q = i) − γi )

(1 − p)(π(S = 0|Q = i) − δi ) + π(S = 1|Q = i) + (1 − p)(γi − π(S = 1|Q = i))
if y = 1,

(29)
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and the per node rewards:

I (X, S; Y |Q = i) = z H2(p)

I (X, S; Y |Q = j) = H2(α) − (1 − α)z H2(p),

for i = 1, 4 and j = 2, 3.
Then, the lower bound can be computed:

CTrap(p) ≥ I (X, S; Y |Q)

= 2
(1 − α)z H2(p)

4 − 2α
+ 2

H2(α) − (1 − α)z H2(p)

4 − 2α

= H2(α)

2 − α
.

By taking a maximum over α, we obtain that the capacity is
lower bounded with log φ.

�

APPENDIX E
PROOF OF LEMMA 6

Before presenting the proof, we recall a known upper bound
on the difference between two entropies for different PMFs is
presented.

Lemma 12 ([24, Th. 3]): For two joint PMFs, pX and qX ,
on a finite set X ,

|Hp(X) − Hq(X)|
≤ ‖pX − qX‖T V log(|X | − 1) + H2(‖pX − qX‖T V ).

Proof of Lemma 6: For initial state ξ , the real distribution
on S ×Q at time nD + k is ξT nD+k , while πk(ξ) is the dis-
tribution that was defined in (25). Recall that the distribution
p(y, x |s, q) = p(y|x, s)p(x |s, q) is determined by the policy
and the channel. With some loss of accuracy, the dependence
on the initial state ξ might be omitted and the derivations hold
for all ξ .

Consider the rewards difference at time nD + k:

|R(ξT nD+k, fβ) − R(πk(ξ), fβ )| (31)

= | IT nD+k (X, S; Y |Q) − Iπk (X, S; Y |Q)|
(a)≤ |HT nD+k (Y |Q) − Hπk (Y |Q)|

+ |HT nD+k (Y |X, S, Q) − Hπk (Y |X, S, Q)|, (32)

where (a) follows by the triangle inequality. The first term in
(31) can be bounded by

|HT nD+k (Y |Q) − Hπk (Y |Q)| (33)
(a)≤ |Q| max

q
|HT nD+k (Y |Q = q) − Hπk (Y |Q = q)|

(b)≤ |Q| max
q

{
||T nD+k

Y |Q=q − πk
Y |Q=q ||T V log(|Y| − 1)

+ H2(||T nD+k
Y |Q=q − πk

Y |Q=q ||T V )
}
, (34)

where (a) follows by the triangle inequality and (b) follows
from Lemma 12.

Consider for all q ∈ Q

||T nD+k
Y |Q=q − πk

Y |Q=q ||T V
(a)≤ ||ξT nD+k

Y,Q − πk
Y,Q(ξ)||T V

(b)≤ ||T nD+k
S,Q,X,Y − πk

S,Q,X,Y ||T V

(b)= ||T nD+k
S,Q − πk

S,Q||T V

(c)≤ Cαn ,

where (a) follows by adding terms to the sum of total-
variation, (b) follows from Lemma 8 and (c) follows from
Lemma 10. Since Cαn → 0, there exists some N ′ for which
||T nD+k

S,Q − πk
S,Q||T V ≤ 0.5 for all n > N ′.

Therefore, (33) can be bounded for all n > N ′ as follows:

|HT nD+k (Y |Q) − Hπk (Y |Q)|
(a)≤ |Q|

{
||T nD+k

S,Q − πk
S,Q||T V log(|Y| − 1)

+ H2(||T nD+k
S,Q − πk

S,Q||T V )
}

≤ |Q| {Cαn log(|Y| − 1) + H2(Cαn)
}
,

where (a) follows from (33) and Lemma 8. The same deriva-
tion can be repeated for the second term in (31) resulting in
the same convergence rate. To summarize, there exist some
constants C ′ > 0 and α ∈ (0, 1) such that

|R(ξT nD+k, fβ) − R(πk(ξ), fβ)| ≤ C ′αn + 2H2(Cαn),

(35)

for all n > N ′.
For all ξ , consider

|νβ(ξ) − νπ
β (ξ)|

=
∣∣∣∣∣

∞∑

n=1

βnD
D−1∑

k=0

βk
[

R(ξT nD+k, fβ) − R(πk(ξ), fβ)
]∣∣∣∣∣

(a)≤
∞∑

n=1

βnD
D−1∑

k=0

βk|R(ξT nD+k, fβ) − R(πk(ξ), fβ)|

(a)≤ N ′ D log |Y| +
∞∑

n=N ′+1

βnD

×
D−1∑

k=0

βk |R(ξT nD+k, fβ) − R(πk(ξ), fβ )|

(b)≤ N ′ D log |Y| +
∞∑

n=N ′+1

βnD
D−1∑

k=0

βkC ′αn + 2H2(Cαn)

(c)≤ N ′ D log |Y| +
∞∑

n=1

C ′αn + 2H2(Cαn), (36)

where (a) follows by the triangle inequality, (b) follows from
(35) and (c) follows from β ≤ 1. Finally, by verifying that∑∞

n=1 H2(Cαn) < ∞ and by taking the supremum on both
sides of (36) we have that supβ |νβ(ξ) − νπ

β (ξ)| < ∞.

APPENDIX F
PROOF OF LEMMA 7

The proof of Lemma 7 comprises two main steps. First, we
derive an upper bound on νπ

β (ξ) which does not depend on
the initial state ξ . Secondly, we construct a new policy that
can achieve a reward that is arbitrarily close to the provided
upper bound. From the optimality of fβ , the two steps taken
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imply that all νπ
β (ξ) are, indeed, close “enough” to the upper

bound.
Proof of Lemma 7: Let us derive an upper bound on the

average of D consecutive rewards for some initial state ξ :

1

D

D−1∑

k=0

βk R(πk(ξ), fβ )
(a)≤ 1

D

D−1∑

k=0

R(πk(ξ), fβ)

(b)= 1

D

D−1∑

k=0

I (X, Sk(ξ); Y |Qk(ξ))

(c)= I (X, S; Y |Q, K (ξ))
(d)≤ Iξ (X, S; Y |Q)

(e)= R(π fβ , fβ), (37)

where (a) follows from β ≤ 1, (b) follows from the notation
p(sk(ξ), qk(ξ)) = πk(ξ), (c) follows by defining a uniform
RV, K , on [0 : D − 1] and (d) follows from the fact that
conditioning reduces entropy and from the Markov chain
Y −(X, S)−K (ξ), where the subscript ξ is added to emphasize
the dependence on the initial state. Finally, step (e) shows that
the marginal distribution does not depend on ξ ; the marginal
distribution of p(s, q) for some (s, q) ∈ Ai is

p(s, q) =
∑

k

p(k, s, q)

= 1

D

∑

k

p(sk(ξ), qk(ξ))

(a)= 1

D

∑

k

wk(ξ)π(Ai )(s, q)

(b)= 1

D
π(Ai)(s, q)

(c)= π fβ (s, q),

where (a) follows from (25), (b) follows from
∑

k wk(ξ) = 1
and the notation π(Ai )(s, q) as the stationary distribution of
the state (s, q). Finally, (c) follows from the property that in a
periodic Markov chain each class has a uniform distribution.

The derivation above is used to provide an upper bound on
νπ
β (ξ):

νπ
β (ξ) =

∞∑

n=1

βnD
D−1∑

k=0

βk R(πk(ξ), fβ)

=
∞∑

n=1

βnD D
1

D

D−1∑

k=0

βk R(πk(ξ), fβ)

(a)≤
∞∑

n=1

βnD DR(π fβ , fβ)

= DR(π fβ , fβ)

1 − β D

(b)= ν∗
β + R(π fβ , fβ)

D − (1 + β + · · · + β D−1)

1 − β D

(c)= ν∗
β + Kβ, (38)

where (a) follows from (37), (b) follows from the fact that

ν∗
β = R(π fβ , fβ )

1−β and (c) is just a notation Kβ ; by using
L’Hopital’s rule it can be noted that supβ Kβ < ∞.

A new stationary policy, fβ(ε), is constructed by taking the
policy fβ and letting a path be with ε > 0 weights, so that the
resultant graph is aperiodic. This modification is possible due
to the aperiodicity assumption in Theorem 2. Moreover, ε is
chosen to be small enough such that a node with modified
outgoing edges still has positive probabilities for all other
outgoing edges. The stationary distribution of this modified
policy is denoted by π(ε), satisfying π(0) = π fβ . The reward
gained by the policy fβ(ε) is denoted by νε

β(ξ).
For ε ≥ 0, the stationary distribution exists and is unique,

since it is a solution of linear equations. The stationary
distribution is continuous with respect to ε since each entry in
this vector is a rational function of ε and, clearly, ε = 0 is not
a pole. We also know that mutual information is continuous
w.r. to π(ε) and fβ(ε) and, therefore, the composition Iπ(ε) �
R(π(ε), fβ(ε)) is continuous with respect to the parameter ε.

By repeating the arguments in Lemma 6 with Lemma 9 on
the convergence rate of aperiodic Markov chains, it can be
deduced that

sup
β

|νε
β(ξ) − νε

β(ξ ′)| < ∞, (39)

for all ξ, ξ ′. Note that (39) holds for all states and, specifically,
for ξ ′ = π(ε).

For a fixed β, the continuity of each instantaneous reward in
εβ assures that there exists ε∗

β such that the difference between
|Iπ(0) − Iπ(εβ)| < 1 − β for all εβ < ε∗

β . By combining this
continuity and (39), we have

sup
β

|νε∗
β

β (ξ) − ν∗| < ∞, (40)

for all ξ .

The reward ν
ε∗
β

β (ξ) is achievable for initial state ξ by the
following trivial policy: for some initial state ξ use policy
fβ(ε) and, otherwise, use fβ . Clearly, the constructed policy
does not change rewards for initial states other than ξ , and the

optimality of fβ gives that ν
ε∗
β

β (ξ) ≤ νβ(ξ).
For all initial states,

νπ
β (ξ)

(a)≤ ν∗
β + Kβ

(b)= ν
ε∗
β

β (ξ) + Kβ,ε∗
β
(ξ) + Kβ

(c)≤ νβ(ξ) + Kβ,ε∗
β
(ξ) + Kβ

(d)= νπ
β (ξ) + K ′

β(ξ) + Kβ,ε∗
β
(ξ) + Kβ, (41)

where (a) follows from inequality (38), (b) follows from
(40) and the notation Kβ,ε∗

β
(ξ) for the difference between

the rewards, (c) follows by the optimaility of the policy fβ
and (d) follows from Lemma 6 and the notation νβ(ξ) =
νπ
β (ξ) + K ′

β(ξ), where supβ |K ′
β,ε(ξ)| < ∞.

By subtracting νπ
β (ξ) from (41), one can conclude that for

all β

|ν∗
β − νπ

β (ξ)| ≤ max{|K ′
β(ξ) + Kβ,ε∗

β
(ξ)|, Kβ }. (42)
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By taking a supremum on both sides of (42), the proof of
Lemma 7 is concluded.
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