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Computable Bounds for Rate Distortion With Feed
Forward for Stationary and Ergodic Sources

Iddo Naiss and Haim H. Permuter, Member, IEEE

Abstract—In this paper, we consider the rate distortion problem
of discrete-time, ergodic, and stationary sources with feed forward
at the receiver.We derive a sequence of achievable and computable
rates that converge to the feed-forward rate distortion. We show
that for ergodic and stationary sources, the rate

is achievable for any , where the minimization is performed
over the transition conditioning probability such that

. We also show that the limit of exists
and is the feed-forward rate distortion. We follow Gallager’s proof
where there is no feed forward and, with appropriate modifica-
tion, obtain our result. We provide an algorithm for calculating

using the alternating minimization procedure and present
several numerical examples. We also present a dual form for
the optimization of and transform it into a geometric
programming problem.

Index Terms—Alternatingminimization procedure, Blahut–Ari-
moto (BA) algorithm, causal conditioning, concatenating code
trees, directed information, ergodic and stationary sources, er-
godic modes, geometric programming (GP), rate distortion with
feed forward.

I. INTRODUCTION

T HE rate distortion function for memoryless sources is well
known and was given by Shannon in his seminal work

[1]. Shannon [1] showed that the rate distortion function is the
minimum of the mutual information between the source and
its reconstruction , where the minimization is over transition
probabilities such that the distortion constraint is satis-

fied, i.e., . In the case where the source is
stationary and ergodic, Gallager [2] showed that the rate distor-
tion is the limit of the following sequence of rates. Each member
of the sequence is the th order rate distortion function, which
is the solution of the following minimization problem:
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The minimization is over all conditional probabilities
such that the distortion constraint is satisfied,

i.e., . Gallager showed that the limit of the

sequence exists and is equal to the infimum
of the sequence.
The problem of source coding with feed forward was intro-

duced by Weissman and Merhav [3] and by Venataramanan and
Pradhan [4] and is depicted in Fig. 1. The encoder operates on

at once and sends a message to the decoder. The decoder,
when reconstructing , has access to the message sent by the
encoder and to all sources symbols with a delay , i.e.,

.
Weissman and Merhav [3] named the problem competitive

predictions. In their work, they defined a set of functions
that predict the following given the previous . After
defining the loss function, , between and
the prediction, the objective was to minimize the expected loss
over all sets of predictors of size . An important result in [3]
is that in the case where the innovation process

is i.i.d., the distortion rate with feed-forward function
is the same as the distortion-rate function of where there is
no feed forward. In particular, if is an i.i.d. process, then

, and thus, the distortion rate with feed forward for the
source is the same as if there is no feed forward.
Venkataramanan and Pradhan [4] gave an explicit definition

of the feed-forward rate distortion for an arbitrary normalized
distortion function and a general source. Their goal was to char-
acterize the minimum rate of a source given a distortion
using causal conditioning and directed information. The source
of information is modeled as the process and is encoded in
blocks of length into a message . The
message (after time units) is sent to the decoder that has to
reconstruct the process using the message and causal
information of the source with some delay , as in Fig. 1.
For that purpose, Venkataramanan and Pradhan [4] defined

the measures

and

where , which is used throughout the paper, denotes
the causal conditioning probability, and is given by

(1)
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Fig. 1. Source coding with feed forward: the decoder knows the source with delay and needs to reconstruct the source within the constraint
.

The limsup in probability of a sequence of random variables
is defined as the smallest extended real number such

that

and the liminf in probability is the largest extended real number
such that

The main result in [4] is that for a general source and
distortion , the rate distortion with feed forward is given
by

where the infimum is evaluated over the set of probabilities
that satisfy the distortion constraint. Moreover,

if

Venkataramanan and Pradhan showed in [4] that

The work of Venkataramanan and Pradhan has made a signif-
icant contribution since it gives a multiletter characterization for
the rate distortion function with feed forward. In [5], they eval-
uated these formulas for a stock market example and provided
an analytical expression for the rate distortion function. How-
ever, these types of formulas are still very hard to evaluate for
the general case. In this paper, we show that, assuming ergod-
icity and stationarity of the source, the rate distortion function
with feed forward and delay is upper bounded by ,
where

(2)

We further show that the limit of the sequence ex-
ists, is equal to , and is the feed-forward rate dis-
tortion function . These expressions for are com-
putable using a Blahut–Arimoto (BA)-type algorithm or using
geometric programming (GP), as demonstrated here.
In most models with causal constraints, such as feedback

channels or feed-forward rate distortion, the causal conditioning
probability, as well as the directed information, characterizes
the fundamental limits. In order to address these models, the
causal conditioning probability was introduced by Massey [6]
and Kramer [7] and is defined in (1). The difference between

regular and causal conditioning is that in causal conditioning,
the dependence of on future is not taken into account.
Following the causal conditioning probability, Massey [6] (who
was inspired by Marko’s work [8] on bidirectional communica-
tion) introduced the directed information, defined as

where is the causal conditioning entropy [7],
which is defined as

The directed information was used by Tatikonda and Mitter [9],
Permuter et al. [10], and Kim [11] to characterize the point-to-
point channel capacity with feedback. It is shown that the ca-
pacity of such channels is characterized by the maximization
of the directed information over the causal input probability

. In a previous paper [12], we used these results
and obtained bounds to estimate the feedback channel capacity
using a BA-type algorithm for finding the global maximum of
the directed information.
The main contribution of this study lies in extending the

achievability proof given by Gallager in [2] to the case where
feed forward with delay exists. The extension is done
by using code trees rather than codewords and the causal
conditioning distribution, , defined by

rather than the regular reconstruction distribution in order
to construct the code trees. The proof given is for , but can
be extended straightforwardly to any delay . The diffi-
culty in this modification is that while in [2] the codebook was
an ensemble of sequences (code words) from the reconstruc-
tion alphabet using , our codebook is an ensemble of code
trees using . This induces a major problem while
showing that the probability of error is small, as discussed in
Section III. These difficulties are overcome by appropriate mod-
ification of Gallager’s proofs. We note that we provide only a
sequence of upper bounds on , and hence do not know
how the convergence of the sequence behaves. However, in
Section VIII, where numerical examples are presented, we can
see that for , we have a good estimation, i.e.,
is close up to third digit after the point to that is known
analytically.
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Another contribution of this paper is the development of two
optimization methods for obtaining ; a BA-type algo-
rithm which is easy to implement and a GP form. The motiva-
tion of the GP form is to provide a maximization problem [13,
Ch. 4.5] which can be solved using convex optimization pack-
ages such as CVX [14]. Furthermore, this GP formulation via
its Lagrangian duality gives us a lower bound to the order
rate distortion with feed forward, which helps us decide when
to terminate our BA-type algorithm, i.e., Algorithm 1. Another
important advantage of the GP form over BA-type algorithm is
that its input is and the output is , while in the BA-type al-
gorithm, the input is the slope of the curve as explained
in Appendix D and the output is and .
Csiszar and Korner [15] provided a convergence proof for

BA algorithm that is specific for the channel capacity and rate
distortion problem, based on the properties of the divergence. In
this paper, we suggest a different approach based on the well-
known alternating minimization procedure [16] and adopt it in
our feed-forward rate distortion problem.
The remainder of this paper is organized as follows. In

Section II, we describe the problem model, provide the opera-
tional definition of the rate distortion functionwith feed forward,
and state ourmain theorems. In Section III, we show that
is an achievable rate for all and any distortion and in
Section IV, we show that the limit of exists and is equal
to the operational rate distortion function. In Section V, we give
a description of the BA-type algorithm for calculating
and present the algorithm’s complexity and thememory required
and in Section VI, we derive the BA-type algorithm and prove
its convergence to an optimum value. In Section VII, we present
an alternative optimization problem for in a standard GP
form that can be solved numerically using convex optimization
tools. Numerical examples are given in Section VIII to illustrate
the performance of the suggested algorithms.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we present notation, describe the problem
model, and summarize the main results of this paper. We first
state the definitions of a few quantities that we use in our coding
theorems. We denote by the vector . Usu-
ally, we use the notation for short. Further, when
writing a probability mass function (PMF) we simply write

. An alphabet of any type is denoted by a
calligraphic letter , and its size is denoted by .
In the rate distortion problem with feed forward of delay

, as shown in Fig. 1, we consider a general discrete,
stationary, and ergodic source , with the th order prob-
ability distribution , alphabet , and reconstruction al-
phabet . The normalized bounded distortion measure is de-
fined as on pairs of sequences. Normaliza-
tion is done by dividing the distortion by , i.e.,

(3)

where is fixed and determined by the problem settings. By
bounded, we mean that there exists a constant number such
that for every and every , .

Definition 1 (Code Definition): A source code
with feed forward of block length and rate consists of an
encoder mapping , given by

and a sequence of decoder mappings , where

(4)

The encoder maps a sequence to an index in .
At time , the decoder has the message that was sent and causal
information of the source , and reconstructs the symbol
sent, .

Definition 2 (Achievable Rate): A rate distortion with feed-
forward pair is achievable if there exists a sequence of

rate distortion codes with

Definition 3 (Operational Definition of Rate Distortion.):
The operational rate distortion with feed-forward function

is the infimum of rates such that is achievable.
In this paper, we define the mathematical expression for the

rate distortion function as the following limit:

(5)

where is the order rate distortion function, given by

(6)

We show that the limit in (5) exists, is achievable and
upper bounds for all . Further, we show that the
feed-forward rate distortion function is equal to .
We also provide two ways to calculate numerically the value

: using a BA-type algorithm and using a GP form.
We now state our main theorems.

Theorem 1 (Achievability of ): For a discrete, sta-
tionary, ergodic source, and for any distortion , any , and
delay , is an achievable rate.

Theorem 2 (Feed-Forward Rate Distortion): For any distor-
tion , the operational rate distortion function is equal to
the mathematical expression given in (5).

Theorem 3 (Algorithm for Calculating ): For a fixed
source distribution , there exists an alternating minimiza-
tion procedure in order to compute as in (6).

Theorem 4 (GP Form of ): The order rate distor-
tion function is equal to the solution of the following
GP standard form:
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subject to the constraints

Proofs of Theorems 1 and 2 are given in Sections III and
IV, respectively. The algorithm in Theorem 3 is described in
Section V and proved in Section VI and the proof for Theorem
4 is found in Section VII.

III. ACHIEVABILITY PROOF (THEOREM 1)

In this section, we follow the proof from [2] and show that
if the source is stationary and ergodic, then , as given
in (6), is achievable for any . The main modification to Gal-
lager’s work made in this paper is the codebook construction.
While in Gallager’s book a codeword is a single stream of sym-
bols, here we construct a code tree that depends on the delayed
input. Hence, the proof of the probability of error changes as
well.
The proof is developed as follows. First, we assume that the

source is ergodic in blocks of length , and show achievability.
A source that is ergodic in blocks is one that, by looking at each
letters as a single letter from a super alphabet, we obtain an

ergodic super source (presented in [2, Ch. 9.8]). Next, for the
general ergodic sources, we follow a result given in [2] about er-
godic modes, as explained further on. The distortion is assumed
to be normalized, finite, and bounded as in (3). An example for
such a distortion can be found in [5] and in Section VIII in an
example called the stock market.

Theorem 5: Consider a discrete stationary source that is er-
godic in blocks of length . For any distortion , such that

and , and for any sufficiently large,
there exists a codebook of trees of length with

code trees for which the average distortion per
letter satisfies .

Proof: Let be the transition probability that
achieves the minimum and let be
the causal conditioning probability that corresponds to

.
1) Code design: For any , consider the ensemble of codes

with code trees of length ,
where each code tree is a concatenation of
subcode trees of length . Each subcode tree is generated
independently according to , as in Fig. 2.

2) Encoder: The encoder assigns a code tree for
every such that is minimal. The
sequence is determined by walking on tree
and following the branch .

3) Decoder: At time , the decoder possesses the index of
the tree and causal information of the source , and
returns the symbol that it produces.

Fig. 2. Concatenation of two code trees for a binary alphabet, each of length
. The upper branches are for , and the lower branches are for
.

Let us define the test channel ensemble as the conditional
probability

(7)

where each achieves . We also define
the causal conditional probability

where the distribution is according to

Moreover, we define for every code tree of length the
measure

(8)

where . Note that is not the
directed information between the sequences , but simply
a measure between a source sequence and the output of
the test channel , as defined in (7).
Let be the set of all code trees of length , and consider

the following set:

(9)

and let be the probability of the set over the test channel
ensemble, as defined previously, constructed as in (7).
Let us use the notation
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where is the ensemble of code trees, as described in the
coding scheme. Now, let be
the probability over the ensemble of codes and source se-
quences such that the distortion exceeds . We wish to give
an upper bound to the probability

; for this, we use the following lemma.

Lemma 1: For a given source, , and test channel, we
have the following inequality:

(10)

where the set is described in (9).
Proof: We first write

as

For every , let us define the set as the set of all code trees
for which , i.e.,

(11)

We observe that for a given
only if for every .

Thus, only if for every
. Since are independently chosen

where is the complement set of . We note that the
probability of tree being in depends only on the branch
associated with . In other words, if a tree , then all
other trees with the same branch associated with is in
as well; the same goes for . Hence, we can divide the set
of all code trees into disjoint subsets, , that have the
same branch associated with , i.e.,

where is a walk on tree over the branch .
Clearly, the probability of each subset, , is

since the left-hand side is a summation of the probabilities of all
trees with the same branch associated with , and we are left
with the probability of that one branch.

Now, for every and due to the definition
of , we have

Therefore

(12)

and we obtain that

where (a) follows the inequality in (12).
We now use the inequality ,

which is true for all [2, eq. (9.3.22) and
(9.3.23)]. Hence, taking ,

, we find

(13)

By taking a sum over , we remain with

(14)
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where (a) is due to (13). Note that

where (a) follows the fact that if , then is deter-
mined by the tree and the branch . Now, continuing from
(14), we obtain

(15)

We now use the result in (15) in order to complete the proof of
the theorem. Furthermore, we can see that the average distortion
of the code satisfies

This arises, as in [2, Th. 9.3.1], from upper bounding the distor-
tion by when the distortion , and
by

otherwise. By choosing , the last term in
(15) goes to zero with increasing . Furthermore, the first term
is bounded by

(16)

Note that

As assumed, the source is ergodic in blocks of length . Further-
more, the test channel is defined to be memoryless for blocks of
length , and hence, the joint process is ergodic in blocks of
length . Thus, with probability 1

Therefore, the probability of the first term in (16) goes to zero as
goes to infinity and the same goes for the second term due to

the definition of the distortion. In order to finish the proof, and
due to the fact that goes to zero with increasing and the
fact that the distortion is finite, we can choose large enough
such that

In this case, we obtain , and hence, the rate
is achievable for sources that are ergodic in blocks of length .

Much like in Gallager’s proof for the case where there is no
feed forward, we note that not all ergodic sources are also er-
godic in blocks and we need to address these cases as well. For
that purpose, we need [2, Lemma 9.8.2] for ergodic sources. We
recall that a discrete stationary source is ergodic if and only if
every invariant set of sequences under a shift operator is of
probability 1 or 0. In [2, Ch. 9.8], the author looks at the oper-
ator , i.e., a shift of places, and considers an invariant set
, , with respect to . In [2, Lemma 9.8.2], it is

stated that one can separate the source to invariant subsets,
, , with regard to such that

divides and the sets are disjoint (except, perhaps,
for an intersection of zero probability). These subsets are called
ergodic modes, due to the fact that each invariant subset of them
under the operator is of probability 0 or . In other words,
conditional on an ergodic mode , each invariant subset of it
with respect to is of probability 0 or 1.
Recall that by definition

where the right-hand side is the average directed information be-
tween the source and the reconstruction, determined according
to , which achieves . Let
be the average directed information between a source sequence
from the ergodic mode and the ensemble of codes, using
the probability that achieves . Note that the
directed information can be written as
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Fig. 3. Code tree from the th codebook, , .

which is convex over the input probability . Thus

(17)

We now present a few observations.
1) First, we observe that is an upper
bound to the order rate distortion function condi-
tional on the ergodic mode. Hence, from Theorem
5, we know that there exists a codebook with

code trees of length
such that the average distortion constraint holds.

2) Second, if a codebook satisfies the distortion constraint,
conditional on the ergodic mode , then it has the same ef-
fectwhen conditional on the ergodicmode .

Observation 2) means that we can use the codebook to
encode not only a source sequence from , but also a shift of
the source sequence in with , since .
Using the aforementioned observations, we can now prove

Theorem 1, i.e., the achievability of , where the source
is ergodic and stationary. An equivalent version of Theorem
1 is the following: let be the order rate distortion
function for a discrete, stationary, and ergodic source. For any
such that and and any sufficiently

large, there exists a codebook of trees of length with
code trees for which the average distor-

tion per letter satisfies .

Proof of Theorem 1: Let be the transition prob-
ability that achieves and let be the causal
conditioning probability that corresponds to .
1) Code design: For any and any ergodic mode ,

, construct an ensemble of codes with
“little” code trees of

length , where each “little” code tree is generated ac-
cording to , as in Fig. 2 in Theorem 5 above.
Now, for every , the codebook is an
ensemble of “big” code trees. These are a concatenation
of “little” code trees, starting from one in , and fol-
lowed by one from through to one from ,
where the index is calculated modiolus . In the example
of a “big” code tree in Fig. 3, we see additional letters
at the end of each “little” code tree, i.e., in positions

, which are fixed. The
purpose of the fixed letters is to shift the sequence and
encode it with a code tree from the sequential codebook.
Note that the overall length of a code tree sums up to

.

2) Encoder: For every , the encoder assigns for every source
sequence , a code tree from the code-
book such that is minimal. The
sequence is determined by walking on
tree and following the branch .

3) Decoder: The decoder receives a tree and causal
information of and returns the sequence that it
produces.

Since the distortion constraint for every ergodic mode is sat-
isfied, due to Theorem 5, the overall distortion is satisfied as
well. The additional fixed letters are of unknown distortion but,
due to the fact that the distortion is bounded, their contribution
is negligible for large values of . Moreover, note that for every
, the codebook is of the same size. Thus, the overall size of
the codebook is

where (a) is due to the fact that the codebook is bounded
by , as shown in Theorem 5, (b) follows
(17), (c) is due to the fact that we use a conditional probability

that achieves , and (d) is a simple algebraic
manipulation. Recall that , so that by letting

, we conclude that is an achievable rate
for the general ergodic source, as required.

IV. PROOF THAT (THEOREM 2)

In this section, we show that the operational description of the
rate distortion with feed forward is equal to the mathematical
one given in (18). This will be done by, first, showing that the
mathematical expression is achievable and, second,
showing that it is a lower bound to the rate distortion function.
We recall that is the solution to

(18)
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To show that is achievable, we first need to show
that the limit of the sequence exists. For this purpose,
we use the following lemma.

Lemma 2: The sequence , as defined in (6), is subad-
ditive, and thus

Note that a sequence is called subadditive if for all

The proof for Lemma 2 is given in Appendix A.
We now state a lemma for the achievability of .

Lemma 3 (Achievability of ): The mathematical ex-
pression for the feed-forward rate distortion, is achiev-
able and thus upper bounds .

Proof: We showed in Theorem 1 that for any , is
achievable. Further, in Lemma 2, we show that the limit exists
and is equal to the infimum and hence is achievable too. There-
fore, we conclude that the mathematical expression is
achievable and forms an upper bound to the operational descrip-
tion .

To show that is a lower bound to the rate distortion
function, we provide the following lemma.

Lemma 4 (Converse): Themathematical expression
is a lower bound to the operational rate distortion function.
For the completeness of this paper, we provide the proof of

Lemma 4 in Appendix B. However, similar proof was presented
by Venkataramanan and Pradhan in [4]. Their expressions in-
volved the limit in probability of the entropy and directed infor-
mation, as described in Section I.

Proof of Theorem 2: Combining Lemmas 3 and 4 pro-
vides us with the proof for our fundamental theorem, stated in
Section II, viz., the operational rate distortion function is
equal to the mathematical one .

V. EXTENSION OF THE REGULAR BA ALGORITHM FOR RATE
DISTORTION WITH FEED FORWARD

In this section, we describe an algorithm for calculating
, where

(19)

using the alternating minimization procedure. This method was
first used by Blahut [17] and Arimoto [18] to obtain a numerical
solution for the i.i.d. source rate distortion and for the memory-
less channel capacity.
Before we describe the algorithm, let us denote by

the PMFs that are par-
ticipating in the minimization. Further, let us consider the
double optimization problem given by

(20)

where

and is the directed information given by

(21)

In Section VI, we show that the double optimization problem
given in (20) is equal to the one given in (19). Equations (20) and
(21) allow us to apply the alternating minimization procedure.

A. Description of the Algorithm

In Algorithm 1, we present the steps required to minimize the
directed information where the input PMF is fixed.

Algorithm 1 Iterative algorithm for calculating , where
is fixed.

(a) Fix a value of that determines a point on the
curve.

(b) Start with a random, causally conditioned point
. Usually, we start from a uniform

distribution, i.e., for every
.

(c) Set .
(d) Compute using the formula

(e) Calculate the joint probability

and deduce the causal conditioned PMF
as in (1).

(f) Calculate the parameter

(g) Calculate

(h) If , set , and return to (d).
(i) The rate distortion function, with distortion

(22)

is

The parameter is used in the Lagrangian with which we
optimize the directed information. The value of , and hence
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TABLE I
MEMORY AND OPERATIONS NEEDED BY THE EXTENDED BA ALGORITHM FOR SOURCE CODING WITH FEED FORWARD

, depends on ; thus, choosing appropriately sweeps
out the curve. The algorithm stops when . In
Appendix C, we provide upper and lower bounds that are used
to show that if , we ensure that .
Now, let us present a special case and a few extensions for

Algorithm 1.
1) Regular BA algorithm, i.e., the delay . For delay

, the algorithm suggested here agrees with the regular
BA algorithm, where instead of step (d) we have

and in step (e), corresponds to the joint proba-
bility as well. Moreover, the expression
for is reduced to

and the termination of the algorithm in step (g) is defined
by

as in the regular BA algorithm [17].
2) Function of the feed forward with general delay . We
present a generalization of the algorithm, where the feed
forward is a deterministic function of the source with some
delay , . In that case, step (d) is replaced
by

and in step (e), we have

where we calculate from the joint distri-
bution . The algorithm is ter-
minated in the same way, where

B. Complexity and Memory Needed

The computation complexity and the memory needed for the
aforementioned algorithm are presented in Table I. The memory
that is needed for the algorithm is only due to the PMFs ,
and . The first two need a memory of and needs

. As for calculation complexity, we see that in step (d), we
need for every , summation and multiplication
operations. As for step (e), after calculating the joint distribu-
tion, we need summations. Altogether, we need
about operations.

VI. DERIVATION OF ALGORITHM 1

In this section, we first derive the alternating minimization
procedure and provide the settings of our optimization problem.
Then, we prove its convergence to the global minimum given by

This is done by reforming the formula for so it can
be solved using the Lagrange multipliers method and the
Karush–Kuhn–Tucker conditions. In the second part, we
present a sequence of lemmas that conclude with the proof of
Theorem 4. The outline of the second part is further detailed in
the following.
Throughout this section, note that the input probability

is fixed in all minimization calculations. Further, we denote by
the directed information, given by

The alternating maximization procedure is described in [12]
by two maximization functions operating on the two-vari-
able objective , where .
The first is , which is the one that achieves

, and the second is , which is
the point that achieves . Although in this
paper we wish to solve a minimization problem, its negative
can be used in the alternating maximization procedure. For that
purpose, assume that and for all

. Let us define an iteration as the following
equation:

and in each iteration, we consider the value .
We now state the alternating maximization procedure lemma.
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Lemma 5 (see [19, Lemmas 9.4 and 9.5]) “Convergence of
the alternating maximization procedure”: Let be
a real, concave, bounded-from-above function that is contin-
uous and has continuous partial derivatives and let the sets
and over which we maximize, be convex. Under these

conditions, , where is the solution to the
optimization problem.
The rate distortion function with feed forward can be, as in

[17], carried out parametrically in terms of a parameter , which
is introduced as a Lagrange multiplier. The motivation for this
change is to replace the problem into one that can be solved
using the alternating minimization procedure. In Appendix C,
we show that the parameter defines the slope of the curve

at the point it parameterizes, and the slope is given
by . We now write the following parametric expression for

:

(23)

where is the distortion at the point that achieves
. Here, the value of is not an input to the minimization,

but is determined by the parameter .
Note that the directed information is a function of the

joint distribution . Since the source distribu-
tion is given, the directed information is determined by

alone. Let us define by the
causal conditioning probability. Now, let us define the func-
tional

(24)

Note that now, the minimization is over all possible , and thus,
the functional can be solved using the alternating min-
imization procedure.
From (23) and (24), we can see that can be written as

(25)

where corresponds to the joint distribution
and is the distortion at the point

that achieves .
In the rest of this section, we show that we can use the

alternating minimization procedure for computing , as
given in (25). For this purpose, we present several lemmas that
assist in proving our main theory. In Lemma 6, we show that
the expression we minimize satisfies the conditions in Lemma
5. In Lemma 7, we show that we are allowed to minimize the
functional over and together,
rather than over alone, and thus use the alternating
minimization procedure to achieve the optimum value. Lemma
8 is a supplementary claim that helps us to prove Lemma 7 and
in which we find an expression for that minimizes
the functional , where is fixed. In Lemma
9, we find an explicit expression for that minimizes
the functional , where is fixed. Theorem 3

combines all lemmas to show that the alternating minimization
procedure, as described in Algorithm 1, converges. We con-
clude with a supplementary claim about the upper and lower
bounds on the feed-forward rate distortion, and then prove that
the stopping condition described in Algorithm 1 ensures that
the error .

Lemma 6: For a fixed input PMF , the functional
given in (24) is convex in , continuous and with

continuous partial derivatives. Moreover, the sets of the causal
regular conditioned PMF and the causal conditioned PMF ,
over which we optimize, are convex.

Proof: Since the functional consists of a linear

(and thus convex) expression in , i.e., , we
only need to verify that the directed information is convex. We
first write the directed information in the following form:

This form is the negative of a concave function, as proven in
[12, Lemma 2]. Furthermore, in the same lemma, we show that
the directed information is continuous with continuous partial
derivatives; similar proof applies here. It is also simple to verify
that both of the sets that we minimize over are convex, i.e., sets

, where

(26)

Recall that in order to use the alternating minimization pro-
cedure, we minimize over instead of
over alone, and thus need the following lemma.

Lemma 7: For any discrete random variables, ,
, as defined in (25), is equal to the following optimiza-

tion problem:

where is the distortion at the point that achieves
.

To prove this lemma, we note that , which

does not contain the variable , is part of the functional .
Hence, it suffices to show that

(27)



770 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 2, FEBRUARY 2013

The proof is given after the following supplementary claim,
in which we calculate the specific that minimizes
the directed information when is fixed.

Lemma 8: For fixed , there exists a unique
that achieves and is given by

(28)

where is calculated using the joint distribution
.

Proof for Lemma 8: In order to prove this lemma, we show
that the expression for for any

. Consider the following chain of inequalities:

where (a) follows from the nonnegativity of the divergence. By
the properties of the divergence function, equality holds if and
only if the joint PMFs are the same, i.e., .

Proof of Lemma 7: The PMF that minimizes the directed
information is the one that corresponds to the joint distribution

; thus, (27) holds and the functional can
be minimized over both and in combined.

In the following lemma, we derive an explicit expression for
that achieves , where is fixed.

Lemma 9: For fixed , there exists that
achieves , and is given by

Proof: Following [13, Ch. 5.5.3], since we are solving a
convex optimization problem, we can apply the KKT condi-
tions with the constraints , and set up the
functional

Solving yields the expression for as

(29)

Another lemma that is required is the one that states that the
algorithm, when it converges, remains fixed on its variables.
We already know that the variable that optimizes the directed
information is unique; we have to show that within the algorithm
the variable is unique as well. This is needed to ensure that
we achieve a unique point when using the algorithm in order to
show that the algorithm indeed converges. Let be the PMF
that is obtained by the iteration using Algorithm 1.

Lemma 10: By following Algorithm 1 we obtain the se-
quence converges to the PMF that achieves .

Proof: The uniqueness is proven in a similar way to a proof
given by Blahut in [17, Th. 6] and we follow it with appropriate
modifications. We recall that in the iteration

Further, from [17, Th. 6], we can see that

Hence

where (a) follows from the inequality and (b)
follows from (29), where and . Note that
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we have strict inequality unless and .
Thus, is nonincreasing and is strictly decreasing un-
less the distribution stabilizes, and hence, the uniqueness of the
optimum parameter emerges.

Now, we can prove Theorem 3 as stated in Section II.
Proof of Theorem 3: First, we have to show the existence

of a double minimization problem, i.e., an equivalent problem
where we minimize over two variables instead of only one; this
was shown in Lemma 7. Now, in order for the alternating min-
imization procedure to work on this optimization problem, we
need to show that the conditions given in Lemma 5 are satisfied
for the functional ; this was shown in Lemma 6. The
steps described in Algorithm 1 are proved in Lemmas 8 and 9,
thus giving us an algorithm to compute , where the min-
imization is evaluated according to the parameter .

Our last step in proving the convergence of Algorithm 1 is to
show why the stopping condition ensures a small error. For this
reason, we state a lemma introducing the existence of bounds
to the rate distortion with feed-forward function and then con-
clude that the stopping condition does ensure a small error in
the algorithm, i.e., , where is
the upper bound in the th iteration, and

(30)

For this purpose, we define the following expressions that takes
part in each iteration:

(31)

and the upper and lower bound

(32)

Note that .

Lemma 11: Let the parameter be given, and let
be as in (31) in the iteration of Algo-

rithm 1. Then, if is as in (30)

The proof for Lemma 11 is given in Appendix C.

From Lemma 11, we can deduce the claim regarding the stop-
ping condition. Let the error be denoted as

.

Corollary 1: The error denoted as satisfies

where is defined in the iteration by (31).
Proof: The proof follows (32), in which the upper bound

and lower bound differ only in their last term. Thus, if the RHS
is bounded by , then .

VII. GP FORM TO (THEOREM 4)

In this section, we show that the order rate distortion
function with feed forward, , can be given as a maxi-
mization problem, written in a standard form of GP. For this
purpose, we first state the following theorem, of which Theorem
4 is a direct consequence of it.
Define the following optimization problem.

Theorem 6: The order rate distortion function is
the solution of the following maximization problem:

(33)

where, for some causal conditioned probability ,
satisfies the inequality constraint

(34)

In Appendix D we provide two proofs for Theorem 6; the first
is similar to Berger’s proof in [20] for the regular rate distortion
function based on the inequality and the second
uses the Lagrange duality, as presented in [13] and [21], that
transforms a minimization problem to a maximization one. The
motivation for providing both proofs is to give, on the one hand,
a simple proof that holds only to the rate distortion problem
and on the other hand, a more general (but involved) one that is
based on the well-knownKKT conditions (or Lagrange duality).
Appendix D also demonstrate the connection between the rate

distortion function and the parameter , which states that the
slope of at point is .

Proof of Theorem 4: Considering the aforementioned the-
orem, our interest now is to adjust the constraints in order to ob-
tain a GP form. We note that the optimization problem in (33)
does not change if we maximize over as well and
the constraint in (34) is no longer for some , i.e., is the
solution to

(35)

where satisfy the inequality constraint

(36)
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The aforementioned statement is true since, on the one hand, the
maximization in (33) increases upon maximizing over another
variable, , as in (35); on the other hand, the variable

that achieves (35) satisfies constraint (34)
in Theorem 6. Hence, the maximization problem in (35) cannot
be greater than the one in (33).
To obtain a GP standard form, we transform the constraint in

(36), such that

Taking the of both sides, we obtain

Note that maximizing over is the same as max-
imizing over its products [10, Lemma 3].
Therefore, we can conclude that the rate distortion with feed
forward is the solution of the following GP maximiza-
tion form:

subject to

Hence, we obtain a standard form of GP. This GP problem can
be solved using standard convex optimization tools.

VIII. NUMERICAL EXAMPLES

In this section, we present several examples for the rate dis-
tortion source coding with feed forward. First, by using Algo-
rithm 1, we demonstrate for a specific example that feed forward
does not decrease the rate distortion function where the source
is memoryless (i.i.d.), as shown in [3]. Then, we provide two
explicit examples for a Markovian source: one where the distor-
tion is a single letter and one with a general distortion function,
as presented in [5]. GP is also used to verify our results.
In all of the examples, we runAlgorithm 1with various values

of and thus construct the graph of using interpolations.
Alternatively, one can use the GP form and find, for every dis-
tortion given as input, the rate .

A. Memoryless (i.i.d.) Source

Analogous to the memoryless channel, it was shown by
Weissman and Merhav [3] that for an i.i.d. source feed forward
does not decrease the rate distortion function. In this example,

Fig. 4. Rate distortion function for a binary source and feed forward with delay
1. The circles represent the performance of Algorithm 1. The line is the plot of
(37).

Fig. 5. Symmetrical Markov chain.

the source is distributed , and the distortion function
is a single letter, i.e.,

Running our algorithm with delay and block length
, we would expect to obtain the same result as with no feed
forward at all (as shown in [22, ch. 10.3.1]), which is given by

(37)

Note that are the binary entropies with param-
eters , respectively. Indeed, the aforementioned function
and the performance of Algorithm 1 coincide, as illustrated in
Fig. 4. Note that the joint distribution is the
same as the one that achieves the analytical calculation in which

and . For and ,
solving the geometrical programming form using a MATLAB
code produces the rate , which is close to
using (37). The value of turns out to be 6, which means that
the slope at point is .
In the following example, we present the performance of Al-

gorithm 1 for a Markov source and a single-letter distortion.

B. Markov Source and Single-Letter Distortion

The Markov source is presented in Fig. 5. This model was
solved byWeissman andMerhav in [3] for the symmetrical case

. We extend this model for the case of general transition
probabilities and . The analytical solution for this example is
detailed in Appendix E; there, we show that, for any , the
rate distortion function is equal to

(38)
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Fig. 6. for the Markov source example and feed forward with delay 1. (a) Graph of ; the arrow marks the way responds to increasing .
The dashed line is the analytical calculation (b) Graph of . The circles represent the performance of Algorithm 1.

By taking to infinity, we have

where is the stationary distribution of the source.
Fig. 6 is displayed at the bottom of the page. In Fig. 6(a), we
present the graphs of for up to , where

, and has the stationary distribution
. It is evident that decreases as increases and

converges to the analytical calculation.
In [12, Lemma 6], we provided another estimator for the limit

of the th directed information. This was the directed informa-
tion rate, which served as an estimator for the feedback channel
capacities. There, we show that if the limit exists, then

Hence, we can estimate , which is the limit of the
directed information, as

This estimator turns out to perform better than , due
to the subtraction that eliminates any bias that might exist in

. This is applied in two ways: either when the rate value
is fixed or when the distortion value is fixed. In both cases, we
first have to fix an axes vector and interpolate the other vector
with respect to the fixed one; then, we can calculate the differ-
ences between the interpolated vectors.
In Fig. 6(b), we present this estimator only for where

the vector of the distortion is interpolated, i.e.,
. We can see that this estimation is much more ac-

curate than the one in Fig. 6(a).
This is a good opportunity to present the performance of the

upper and lower bounds of a specific rate distortion pair
and the geometrical programming solution to this problem,
shown in Fig. 7. We ran Algorithm 1 for the specific parameters

that correspond to the rate distortion pair
at slope , shown

in Fig. 7(a). Fig. 7(b) shows calculated using GP and
Algorithm 1 compared to the theoretical one in (38).

Fig. 7. Bounds for and performance of GP and BA-type algorithm for
(a) Graph of the upper and lower bounds as a function of the iteration

for and , as given in (32). (b) Graph of calculated .
The solid line is as in (38); the circles represent the performance of the
GP and the dashed line is the BA-type algorithm result.

C. Stock Market Example. Markov Source and General
Distortion

The stock market example, in which we wish to observe the
behavior of a particular stock over an -day period, was intro-
duced and solved in [5]. Assume the stock can take values,

, and is modeled as a state Markov chain. On a
given day , the probability for the stock value to increase by 1 is
, to decrease by 1 is , and to remain the same is .

When the stock value is in state 0, the value cannot decrease.
Similarly, when in state k, the value cannot increase. If an in-
vestor would like to be forewarned whenever the stock value
drops, he is advised with a binary decision . if the
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TABLE II
DISTORTION ,

value drops from day to day , and otherwise.
The distortion is modulated in the following form:

where is given in Table II. It was shown in [5] that the
rate distortion function of a general Markov chain source with
states is given by

where is the stationary distribution of the
Markov chain and .
In our special case, we have , i.e., two states for the

Markov chain, and transition probabilities
as illustrated in Fig. 5. The stationary distribution of such a
source is , and we obtain

Since the rate cannot be less than zero, and is a descending func-
tion of the distortion, the rate distortion function is as earlier
when , i.e., when , and thus, we
obtain

otherwise.
(39)

In Fig. 8(a), we present the graphs of for up
to with the distortion described previously and where

has the stationary distribution . We can see that
decreases as increases, as expected, and converges to

the analytical calculation. In Fig. 8(b), we present the directed
information rate estimator for , where the vector of the
distortion is interpolated, i.e., . We can
see that this estimator is much more accurate than the one in
Fig. 8(a).

D. Effects of the Delay on

In this example, we use the Markov source (see Fig. 5) ex-
ample with a single-letter distortion. We run Algorithm 1 with
delays and block length , where
has a stationary distribution. We expect the rate distortion func-
tion to increase with the delay . This is expected because as the
delay increases, the value of the directed information increases
as well. Due to the fact that for all graphs are
close together, we present only for and the
results are shown in Fig. 9.

Fig. 8. for the stock market example with feed forward and delay 1
(a) Graph of ; the arrow marks the way responds to increasing
. The dashed line is the analytical calculation. (b) Graph of

. The circles represent the performance of Algorithm 1.

Fig. 9. for a Markov source as a function of the delay.

IX. CONCLUSION

In this paper, we considered the rate distortion problem of dis-
crete-time, ergodic, and stationary sources with feed forward at
the receiver. We first derived a sequence of achievable rates,

, that converge to the feed-forward rate distortion.
By showing that the sequence is subadditive, we proved that the
limit of exists and is equal to the feed-forward rate dis-
tortion. We provided an algorithm for calculating using
the alternating minimization procedure, presented a dual form
for the optimization of and transformed it into a GP
maximization problem.
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APPENDIX A
PROOF OF LEMMA 2

We start by showing that the sequence is subad-
ditive; the methodology is similar to Gallager’s proof in [2, Th.
9.8.1] for the case of no feed forward. Then, by showing that the
sequence is subadditive, following [2, Lemma 4A.2] re-
sults with the proof, i.e.,

To commence, we recall that a sequence is called sub-
additive if for all

Let and be arbitrary positive integers and, for a given , let
and be the conditional PMFs that achieve

the minimum of the directed information with block lengths
of and , i.e., that achieve and , respectively.
Suppose we transmit samples as follows; the first
samples are transmitted using and the subsequent samples
are transmitted using . Hence, the overall conditional PMF is

Note that since

we can write

Further, from the construction of the conditional overall PMF
, its clear that

Furthermore

Thus, it follows that

(40)

Since the source is stationary, we can start the input block at any
given time index. Thus, the PMFs and achieve

on the right-hand side of (40), while the left-hand side
is greater than since we attempt to minimize
the expression to achieve the rate distortion function. Hence, we
obtain

Using [2, Lemma 4A.2] for subadditive sequences, we obtain

APPENDIX B
PROOF OF LEMMA 4

In this appendix, we prove Lemma 4, which provides that
the following mathematical expression for the feed-forward rate
distortion is equal to

(41)

is a lower bound to the operational definition .
Proof: Consider any rate distortion with feed-

forward code defined by the mappings , as given in

(4) in Section II, and distortion constraint
, where as goes to infinity. Let the message

sent be a random variable , and assume that the
distortion constraint is satisfied. Then, we have the following
chain of inequalities:

where (a) follows from the fact that the alphabet of is , (b)
follows from the chain rule for mutual information, (c) is due
to the fact that given , we know , and (d) is since
conditioning reduces the entropy. Step (e) follows the chain rule
for directed information. Taking to infinity, we obtain

and the distortion constraint satisfies
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APPENDIX C
PROOF OF LEMMA 11

In this appendix, we prove the existence of a sequence of
upper and lower bounds to , the rate distortion function
with feed forward. These bounds correspond to an iteration
in Algorithm 1 and both converge to . To this end,
we present and prove a few supplementary claims that assist
in achieving our main goal. Theorem 6 provides an alter-
nating form (Lagrange dual form) of an optimization problem
achieving that is proved in Appendix D. In Lemma
C1, we show that in each iteration, we can obtain measures
that satisfy the constraint in Theorem 6 to form a lower bound
and that the bound is tight and achieved as the upper bound
converges. We also provide a proof for the existence of an
upper bound in each iteration.
Before we begin, we recall that a step in Algorithm 1 is de-

fined by the following equality:

(42)

We shall use this equality throughout the proof.
As mentioned, we use Theorem 6 that provides us with the

following alternating optimization problem:

(43)

where satisfies the inequality constraint

(44)

for some causal conditioned probability .
We now show that in each iteration in Algorithm 1, choosing

appropriately forms a lower bound for . In the th
iteration of Algorithm 1, let

(45)

(46)

and define

(47)

Lemma C1: With the aforementioned quantities, the con-
straint in (44) is satisfied and forms a tight lower bound given
by

Proof: Let us fix the parameter , as in (45). Hence

where (a) follows from the definition of a step in Algorithm 1
and is given previously in (42), and (b) follows the chain rule of
causal conditioning and

is a causal conditioned PMF. Hence, combined with (47), we
obtain

Thus, we can use Theorem 6 and obtain a lower bound for
, i.e.,

(48)

To complete the proof of this lemma, we are left to show that
as increases, i.e., the upper bound converges to , the
lower bound is tight. On this matter, we note that the PMFs that
achieve the optimum value are unique (This is shown in
Lemma 10 in Section VI). Thus, it is clear that

(49)

and

(50)

Placing (50) and (49) in (48), as shown in Theorem 6, achieves
equality instead of the chain of inequalities given. Thus,
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is, in fact, the solution to the optimization problem given in (43)
and we have demonstrated the existence of the lower bound.

Lemma C2: In the iteration in Algorithm 1, the upper
bound to the rate distortion is given by

where .

Proof: Note that if produces a distortion ,
then

(51)

where (a) follows from the definition of a step in Algorithm 1
and is given previously in (42), and (b) follows from the defi-
nition of . Hence, we have formed an upper
bound to the rate distortion, as in the lemma. Note that the only
inequality is in the first line of the chain and is due to the fact
that . However, upon conver-
gence, this inequality is tight.

We can now conclude our main objective in this appendix.
Proof of Lemma 11: Proving this lemma requires us to

present upper and lower bounds that converge to .
Lemma C1 provides us with a lower bound and its tightness,
whereas Lemma C2 provides us with a tight upper bound.

APPENDIX D
PROOF OF THEOREM 6

In this appendix, we provide a proof for Theorem 6. We re-
call that Theorem 6 states that the rate distortion function is the
solution to the following optimization problem:

(52)

where, for some causal conditioned probability ,
satisfies the inequality constraint

(53)

In the rest of this appendix, we provide two proofs for this the-
orem, as mentioned in Section VII. We also provide the con-
nection between the curve of and the parameter ; this
is embodied in Lemma D1.
Before we begin, we refer the reader to Section V. There, we

can see that a step in Algorithm 1 is defined by the following
equality:

(54)

where is a conditional probability converges, using Algo-
rithm 1, to . This equality is the outcome of differen-
tiating the Lagrangian when is fixed, as given in
Section VI. We shall use this equality throughout the proof. Fur-
ther, we write the directed information as for short

where is the causal conditional probability taking part in the
algorithm.
As mentioned, the first proof follows the one in [20].
Proof of Theorem 6: First, we show that for every

for which the distortion constraint is satisfied, the following
chain of inequalities holds:

where (a) follows from the fact that the distortion exceeds
for every , as has been as-

sumed, (b) follows from the inequality , (c)
is due to the constraint in (53), and (d) follows from the fact
that is equal to some joint distribution

[6]. Since the chain of inequalities is true for every
, we can choose the one that achieves and then

divide by to obtain the inequality in (52) in our Theorem.
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To complete the proof of Theorem 6, we need to show that
equality holds in the chain of inequalities above for some
that satisfies the constraint. If so, let us denote by the
conditional PMF that achieves . Further, we denote by

the corresponding causal conditioned PMF. Now,
consider the following chain of equalities:

where (a) is due to a step in the algorithm given by (54) and by
the uniqueness of in the algorithm (again, we refer
the reader to Lemma 10 in Section VI, where this is shown) and
(b) follows the expression for given by

(55)

Therefore, we are left to verify that the above satisfies
the constraint

where (a) follows from (54) and (b) is due to the causal condi-
tioning chain rule. Hence, we showed that is the solution
to the optimization problem given in (52).

We also present an alternative proof for Theorem 6, this using
the Lagrange duality, as in [13] and [21].

Alternative Proof for Theorem 6: Recall that is the
result of

where is defined by , subject to the
following conditions:

Let us define the Lagrangian as

where for all . Differentiating the La-
grangian, , over the variable , we obtain

Solving the equation , in order to find the op-
timum value yields the following expression:

(56)

where . Multiplying both sides by
, we are left with the constraint

(57)

where is induced by .
From [13, Ch. 5.1.3], we know that

is a lower bound to . Substituting the
minimizer using (56) and the condition given by (57)
into , we obtain the Lagrange dual function given in (58)
shown at the bottom of the page. By making the constraints
explicit, and since the minimization problem is convex, we
obtain the Lagrange dual problem, i.e., is the solution to

(59)

otherwise
(58)
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subject to

for the that is induced by and
is the optimal PMF.

We use the notion of an optimal PMF if it achieves the optimal
value. For example, the PMF achieves the minimum
of the directed information, given the distortion constraint is op-
timal. We say that the PMF is optimal if it is induced
by the optimal . Another example is the maximization
problem in (59).We say that are optimal if they achieve
the maximum value. Therefore, is optimal as well if
it satisfies (57).
Now, we wish to transform the constraint to

(60)

for some . First, note that we always achieve equality
in (60) since we can increase the value of and thus in-
crease the objective. This, combined with the fact that for

, must be zero, we have equality in
(57) as well (if , then and (56)
holds too). Now, let us assume that the maximum in (59) with
the constraint in (60) is achieved at a nonoptimal ,
i.e., one that is not achieved using the optimal . Thus,
the value obtained in (59) is larger than the value achieved
by , i.e., (since the maximization includes

). However, from the Lagrange duality, it should be
a lower bound to , thus contradicting the fact that the
maximum is achieved at a nonoptimal .

Note that we can construct the optimal PMF from
the solution to the maximization problem presented here. Con-
sider the parameters that achieve (59), and calcu-
late according to (57). The calculation of
is done recursively on . For , calculate
using

Further, calculate using

Now, once we have for every ,
calculate using

and then

Continue this until , and obtain our optimal .

Another lemma that we wish to provide is the connection be-
tween the curve of and the parameter . This lemma is
similar to the one given by Berger in [20, Th. 2.5.1] for the case
of no feed forward. Consider the expression for given
by

where and are the variables that maximize (59). Recall
that is of the form

Lemma D1: The slope at distortion is .
Proof: The proof is given simply by differentiating the ex-

pression for

Now, consider the following expression:

Using the given previously, we have , and thus,
. However

Hence, we can conclude that
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APPENDIX E
SOLUTION TO FOR AN ASYMMETRICAL MARKOV

SCHEME

The Markov source is presented in Fig. 5 above. We can de-
scribe the process using the equation

where , . This allows us to evaluate

where is the stationary distribution of the source. Now, to find
the rate distortion of this model, we start with the converse

where (a) follows from the fact that conditioning reduces en-
tropy and (b) follows from the fact that and
that increases with for .
However, this lower bound can be achieved by letting

depend on and , as in Fig. 10, where must hold
for the following equations:

i.e.,

Note that under this construction, the source is still Mar-
kovian. Further, from Fig. 10, we can see that

Fig. 10. Distribution of given and .

forms a Markov chain and . Thus, we ob-
tain equality in (a) and (b) in the aforementioned chain of in-
equalities and hence show that

By taking to infinity, we obtain
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