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Abstract— The best known inner bound for the two-user
discrete memoryless interference channel is the Han–Kobayashi
rate region. The coding schemes that achieve this region are
based on rate-splitting and superposition coding. In this paper,
we develop a multicoding scheme to achieve the same rate
region. A key advantage of the multicoding nature of the
proposed coding scheme is that it can be naturally extended
to more general settings, such as when encoders have state
information or can overhear each other. In particular, we extend
our coding scheme to characterize the capacity region of the state-
dependent deterministic Z-interference channel when noncausal
state information is available at the interfering transmitter.
We specialize our results to the case of the linear deterministic
model with ON/OFF interference, which models a wireless system
where a cognitive transmitter is noncausally aware of the times it
interferes with a primary transmission. For this special case, we
provide an explicit expression for the capacity region and discuss
some interesting properties of the optimal strategy. We also
extend our multicoding scheme to find the capacity region of
the deterministic Z-interference channel when the signal of the
interfering transmitter can be overheard at the other transmitter
(also known as unidirectional partial cribbing).

Index Terms— Interference channel, multicoding,
Z-interference channel, partial cribbing, state information.

I. INTRODUCTION

THE discrete memoryless interference channel (DM-IC)
is the canonical model for studying the effect of inter-

ference in wireless systems. The capacity of this channel is
only known in some special cases e.g. class of deterministic
ICs [3], [4], strong interference conditions [5]–[7], degraded
conditions [8], [9] and a class of semideterministic ICs [10].
Characterizing the capacity region in the general case has
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been one of the long standing open problems in informa-
tion theory. The best known achievable rate region is the
so-called Han-Kobayashi scheme, which can be achieved by
using schemes that are based on the concepts of rate-splitting
and superposition coding [11], [12]. Rate-splitting refers to
the technique of splitting the message at a transmitter into a
common and a private part, where the common part is decoded
at all the receivers and the private part is decoded only at
the intended receiver. The two parts of the message are then
combined into a single signal using superposition coding, first
introduced in [13] in the context of the broadcast channel.
In all the special cases where the capacity is known, the
Han-Kobayashi region equals the capacity region. However,
it has been very recently shown that this inner bound is not
tight in general [14].

The first result we present in this paper is to show that
the Han-Kobayashi region can be achieved by a multicoding
scheme. This scheme does not involve any explicit rate-
splitting. Instead, the codebook at each encoder is generated as
a multicodebook, i.e. there are multiple codewords correspond-
ing to each message, and the encoder chooses one by checking
an appropriate joint typicality condition. The auxiliary random
variable in this scheme is not explicitly associated with a des-
ignated part of the message to be decoded at both receivers.1

It’s role is reminiscent of the encoding for state-dependent
channels in [16], and the alternative proof of Marton’s achiev-
able rate region for the broadcast channel given in [17]. A key
advantage of the multicoding nature is that the new scheme
requires almost no change to be applicable to setups in which
the canonical interference channel model is augmented to
incorporate additional node capabilities such as cognition and
state-dependence, while extending the original Han-Kobayashi
scheme to such setups requires one to have a multicoding
structure at each level of the superposition coding, along with
having to change the decoding procedure significantly. We
demonstrate this by providing schemes for the aforementioned
augmented settings that are nearly identical to the new achiev-
ability scheme for the canonical interference channel.

The first setting we consider is when the interference
channel is state-dependent and the state-information is avail-
able non-causally to one of the transmitters (cognitive trans-
mitter). We know that for a point-to-point state-dependent
channel with non-causal state information at the encoder,
the optimal achievability scheme due to Gelfand and Pinsker
uses multicoding at the encoders. Hence, for state-dependent

1A similar idea, combined with the block-Markov operation of backward
encoding, has been recently used in [15] to develop an achievability scheme
called distributed-decode-forward for broadcast traffic on relay networks.
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interference channels with noncausal state information at the
encoders too, we would like to use the idea of multicoding.
Since the new achievability scheme that we present for the
canonical interference channel already involves multicoding,
it requires almost no change to be applicable to the state-
dependent setting; the only modification that needs to happen
is that the encoder now includes the state sequence in the
joint typicality check that it performs. Note that extending the
original Han-Kobayashi scheme to this setting on the other
hand would require to generate multiple superposition code-
books, each corresponding to a possible realization of the state
sequence. In this paper, we focus for simplicity on the case
when the state-information is available only at one transmitter,
and the cross-link from the other transmitter is weak enough to
be ignored, giving rise to the so called Z -interference channel
topology. We are able to prove the optimality of the new
scheme for this setup when the interference is deterministic.
Note however that as mentioned earlier the multicoding-based
scheme for the canonical interference channel can be appied
near-verbatim even for the general state-dependent interference
channel with noncausal state information at the transmitters.
The reason we focus on the deterministic Z -interference
channel is that we are able to also prove a converse in this
case and therefore obtain an exact capacity characterization.

We then specialize our capacity characterization for the
state-dependent deterministic Z -interference channel to the
case where the channels are governed by the linear deter-
ministic model of [18]. In the recent literature, this model
has proven extremely useful for approximating the capacity
of wireless networks and developing insights for the design
of optimal communication strategies. We consider a linear
deterministic Z-interference channel, in which the state of the
channel denotes whether the interference link is present or
not. When the transmitters are base-stations and the receivers
are end-users, this can model the scenario where one of the
transmitters is cognitive, for example it can be a central
controller that knows when the other Tx-Rx pair will be
scheduled to communicate on the same frequency band. When
the two Tx-Rx pairs are scheduled to communicate on the
same frequency band, this gives an interference channel; when
they communicate on different frequency bands each pair gets
a clean channel free of interference. Moreover, the cognitive
transmitter can know the schedule ahead of time, i.e. the
times at which its transmission will be interfering with the
second Tx-Rx pair. For this special case, we identify auxiliary
random variables and provide an explicit expression for the
capacity region. This explicit capacity characterization allows
us to identify interesting properties of the optimal strategy.
In particular, with single bit level for the linear deterministic
channels (which would imply low to moderate SNR for the
corresponding Gaussian channels), the sum rate is maximized
when the interfering transmitter remains silent (transmits 0’s)
at times when it interferes with the second transmission.
It then treats these symbols as stuck to 0 and performs
Gelfand-Pinsker coding. The second transmitter observes a
clean channel at all times and communicates at the maximal
rate of 1 bit per channel use. This capacity characterization
also reveals that when all nodes are provided with the state

information the sum-capacity cannot be further improved.
Thus, for this channel, the sum-capacity when all nodes have
state information is the same as that when only the interfering
encoder has state information.

State-dependent interference channels where the state infor-
mation is known only to some of the transmitters have received
a lot of attention recently, which we mention in this paragraph.
Given the inherent difficulty of the problem, works such as
[19]–[22] have considered special cases and proposed particu-
lar coding schemes. However, exact capacity characterizations
have proven difficult. Another line of related work has been
the study of cognitive state-dependent ICs [23]–[26]. Here, the
term “cognitive” is usually used to mean that the cognitive
transmitters know not only the state of the channel but also
messages of other transmitters. Note that this assumption is
significantly stronger than assuming state information at the
transmitter as we do here.

The second setting we consider is when one of the trans-
mitters has the capability to overhear the signal transmitted by
the other transmitter, which can be used to induce cooperation
between the two transmitters. This is different from having
orthogonal communication links (or conferencing) between the
encoders, as studied in [27]. Instead, overhearing exploits the
natural broadcasting nature of the wireless medium to estab-
lish cooperation without requiring any dedicated resources.
A variety of different models have been used to capture
overhearing [28]–[30], and are known by different names
such as cribbing, source cooperation, generalized feedback,
cognition etc. We use “partial cribbing” to model the over-
hearing, in which some deterministic function of the signal
transmitted by the non-cognitive transmitter is available at the
cognitive transmitter in a strictly causal fashion. Again, for
simplicity, we focus on the case of the Z -interference channel,
where the cross-link between the non-cognitive transmitter
and its undesired receiver is weak enough to be ignored.
For this setting, we develop a simple achievability scheme
by combining our multicoding-based scheme with block-
Markov coding and show that it is optimal for deterministic
configurations.

Finally, to further illustrate the point that simple schemes
can be obtained for augmented scenarios, we describe two
extensions which introduce even more complexity in the
model. In the first extension, a third message is introduced
in the state-dependent Z-interference channel, which is to be
communicated from the interfering transmitter to the interfered
receiver. The second extension combines the state-dependent
Z-IC and the Z-IC with unidirectional partial cribbing. In both
extensions, we are able to obtain simple optimal schemes
by naturally extending the multicoding-based achievability
schemes.

Organization: We describe the models considered in this
paper formally in Section II. The alternate achievability
scheme that achieves the Han-Kobayashi region is presented
in Sections III. Section IV describes the results concerning the
state-dependent setup and section V describes the results con-
cerning the cribbing setup. The two extensions are described
in Section VI and we end the paper with a short discussion in
Section VII.
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Fig. 1. Two-User Discrete Memoryless Interference Channel (DM-IC).

II. MODEL

Capital letters, small letters and capital calligraphic let-
ters denote random variables, realizations and alphabets
respectively. The tuple (x(1), x(2), . . . , x(n)) and the set
{a, a + 1, . . . , b} are denoted by xn and [a : b] respectively,
and T (n)

ε stands for the ε-strongly typical set of length-n
sequences.

We now describe the channel models considered in this
paper.

A. Canonical Interference Channel

The two-user discrete memoryless interference channel
pY1,Y2|X1,X2(y1, y2|x1, x2) is depicted in Fig. 1. Each sender
j ∈ {1, 2} wishes to communicate a message M j to the
corresponding receiver.

A (n, 2nR1 , 2nR2 , ε) code for the above channel consists of
the encoding and decoding functions:

f j,i : [1 : 2nR j ] → X j , j ∈ {1, 2}, 1 ≤ i ≤ n,

g j : Yn
j → [1 : 2nR j ], j ∈ {1, 2},

such that

Pr
{

g(Y n
j ) �= M j

}
≤ ε, j ∈ {1, 2},

where M1 and M2 are assumed to be distributed uniformly
in [1 : 2nR1 ] and [1 : 2nR2 ] respectively. A rate pair (R1, R2)
is said to be achievable if for every ε > 0, there exists a
(n, 2nR1 , 2nR2 , ε) code for sufficiently large n. The capacity
region is defined to be the closure of the achievable rate region.

B. State-Dependent Z-Interference Channel

The state-dependent Z-interference channel (S-D Z-IC),
described by p(y1|x1, s)p(y2|x1, x2, s) and memoryless state
p(s), is depicted in Fig. 2. The states are assumed to be known
noncausally at encoder 1. Each sender j ∈ {1, 2} wishes to
communicate a message M j at rate R j to the corresponding
receiver. For this setting, a (n, 2nR1 , 2nR2 , ε) code consists of
the encoding and decoding functions:

f1,i : [1 : 2nR1 ] × Sn → X1, 1 ≤ i ≤ n,

f2,i : [1 : 2nR2 ] → X2, 1 ≤ i ≤ n,

g j : Yn
j → [1 : 2nR j ], j ∈ {1, 2},

such that

Pr
{

g(Y n
j ) �= M j

}
≤ ε, j ∈ {1, 2}.

The probability of error, achievable rate pairs (R1, R2) and the
capacity region are defined in a similar manner as before.

Fig. 2. The State-Dependent Z-Interference Channel (S-D Z-IC).

Fig. 3. The Injective Deterministic S-D Z-IC.

Fig. 4. The Modulo-Additive S-D Z-IC. All channel inputs and outputs take
values in the same finite alphabet X . The state S is Ber(λ).

A special case of the S-D Z-IC, which is the injective
deterministic S-D Z-IC, is depicted in Fig. 3. The channel
output Y1 is a deterministic function y1(X1, S) of the channel
input X1 and the state S. At receiver 2, the channel output
Y2 is a deterministic function y2(X2, T1) of the channel
input X2 and the interference T1, which is assumed to be a
deterministic function t1(X1, S). We also assume that if x2 is
given, y2(x2, t1) is an injective function of t1, i.e. there exists
some function g such that t1 = g(y2, x2).

We consider a special case of the injective deterministic
S-D Z-IC in detail, which is the modulo-additive S-D Z-IC,
depicted in Fig. 4. All channel inputs and outputs come from
a finite alphabet X = {0, 1, . . . , |X | − 1}. The channel has
two states. In state S = 0, there is no interference while in
state S = 1, the cross-link is present. When the cross-link
is present, the output at receiver 2 is the modulo-|X | sum of
X2 and X1. For all other cases, the output is equal to the input.
We can describe this formally as:

Y1 = X1,

Y2 = X2 ⊕ (S · X1).

Assume that the state S is i.i.d. Ber(λ). A generalization of
this model that incorporates multiple levels is also considered
subsequently.
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Fig. 5. Injective Deterministic Z-Interference Channel with Unidirectional
Partial Cribbing.

C. Z-Interference Channel With Partial Cribbing

The discrete memoryless deterministic Z-interference chan-
nel is depicted in Fig. 5. The channel output Y1 is a determinis-
tic function y1(X1) of the channel input X1. At receiver 2, the
channel output Y2 is a deterministic function y2(X2, T1) of the
channel input X2 and the interference T1, which is assumed
to be a deterministic function t1(X1). We also assume that if
x2 is given, y2(x2, t1) is an injective function of t1, i.e. there
exists some function g such that t1 = g(y2, x2). Each sender
j ∈ {1, 2} wishes to communicate a message M j at rate R j

to the corresponding receiver.
We assume that encoder 1 can overhear the signal from

transmitter 2 strictly causally, which is modeled as partial
cribbing with a delay [31]. The partial cribbing signal, which
is a function of X2 is denoted by Z2. So X1i is a function of
(M1, Zi−1

2 ) and X2i is a function of M2.
A (n, 2nR1 , 2nR2 , ε) code for this setting consists of

f1,i : [1 : 2nR1 ] × Z i−1
2 → X1, 1 ≤ i ≤ n,

f2,i : [1 : 2nR2 ] → X2, 1 ≤ i ≤ n,

g j : Yn
j → [1 : 2nR j ], j ∈ {1, 2},

such that

Pr
{

g(Y n
j ) �= M j

}
≤ ε, j ∈ {1, 2}.

The probability of error, achievable rate pairs (R1, R2) and
the capacity region are defined in a similar manner as
before.

III. CANONICAL INTERFERENCE CHANNEL

A. Preliminaries

The currently best known achievable rate region for the
2-user DM-IC was provided by Han and Kobayashi in [11],
using a scheme based on rate-splitting and superposition
coding. An alternative achievable rate region that included the
Han-Kobayashi rate region was proposed in [12], using another
scheme that used rate-splitting and superposition coding.
Using the terminology introduced in [32], the encoding in [11]
can be described as employing homogeneous superposition
coding, while that in [12] can be described as employing
heterogeneous superposition coding. It was then proved in [33]
that the two regions are, in fact, equivalent and given by the
following compact representation (see also [34], [35]).

Theorem 1 (Han-Kobayashi Region): A rate pair (R1, R2)
is achievable for the DM-IC p(y1, y2|x1, x2) if

R1 < I (X1; Y1|U2, Q),

R2 < I (X2; Y2|U1, Q),

R1 + R2 < I (X1; Y1|U1, U2, Q) + I (X2, U1; Y2|Q),

R1 + R2 < I (X1, U2; Y1|U1, Q) + I (X2, U1; Y2|U2, Q),

R1 + R2 < I (X1, U2; Y1|Q) + I (X2; Y2|U1, U2, Q),

2R1 + R2 < I (X1; Y1|U1, U2, Q) + I (X2, U1; Y2|U2, Q)

+I (X1, U2; Y1|Q),

R1 + 2R2 < I (X2; Y2|U1, U2, Q) + I (X1, U2; Y1|U1, Q)

+I (X2, U1; Y2|Q), (1)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where
|U1| ≤ |X1| + 4, |U2| ≤ |X2| + 4 and |Q| ≤ 4.

B. Outline of the New Achievability Scheme

We first describe the alternative achievability scheme infor-
mally and discuss the similarities and differences with the
existing achievability schemes. The later subsections describe
and analyze the scheme formally.

Encoder j , where j ∈ {1, 2} prepares two codebooks:

• A transmission multicodebook,2 which is a set of code-
words {xn

j (·, ·)} formed using the transmission random
variable X j . This set is partitioned into a number of bins
(or subcodebooks), where the bin-index corresponds to
the message,

• A coordination codebook which is a set of codewords
{un

j (·)} formed using the auxiliary random variable U j .

Given a message, one codeword xn
j from the corresponding

bin in the transmission multicodebook is chosen so that it
is jointly typical with some codeword un

j in the coordination
codebook. The codeword xn

j so chosen forms the transmission
codeword.

At a decoder, the desired message is decoded by using joint
typicality decoding, which uses the coordination codebook and
the transmission multicodebook of the corresponding encoder
and the coordination codebook of the other encoder. Thus,
a receiver makes use of the interference via its knowledge of
the coordination codebook at the interfering transmitter.

From the above description, it can be seen that the coordina-
tion codebook does not carry any explicit part of the message.
Its purpose is to ensure that the transmission codeword from
a given bin is well-chosen, i.e. it is beneficial to the intended
receiver and also the unintended receiver. To the best of our
knowledge, this is the first time an auxiliary random variable
(which is not the time-sharing random variable) appears in
one of the best known achievability schemes without being
explicitly associated with any message.

C. Achievability Scheme

Choose a pmf p(u1, x1)p(u2, x2) and 0 < ε′ < ε.

2The term “multicodebook” refers to the fact that there are multiple
codewords corresponding to each message.
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Codebook Generation:

• Encoder 1 generates a coordination codebook consisting
of 2nR1c codewords3 un

1(l1c), l1c ∈ [1 : 2nR1c ] i.i.d.
according to

∏n
i=1 p(u1i). It also generates a transmis-

sion multicodebook consisting of 2n(R1+R1p) codewords
xn

1 (m1, l1p), m1 ∈ [1 : 2nR1 ], l1p ∈ [1 : 2nR1p ] i.i.d.
according to

∏n
i=1 p(x1i).

• Similarly, encoder 2 generates a coordination codebook
consisting of 2nR2c codewords un

2(l2c), l2c ∈ [1 :
2nR2c ] i.i.d. according to

∏n
i=1 p(u2i ). It also generates

a transmission multicodebook consisting of 2n(R2+R2p)

codewords xn
2 (m2, l2p), m2 ∈ [1 : 2nR2 ], l2p ∈ [1 :

2nR2p ] i.i.d. according to
∏n

i=1 p(x2i ).

Encoding:

• To transmit message m1, encoder 1 finds a pair (l1c, l1p)
such that

(un
1(l1c), xn

1 (m1, l1p)) ∈ T (n)
ε′

and transmits xn
1 (m1, l1p). If it cannot find such a pair, it

transmits xn
1 (m1, 1).

• Similarly, to transmit message m2, encoder 2 finds a pair
(l2c, l2p) such that

(un
2(l2c), xn

2 (m2, l2p)) ∈ T (n)
ε′

and transmits xn
2 (m2, l2p). If it cannot find such a pair, it

transmits xn
2 (m2, 1).

The codebook generation and encoding process are illus-
trated in Fig. 6.

Decoding:

• Decoder 1 finds the unique m̂1 such that

(un
1(l1c), xn

1 (m̂1, l1p), un
2(l2c), yn

1 ) ∈ T (n)
ε

for some (l1c, l1p, l2c). If none or more than one such m̂1
are found, then decoder 1 declares error.

• Decoder 2 finds the unique m̂2 such that

(un
2(l2c), xn

2 (m̂2, l2p), un
1(l1c), yn

2 ) ∈ T (n)
ε

for some (l2c, l2p, l1c). If none or more than one such m̂2
are found, then decoder 2 declares error.

Discussion: Before providing the formal analysis of the
probability of error to show that the coding scheme described
above achieves the Han-Kobayashi region, we discuss the
connection between the new scheme and the scheme from [12]
which motivates the equivalence of their rate regions.

Consider the set of codewords used at encoder 1. While
this set resembles a multicodebook, it can be reduced to a
standard codebook (one codeword per message) by stripping
away the codewords in each bin that are not jointly typical
with any of the un

1 codewords, and therefore are never used
by the transmitters. In other words, after we generate the
multicodebook in Fig. 6, we can form a smaller codebook
by only keeping one codeword per message which is jointly

3Though there is no notion of a common message or a private message
in this achievability scheme, we use the subscripts c and p to convey if the
corresponding random variables are used for decoding at all destinations or
only the desired destination respectively.

Fig. 6. Codebook Generation and Encoding at Encoder 1. Each dot
along either of the axes represents a codeword. The independently generated
xn

1 codewords, lined up along the vertical axis in the figure, are binned
into 2n R1 bins. The independently generated coordination codewords un

1 are
lined up along the horizontal axis. A pair (xn

1 , un
1 ) being jointly typical

is represented by horizontal and vertical dotted lines, originating from the
respective codewords and meeting in a dot. To transmit message m1, a jointly
typical pair (xn

1 , un
1) is sought where xn

1 falls into the m1-th bin, and then
xn

1 is transmitted.

typical with one of the un
1 codewords (i.e., those codewords

highlighted in Fig. 6). Note that this reduced codebook indeed
has a superposition structure. Each of the 2nR1 remaining
codewords xn

1 is jointly typical with one of the 2nR1c un
1

codewords, and when n is large there will be exactly 2n(R1−R1c)

xn
1 codewords that are typical with each un

1 codeword, i.e.,
these 2n(R1−R1c) xn

1 codewords will look as if they were
generated i.i.d. from p(x1|u1). Therefore, the un

1 codewords
can be indeed thought as the cloud centers in this superposition
codebook and xn

1 ’s as the satellite codewords. Therefore, our
multicodebook construction can be viewed as an equivalent
way to generate a superposition codebook as in [33]. This
reveals that both the codebook structure and the decoding
in our scheme are similar to that in the Han-Kobayashi
scheme and therefore the two achievable rate regions are, not
surprisingly, equal.

However, note that for broadcast channels, combining Mar-
ton coding (which employs multicoding) [17] with Gelfand-
Pinsker coding (which also employs multicoding) is more
straightforward than combining superposition coding with
Gelfand-Pinsker coding. The former has been shown to be
optimal in some cases [36]. Since our codebook construction
for the interference channel also has the flavor of multicod-
ing, extending this construction to setups where multicoding
is required is also quite straightforward. As mentioned in
the introduction, we exploit this to develop simple achiev-
ability schemes for more general setups described in later
sections.
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Probability of Error: Due to the symmetry of the code, the
average probability of error P(E) is equal to P(E |M1, M2),
so we can assume (M1, M2) = (1, 1) and analyze P(E |1, 1).
Let (L1c, L1p, L2c, L2p) denote the indices chosen during
encoding by encoder 1 and encoder 2.

We now define events that cover the event of error in
decoding message m1:

E1 � {(Un
1 (l1c), Xn

1 (1, l1p)) /∈ T (n)
ε′ for all l1c, l1p},

E2 � {(Un
1 (L1c), Xn

1 (1, L1p), Un
2 (L2c), Y n

1 ) /∈ T (n)
ε },

E3 � {(Un
1 (L1c), Xn

1 (m1, l1p), Un
2 (L2c), Y n

1 ) ∈ T (n)
ε

for some m1 �= 1, for some l1p},
E4 � {(Un

1 (L1c), Xn
1 (m1, l1p), Un

2 (l2c), Y n
1 ) ∈ T (n)

ε

for some m1 �= 1, for some l1p, l2c},
E5 � {(Un

1 (l1c), Xn
1 (m1, l1p), Un

2 (L2c), Y n
1 ) ∈ T (n)

ε

for some m1 �= 1, for some l1p, l1c},
E6 � {(Un

1 (l1c), Xn
1 (m1, l1p), Un

2 (l2c), Y n
1 ) ∈ T (n)

ε

for some m1 �= 1, for some l1c, l1p, l2c}.
Consider also the event E ′

1, analogous to E1, which is defined
as follows.

E ′
1 � {(Un

2 (l2c), Xn
2 (1, l2p)) /∈ T (n)

ε′ for all l2c, l2p}.
Since an error for m1 occurs only if at least one of the

above events occur, we use the union bound to get the
following upper bound on the average probability of error in
decoding m1:

P(E1) + P(E ′
1) + P(E2 ∩ Ec

1 ∩ E ′c
1 )

+P(E3) + P(E4) + P(E5) + P(E6).

By the mutual covering lemma [37, Ch. 8], P(E1) → 0 as
n → ∞ if

R1p + R1c > I (U1; X1) + δ(ε′), (2)

where δ(ε′) → 0 as ε′ → 0.
Similarly, we get that P(E ′

1) → 0 as n → ∞ if

R2p + R2c > I (U2; X2) + δ(ε′). (3)

By the conditional typicality lemma, P(E2 ∩Ec
1 ∩E ′c

1 ) tends
to zero as n → ∞.

For P(E3) → 0, we can use the packing lemma from
[37, Ch. 3] to get the condition

R1 + R1p < I (X1; U1, U2, Y1) − δ(ε), (4)

where δ(ε) → 0 as ε → 0.
For P(E4) → 0, we can again use the packing lemma to get

the condition

R1 + R1p + R2c < I (X1, U2; U1, Y1) − δ(ε). (5)

For P(E5) → 0, we apply the multivariate packing lemma
from the Appendix as shown in (54) to get the condition

R1+ R1p+ R1c < I (U1; X1) + I (U1, X1; U2, Y1) − δ(ε). (6)

Finally, for P(E6) → 0 as n → ∞, another application of
the multivariate packing lemma as shown in (55) gives the
condition

R1 + R1p + R1c + R2c < I (U1; X1) + I (U2; Y1)

+ I (U1, X1; U2, Y1) − δ(ε). (7)

A similar analysis leads to the following additional condi-
tions for the probability of error in decoding m2 to vanish as
n → ∞.

R2 + R2p < I (X2; U2, U1, Y2) − δ(ε), (8)

R2 + R2p + R1c < I (X2, U1; U2, Y2) − δ(ε), (9)

R2 + R2p + R2c < I (U2; X2) + I (U2, X2; U1, Y2)

− δ(ε), (10)

R2 + R2p + R2c + R1c < I (U2; X2) + I (U1; Y2)

+ I (U2, X2; U1, Y2) − δ(ε). (11)

Hence the probability of error vanishes as n → ∞ if
the conditions (2)-(11) are satisfied. For the sake of brevity,
let us first denote the RHS of the conditions (2)-(11) by
a, b, c, d, e, f, g, h, i, j respectively (ignoring the δ(ε′) and
δ(ε) terms).

We then note the following relations among these terms
which can be proved using the chain rule of mutual infor-
mation, the Markov chains U1 − X1 − (U2, X2, Y1, Y2) and
U2 − X2 − (U1, X1, Y1, Y2) and the independence of (U1, X1)
and (U2, X2).

e − a ≤ min{c, d},
f − a ≤ d ≤ f,

c ≤ e ≤ f,

i − b ≤ min{g, h},
j − b ≤ h ≤ j,

g ≤ i ≤ j. (12)

We now employ Fourier-Motzkin elimination on the con-
ditions (2)-(11) and R1c, R1p, R2c, R2p ≥ 0 to eliminate
R1c, R1p, R2c, R2p . The set of relations (12) can be used to
simplify this task by recognizing redundant constraints. At the
end, we get the following achievable region:

R1 < e − a,

R2 < i − b,

R1 + R2 < c + j − a − b,

R1 + R2 < d + h − a − b,

R1 + R2 < f + g − a − b,

2R1 + R2 < c + h + f − 2a − b,

R1 + 2R2 < d + g + j − a − 2b. (13)

Using the same facts as those used to prove (12), we can
show that the above region is the same as the Han-Kobayashi
region. For the sake of completeness, we show this explicitly
in Appendix I.
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Then, by including a time-sharing random variable Q, we
get that the following region is achievable:

R1 < I (X1; Y1|U2, Q),

R2 < I (X2; Y2|U1, Q),

R1 + R2 < I (X1; Y1|U1, U2, Q) + I (X2, U1; Y2|Q),

R1 + R2 < I (X1, U2; Y1|U1, Q) + I (X2, U1; Y2|U2, Q),

R1 + R2 < I (X1, U2; Y1|Q) + I (X2; Y2|U1, U2, Q),

2R1 + R2 < I (X1; Y1|U1, U2, Q) + I (X2, U1; Y2|U2, Q)

+ I (X1, U2; Y1|Q),

R1 + 2R2 < I (X2; Y2|U1, U2, Q) + I (X1, U2; Y1|U1, Q)

+ I (X2, U1; Y2|Q), (14)

for pmf p(q)p(u1, x1|q)p(u2, x2|q). This region is identical
to the region in (1).

IV. STATE-DEPENDENT INTERFERENCE CHANNELS

In this section, we focus on the particular setup of the state-
dependent Z-interference channel (S-D Z-IC) with noncausal
state information at the interfering transmitter, as depicted in
Fig. 2. We provide a simple achievability scheme for this setup,
that is obtained by modifying only slightly the achievability
scheme that we have developed for the general interference
channel. The modification, apart from the choice of pmf, is
simply that the informed encoder now includes the observed
state sequence when it performs the joint typicality encoding,
the rest of the scheme description remains the same. This
scheme is shown to be optimal for the deterministic case. The
auxiliary random variable used for encoding at the interfering
transmitter now implicitly captures some part of the message
as well as some part of the state sequence realization.

We mention here that the advantages of multicoding in terms
of getting simple achievability schemes are not restricted to
the deterministic Z-setups. They hold for general setups, and
the reason we focus on the deterministic Z-setups is that we
can prove converses, which suggests the merits of the new
scheme. The achievability scheme can also be viewed as a
generalization of the schemes presented in [22] and [38].

After characterizing the capacity region of the deterministic
S-D Z-IC, we investigate a special case in detail: the modulo-
additive S-D Z-IC. The modulo-additive channel is motivated
by the linear deterministic model which has gained popularity
over the recent years for studying wireless networks [18]. For
this case (which can be thought of as a linear deterministic
model with only one bit level), we obtain an explicit descrip-
tion of the capacity region and furthermore, show that the
capacity region is also achieved by the standard Gelfand-
Pinsker coding over the first link and treating interference
as noise over the second link. Following this, the modulo-
additive S-D Z-IC with multiple levels is considered and
some discussion is provided about the capacity region and
the performance of simple achievability schemes.

To summarize, this section contains the following contribu-
tions:

• An achievable rate region for the S-D Z-IC,
• Capacity region of the injective deterministic S-D Z-IC,

• Modulo-additive S-D Z-IC: optimality of treating
interference-as-noise and other properties.

A. Results for the State-Dependent Channel

The following theorem provides an inner bound to the
capacity region of the S-D Z-IC in Fig. 2.

Theorem 2: A rate pair (R1, R2) is achievable for the S-D
Z-IC in Fig. 2 if

R1 < I (U ; Y1|Q) − I (U ; S|Q),

R2 < I (X2; Y2|V , Q),

R2 < I (V , X2; Y2|Q) − I (V ; S|Q),

R1 + R2 < I (U ; Y1|Q) + I (V , X2; Y2|Q)

−I (U ; S|Q) − I (U, S; V |Q), (15)

for some pmf p(q)p(u, v|s, q)p(x1|u, v, s, q)p(x2|q).
For the injective deterministic S-D Z-IC, we can identify

natural choices for the auxiliary random variables in Theo-
rem 2 that, in fact, yield the capacity region. This result is
stated in the following theorem.

Theorem 3: The capacity region of the injective determin-
istic S-D Z-IC in Fig. 3 is the set of rate pairs (R1, R2) that
satisfy

R1 ≤ H (Y1|S, Q),

R2 ≤ H (Y2|T1, Q),

R2 ≤ H (Y2|Q) − I (T1; S|Q),

R1 + R2 ≤ H (Y1|T1, S, Q) + H (Y2|Q) − I (T1; S|Q), (16)

for some pmf p(q)p(x1|s, q)p(x2|q), where |Q| ≤ 4.
Remark 1: Note that the capacity region remains

unchanged even if the first receiver is provided with
the state information. The proof of this theorem is presented
in subsection IV-C.

B. Proof of Theorem 2

Fix p(u, v|s)p(x1|u, v, s)p(x2) and choose 0 < ε′ < ε.
Codebook Generation:
• Encoder 2 generates 2nR2 codewords xn

2 (m2), m2 ∈ [1 :
2nR2 ] i.i.d. according to p(x2).

• Encoder 1 generates 2n(R1+R′
1) codewords un(m1, l1) i.i.d.

according to p(u), where m1 ∈ [1 : 2nR1 ] and l1 ∈
[1 : 2nR′

1]. Encoder 1 also generates 2nR′
2 codewords

vn(l2), l2 ∈ [1 : 2nR′
2 ] i.i.d. according to p(v).

Encoding:
• To transmit message m2, encoder 2 transmits xn

2 (m2).
• Assume that the message to be transmitted by encoder 1

is m1. After observing sn , it finds a pair (l1, l2) such
that (un(m1, l1), v

n(l2), sn) ∈ T (n)
ε′ . Then it transmits xn

1 ,
which is generated i.i.d. according to p(x1|u, v, s).

Decoding:
• Decoder 1 finds a unique m̂1 such that (un(m̂1, l1), yn

1 ) ∈
T (n)

ε for some l1.
• Decoder 2 finds a unique m̂2 such that

(xn
2 (m̂2), v

n(l2), yn
2 ) ∈ T (n)

ε for some l2.



KOLTE et al.: MULTICODING SCHEMES FOR INTERFERENCE CHANNELS 4943

Probability of Error: Due to the symmetry of the code, the
average probability of error P(E) is equal to P(E |M1, M2), so
we can assume (M1, M2) = (1, 1) and analyze P(E |1, 1). Let
(L1, L2) denote the pair of indices chosen by encoder 1 such
that (Un(1, L1), V n(L2), Sn) ∈ T n

ε′ .
We now define events that cover the error event:

E1 � {(Un(1, l1), V n(l2), Sn) /∈ T (n)
ε′ for all l1, l2},

E2 � {(Un(1, L1), Y n
1 ) /∈ T (n)

ε },
E3 � {(Un(m1, l1), Y n

1 ) ∈ T (n)
ε for some m1 �= 1, l1},

E4 � {(Xn
2 (1), V n(L2), Y n

2 ) /∈ T (n)
ε },

E5 � {(Xn
2 (m2), V n(l2), Y n

2 ) ∈ T (n)
ε for some m2 �= 1, l2}.

Since an error occurs only if at least one of the above events
occur, we have the following upper bound on the average
probability of error:

P(E) ≤ P(E1) + P(E2 ∩ Ec
1 ) + P(E3) + P(E4 ∩ Ec

1 ) + P(E5).

Similar to the proof of the mutual covering lemma
[37, Ch. 8], we can show that P(E1) → 0 as n → ∞ if

R′
1 > I (U ; S) + δ(ε′), (17)

R′
2 > I (V ; S) + δ(ε′), (18)

R′
1 + R′

2 > I (U ; S) + I (U, S; V ) + δ(ε′), (19)

where δ(ε′) → 0 as ε′ → 0.
By the conditional typicality lemma [37, Ch. 2], P(E2 ∩Ec

1 )
and P(E4 ∩ Ec

1 ) both tend to zero as n → ∞.
By the packing lemma [37, Ch. 3], for P(E3) → 0, we

require

R1 + R′
1 < I (U ; Y1) − δ(ε), (20)

and for P(E5) → 0, we require

R2 < I (X2; Y2|V ) − δ(ε), (21)

R2 + R′
2 < I (V , X2; Y2) − δ(ε), (22)

where δ(ε) → 0 as ε → 0. Hence, P(E) → 0 if (17),
(18), (19), (20), (21), (22) are satisfied. Allowing coded-time
sharing with a time-sharing random variable Q and elimi-
nating R′

1, R′
2 via Fourier-Motzkin elimination, we obtain the

region (15).

C. Proof of Theorem 3

Achievability follows from Theorem 2 by choosing U = Y1
and V = T1. These choices are valid since encoder 1 knows
(M1, Sn), which determines T n

1 and Y n
1 . We now prove the

converse.
Given a sequence of codes that achieves reliable communi-

cation (i.e. P(n)
e → 0 as n → ∞) at rates (R1, R2), we have,

by Fano’s inequality:

H (M1|Y n
1 ) ≤ nεn,

H (M2|Y n
2 ) ≤ nεn,

where εn → 0 as n → ∞.

Using these, we can establish an upper bound on R1 as
follows,

n R1 = H (M1)

= H (M1|Sn)

≤ I (M1; Y n
1 |Sn) + nεn

≤ H (Y n
1 |Sn) + nεn

≤
n∑

i=1

H (Y1i |Si ) + nεn .

A simple upper bound on R2 is established in the
following:

n R2 = H (M2)

= H (M2|T n
1 )

≤ I (M2; Y n
2 |T n

1 ) + nεn

≤ H (Y n
2 |T n

1 ) + nεn

≤
n∑

i=1

H (Y2i |T1i ) + nεn .

For the second upper bound on R2, consider the
following:

n R2 = H (M2)

= H (M2) + H (Y n
2 |M2) − H (Y n

2 |M2)

= H (Y n
2 ) + H (M2|Y n

2 ) − H (Y n
2 |M2)

≤
n∑

i=1

H (Y2i) + nεn − H (Y n
2 |M2)

(a)=
n∑

i=1

H (Y2i) + nεn − H (T n
1 |M2)

(b)=
n∑

i=1

H (Y2i) + nεn − H (T n
1 )

≤
n∑

i=1

H (Y2i) + nεn − I (T n
1 ; Sn)

=
n∑

i=1

H (Y2i) + nεn − H (Sn) + H (T n
1 |Sn)

≤
n∑

i=1

H (Y2i) + nεn − H (Sn) +
n∑

i=1

H (T1i |Si )

(c)=
n∑

i=1

H (Y2i) + nεn −
n∑

i=1

H (Si) +
n∑

i=1

H (T1i |Si )

=
n∑

i=1

H (Y2i) + nεn −
n∑

i=1

I (T1i ; Si )

(23)

where step (a) follows by the injectivity property, step (b)
follows because T n

1 is independent of M2, and step (c) follows
because Sn is an i.i.d. sequence.
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Fig. 7. Capacity Region with X = {0, 1} and S i.i.d. Ber
(

1
2

)
. The dotted

line shows the capacity region when all nodes have state information. Note
that the maximal sum-rate of 1.5 bits/channel use is achievable with state
information only at the interfering Tx.

We now establish an upper bound on the sum-rate.

n(R1 + R2)

= H (M1|Sn) + H (M2)

≤ I (M1; T n
1 , Y n

1 |Sn) + nεn + H (Y n
2 ) + H (M2|Y n

2 )

−H (Y n
2 |M2)

≤ I (M1; T n
1 , Y n

1 |Sn) + nεn + H (Y n
2 ) + nεn − H (Y n

2 |M2)
(a)≤ H (T n

1 , Y n
1 |Sn) + H (Y n

2 ) − H (T n
1 |M2) + 2nεn

(b)= H (T n
1 , Y n

1 |Sn) + H (Y n
2 ) − H (T n

1 ) + 2nεn

= H (Y n
1 |Sn, T n

1 ) + H (Y n
2 ) − I (T n

1 ; Sn) + 2nεn

(c)≤
n∑

i=1

H (Y1i |Si , T1i )+
n∑

i=1

H (Y2i)−
n∑

i=1

I (T1i ; Si )+2nεn

where as before, steps (a), (b) and (c) follow because of
injectivity property, independence of T n

1 and M2, and i.i.d.
state respectively.

From the four bounds established in this section, we can
complete the converse by introducing an independent time-
sharing random variable Q uniformly distributed on [1 : n]
and defining X1, T1, S, X2, Y1, Y2 to be X1Q , T1Q , SQ , X2Q ,
Y1Q , Y2Q respectively.

D. Example: Modulo-Additive State-Dependent
Z-Interference Channel

Theorem 4: The capacity region of the modulo-additive
S-D Z-IC in Fig. 4 is given by the convex closure of the rate
pairs (R1, R2) satisfying

R1 < (1 − λ) log |X | + λH ( p),

R2 < log |X | − H (λ p + (1 − λ)δ0), (24)

for some p ∈ PX , where PX denotes the probability simplex
corresponding to X , H ( p) stands for the entropy of the pmf
p and δ0 denotes the pmf that has unit mass at 0.

The capacity region when X = {0, 1} and S is i.i.d. Ber
( 1

2

)
is shown in Figure 7.

Proof of Theorem 4: Consider the capacity region stated
in Theorem 3. Let p1,0, p1,1 and p2, all in PX , be used to
denote the pmf’s p(x1|s = 0, q), p(x1|s = 1, q) and p(x2|q)
respectively. Evaluating each of the constraints in (16) gives
us the following expression for the capacity region:

R1 < (1 − λ)H ( p1,0) + λH ( p1,1),

R2 < H ( p2),

R2 < H
(
(1 − λ) p2 + λ p̃

) + λH ( p1,1)

−H
(
λ p1,1 + (1 − λ)δ0

)
,

R1 + R2 < (1 − λ)H ( p1,0) + H
(
(1 − λ) p2 + λ p̃

)

+λH ( p1,1) − H
(
λ p1,1 + (1 − λ)δ0

)
,

(25)

where p̃ ∈ PX is a pmf that is defined as

p̃(k) =
|X |−1∑

i=0

p1,1(i) p2(k − i), 0 ≤ k ≤ |X | − 1,

and k − i should be understood to be (k − i) mod |X |.
Firstly, we note that p1,0 should be chosen as the pmf of the

uniform distribution to maximize H ( p1,0), thus maximizing
the RHS of the constraints in (25). Similarly, p2 should also
be chosen to be the pmf of the uniform distribution. Then, we
can also remove the first constraint on R2, since it is rendered
redundant by the other constraint on R2. Thus, the capacity
region is given by the convex closure of (R1, R2) satisfying

R1 < (1 − λ) log(|X |) + λH ( p1,1),

R2 < log(|X |) + λH ( p1,1) − H
(
λ p1,1 + (1 − λ)δ0

)
,

R1 + R2 < (2 − λ) log(|X |) + λH ( p1,1)

−H
(
λ p1,1 + (1 − λ)δ0

)
, (26)

for p1,1 ∈ PX .
For any p, the region in (24) is contained in the region

in (26) for p1,1 = p. Hence, the convex closure of (24) is
contained in the convex closure of (26).

However, also note that the region in (26) for any p1,1 is
contained in the convex hull of two regions, one obtained by
setting p = p1,1 in (24) and the other obtained by setting
p = δ0 in (24). Hence, the convex closure of (26) is also
contained in the convex closure of (24). This concludes the
proof of Theorem 4.

Remark 2: The optimal sum-rate (2−λ) log |X | is achieved
by choosing p = δ0. This corresponds to setting the transmit-
ted symbols of the first transmitter to 0 when S = 1 so that
it does not interfere with the second transmission. The first
transmitter then treats these symbols as stuck to 0 and performs
Gelfand-Pinsker coding. The second transmitter transmits at
rate log(|X |) bits/channel use. It can be easily verified that
this is also the optimal sum-rate when all nodes are provided
with the state information. Thus, for this channel, the sum-
capacity when all nodes have state information is the same as
that when only encoder 1 has state information.

Remark 3: Finally, we note that there is also another way to
achieve the capacity region of the modulo additive S-D Z-IC.
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Fig. 8. The Modulo-Additive S-D Z-IC wit multiple bit levels.

For this, first recall that to get the capacity region expression in
Theorem 3, we set the auxiliary random variables U and V in
the expression in Theorem 2 to Y1 and T1 respectively. Another
choice, which corresponds to standard Gelfand-Pinsker coding
for the first transmitter-receiver pair and treating interference
as noise at the second receiver is to choose V = φ in
Theorem 2. This gives us the following achievable region:

R1 < I (U ; Y1|Q) − I (U ; S|Q),

R2 < I (X2; Y2|Q), (27)

for some pmf p(q)p(u|s, q)p(x1|u, s, q)p(x2|q). We can now
see that for the modulo-additive S-D Z-IC, the capacity region
is also achieved by making the following choices in the above
region: p(u|s = 0) to be the uniform pmf over X , p(u|s = 1)
to be p, p(x1|u, s) to be δu (i.e. X1 = U ) and p(x2) to be
the uniform pmf over X . Thus, the capacity region of the
modulo-additive S-D Z-IC can also be achieved by treating
interference as noise at the second receiver.

E. Multiple-Level Modulo-Additive S-D Z-IC

The linear deterministic model introduced in [18] consists
of multiple bit levels that roughly correspond to bits communi-
cated at different power levels. The modulo-additive S-D Z-IC
that we looked at in the previous subsection is a special case
in which the number of levels is one. Extending the model
to have multiple bit levels raises some interesting questions
which we consider in this subsection.

More specifically, consider the model depicted in Fig. 8,
which can be thought of as three copies of the model in Fig. 4,
which are however related by the common state affecting
them. For simplicity, we restrict attention to the case when the
alphabet on each level, denoted by X , is the binary alphabet,
i.e. {0, 1}, and the state is Ber(0.5). Let L denote the number
of bit levels.

This model also falls under the injective-deterministic setup
for which we have completely characterized the capacity
region. So the capacity region can be easily computed, as
we indeed do in the following. This evaluation also allows
us to immediately compare the capacity region with the
rates achieved by some straightforward achievability schemes
that we can employ. In particular, consider the following
two simple achievability schemes:

• “Separation”: The simplest strategy one can employ is to
separately consider each level and communicate over it
independently of the other levels. This gives us that the

Fig. 9. Comparison of the different rate regions for 3-level binary modulo-
additive S-D Z-IC.

rate pairs (R1, R2) satisfying

R1 <
L

2
+

L∑
i=1

1

2
H ( pi ),

R2 < L −
L∑

i=1

H
(

pi + δ0
)
, (28)

for some p1, p2, . . . , pL ∈ PX are achievable.
• “Communicate state”: Alternatively, by noticing that

strictly better rates could have been achieved if decoder 2
also had access to the state information, we can reserve
one level to communicate the state from encoder 1 to
decoder 2. This is done by ensuring that encoder 1
transmits a 1 on this reserved level whenever the state
is 1, and encoder 2 constantly transmits a 0 on this level.
The nodes communicate on the remaining levels keeping
in mind that now decoder 2 also has state information.
Note that while no communication can happen between
encoder 2 and decoder 2 on the reserved level, encoder 1
can still communicate with decoder 1 at rate 0.5 on
this level by treating it as a channel with stuck bits (bit
equals 1 whenever state equals 1). This strategy provides
us the following achievable region:

R1 <
L

2
+ 1

2
H ( p),

R2 < L − 1 − 1

2
H ( p) , (29)

for some p ∈ PX L−1 .
We can expect that the suboptimality of reserving one

level for communicating the state should become relatively
small as the number of levels increases i.e. at high SNR.
This is corroborated by the numerical analysis, shown in
Figs. 9 and 10, in which we can see that there is a marked
improvement in the rates achieved by this scheme relative
to the capacity region as we increase the number of levels
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Fig. 10. Comparison of the different rate regions for 3-level binary
moduloadditive S-D Z-IC.

from 2 to 3. Indeed, since all the levels are affected by the
same state, the entropy of the state becomes small compared
to the communication rates as the SNR increases, so it is not a
big overhead to explicitly communicate the state to decoder 2
at high SNR. However, at low SNR, the figures show that the
overhead incurred is quite high due to which this approach is
significantly suboptimal, while the simple scheme of treating
the levels separately results in achieving very close to the
entire capacity region.

V. INTERFERENCE CHANNELS WITH PARTIAL CRIBBING

In this section, we focus on deterministic Z-interference
channels when the interfering transmitter can overhear the sig-
nal transmitted by the other transmitter after it passes through
some channel. This channel is also modeled as a deterministic
channel, dubbed as partial cribbing in [31]. Deterministic
models, in particular linear deterministic models [18], have
gained popularity due to the observation that they are simpler
to analyze and are provably close in performance to Gaussian
models.

There have been quite a few very sophisticated achievabil-
ity schemes designed for interference channels with causal
cribbing encoders, however optimality of the achievable rate
regions has not been addressed. In the most general interfer-
ence channel model with causal cribbing [29], each encoder
needs to split its message into four parts: a common part
to be sent cooperatively, a common part to be sent non-
cooperatively, a private part to be sent cooperatively and a
private part to be sent non-cooperatively. Further, because of
the causal nature of cribbing, achievability schemes usually
involve block-Markov coding, so that each encoder also needs
to consider the cooperative messages of both encoders from
the previous block. Motivated by the alternative achievability
scheme we have presented earlier for the general interference
channel, we present a simple optimal achievability scheme that
minimizes the rate-splitting that is required. Specifically, while

encoder 2 only splits its message into a cooperative and non-
cooperative private part, encoder 1 does not perform any rate-
splitting at all. Encoder 2 needs to perform rate-splitting so
that the partial cribbing can be exploited, but other than that,
the achievability scheme is the same as the one we have
developed for the canonical interference channel, except that
the codewords are now generated conditioned on the cribbed
sequence from the previous block. By focusing on the specific
configuration of the Z-interference channel, we are able to
prove the optimality of an achievability scheme that is simpler
than the highly involved achievability schemes for the general
case that are currently known.

A. Result for Partial Cribbing

Theorem 5: The capacity region of the injective determinis-
tic Z-interference channel with unidirectional partial cribbing,
depicted in Fig. 5, is given by the convex closure of (R1, R2)
satisfying

R1 ≤ H (Y1|W ),

R2 ≤ min
(

H (Y2), H (Y2, Z2|T1, W )
)
,

R1 + R2 ≤ H (Y1|T1, W ) + min
(

H (Y2), H (Y2, Z2|W )
)
,

(30)

for p(w)p(x1|w)p(x2|w), where W is an auxiliary random
variable whose cardinality can be bounded as |W| ≤ |Y2|+3.

The proof of this theorem is presented below.

B. Proof of Theorem 5

Achievability: Choose a pmf p(w)p(ud , uc, x1|w)
p(x2, z2|w) and 0 < ε′ < ε, where for the sake of generality,
we use the auxiliary random variables Ud and Uc. In the
injective deterministic case at hand, they can be set to
Y1 and T1 respectively.

Codebook Generation: The communication time is divided
into B blocks, each containing n channel uses, and an inde-
pendent random code is generated for each block b ∈ [1 : B].
Whenever it is clear from the context, we suppress the depen-
dence of codewords on b to keep the notation simple. The
messages in block B are fixed apriori, so a total of B − 1
messages are communicated over the B blocks. The resulting
rate loss can be made as negligible as desired by choosing a
sufficiently large B .

We split R2 as R′
2 + R′′

2 , which corresponds to the split of
message 2 into two parts, one that will be sent cooperatively by
both transmitters to receiver 2 and the other non-cooperatively
only by transmitter 2 to receiver 2. For each block b, let m′

2,b ∈
[1 : 2nR′

2 ] and m′′
2,b ∈ [1 : 2nR′′

2 ]. For each block b ∈ [1 : B],
we generate 2nR′

2 codewords wn i.i.d. according to p(w).
• For each wn in block b, we generate 2nR′

2 code-
words

{
zn

2(wn, m′
2,b)

}
i.i.d. according to p(z2|w).

Then for each (wn, zn
2), we generate 2nR′′

2 codewords{
xn

2 (wn, zn
2, m′′

2,b)
}

i.i.d. according to p(x2|z2, w).

• For each wn in block b, we generate 2nRc code-
words

{
un

c (w
n, lc)

}
i.i.d. according to p(uc|w), where
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lc ∈ [1 : 2nRc ]. We also generate 2n(R1+Rd ) codewords{
un

d(m1,b, ld )
}

i.i.d. according to p(ud), where m1,b ∈
[1 : 2nR1 ] and ld ∈ [1 : 2nRd ].4

Encoding: Let us assume for now that as a result of the
cribbing, encoder 1 knows m′

2,b−1 at the end of block b − 1.
Then in block b, both encoders can encode m′

2,b−1 using
wn(m′

2,b−1) where wn is from the code for block b.
• To transmit message m1,b, encoder 1 finds a pair (ld , lc)

such that

(wn(m′
2,b−1), un

c (wn, lc), un
d(m1,b, ld )) ∈ T (n)

ε′ .

It transmits xn
1 that is generated i.i.d. according to

p(x1|w, ud , uc).
• To transmit message m2,b = (m′

2,b, m′′
2,b), encoder 2

encodes m′
2,b as zn

2(wn, m′
2,b) and then transmits

xn
2 (wn, zn

2 , m′′
2,b).

We fix apriori the messages in block B to be m1,B = 1,
m′

2,B = 1 and m′′
2,B = 1. Also, to avoid mentioning edge cases

explicitly, whenever m1,0, m′
2,0 or m′′

2,0 appear, we assume that
all are fixed to 1.

Decoding:

• Encoder 1: At the end of block b, assuming it has already
decoded m′

2,b−1 at the end of block b − 1, encoder 1
decodes m′

2,b by finding the unique m̂′
2,b such that the

sequence zn
2 it has observed via cribbing is equal to

zn
2(wn, m̂′

2,b).
• Decoder 1: In each block b, decoder 1 finds the unique

m̂1,b such that (un
d(m1,b, ld ), yn

1 ) ∈ T (n)
ε for some ld .

• Decoder 2: Decoder 2 performs backward decoding as
follows:

– In block B , decoder 2 finds a unique m′
2,B−1 such

that the condition (31) is satisfied for some lc.

(wn(m̂′
2,B−1), zn

2(wn, 1), xn
2 (wn, zn

2 , 1),

un
c (wn, lc), yn

2 ) ∈ T (n)
ε (31)

– In block b, assuming m′
2,b has been decoded cor-

rectly, it finds the unique (m̂′
2,b−1, m̂′′

2,b) such that
the condition (32) is satisfied for some lc.

(wn(m̂′
2,b−1), zn

2(wn, m′
2,b), xn

2 (wn, zn
2 ,

m̂′′
2,b), un

c (w
n, lc), yn

2 ) ∈ T (n)
ε (32)

Probability of Error: To get a vanishing probability of error,
we can impose the conditions described in the following list.

• Similar to the proof of the mutual covering lemma
[37, Ch. 8], we can show that the following conditions
are sufficient for the success of encoding at the first
transmitter:

Rd > I (Ud ; W ) + δ(ε′), (33)

Rd + Rc > I (Ud ; Uc, W ) + δ(ε′). (34)

• For the decoding at encoder 1 to succeed:

R′
2 < H (Z2|W ) − δ(ε). (35)

4Note that the un
d codewords are generated independently of the wn

codewords.

• For decoding at decoder 1 to succeed:

R1 + Rd < I (Ud ; Y1) − δ(ε). (36)

• For the backward decoding at decoder 2 to succeed, it is
sufficient that the following conditions are satisfied:

R′′
2 < I (X2; Y2|W, Uc, Z2) − δ(ε), (37)

R′′
2 + Rc < I (Uc, X2; Y2|W, Z2) − δ(ε), (38)

R′
2 + R′′

2 + Rc < I (W, Uc, X2; Y2) − δ(ε). (39)

Noting that R′
2 + R′′

2 = R2, eliminating (Rd , Rc, R′
2, R′′

2 )
from (33)-(39) via Fourier-Motzkin elimination, and substi-
tuting Ud = Y1 and Uc = T1, we get the achievable region
in (30) with the following additional bound on R1:

R1 < H (Y1|W, T1) + H (Y2|W, Z2).

To conclude the proof of achievability, we show that this bound
is rendered redundant by R1 < H (Y1|W ) which can be proved
by the following chain of inequalities:

H (Y1|W, T1) + H (Y2|W, Z2)

≥ H (Y1|W, T1) + H (Y2|W, X2)

= H (Y1|W, T1) + H (T1|W, X2)

= H (Y1|W, T1) + H (T1|W )

= H (Y1, T1|W )

≥ H (Y1|W ).

Converse: We now establish the converse. By Fano’s
inequality, we have the following two relations that are
satisfied by any sequence of codes that achieve reliable
communication:

H (M1|Y n
1 ) ≤ nεn, H (M2|Y n

2 ) ≤ nεn,

where εn → 0 as n → ∞.
First, an upper bound on R1 is established in (40).

n R1 = H (M1)

= H (M1|Zn
2 )

≤ I (M1; Y n
1 |Zn

2 ) + nεn

≤ H (Y n
1 |Zn

2 ) + nεn

≤
n∑

i=1

H (Y1i |Zi−1
2 ) + nεn

=
n∑

i=1

H (Y1i |Wi ) + nεn, (40)

where Wi � Zi−1
2 .

Next, we establish two bounds on R2, the first one in (41)
as follows:

n R2 = H (M2)

≤ I (M2; Y n
2 ) + nεn

≤ H (Y n
2 ) + nεn

≤
n∑

i=1

H (Y2i) + nεn, (41)
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and the second one in (42) below:

n R2 = H (M2|M1)

= H (M2, Zn
2 |M1)

= H (Zn
2 |M1) + H (M2|M1, Zn

2 )

(a)= H (Zn
2 |M1) + H (M2|M1, Zn

2 , T n
1 )

≤ H (Zn
2 |M1) + I (M2; Y n

2 |M1, Zn
2 , T n

1 ) + nεn

≤ H (Zn
2) + H (Y n

2 |Zn
2 , T n

1 ) + nεn

≤
n∑

i=1

H (Z2i |Wi ) +
n∑

i=1

H (Y2i |Wi , T1i , Z2i ) + nεn,

(b)=
n∑

i=1

H (Z2i |Wi , T1i ) +
n∑

i=1

H (Y2i |Wi , T1i , Z2i )

+ nεn ,

=
n∑

i=1

H (Y2i , Z2i |Wi , T1i ) + nεn, (42)

where step (a) follows because T n
1 is a function of Xn

1
which is a function of (M1, Zn

2 ), and step (b) follows because
Z2i − Wi − T1i .

Finally, we establish two bounds on the sum-rate, the first
one in (43) below:

n(R1 + R2)

= H (M1|Zn
1 ) + H (M2, Zn

2 )

= H (M1, T n
1 |Zn

2 ) + H (Zn
2) + H (M2|Zn

2 )

= H (T n
1 |Zn

2 ) + H (M1|T n
1 , Zn

2 ) + H (Zn
2) + H (M2|Zn

2 )

(a)≤ H (Y n
2 |Xn

2 , Zn
2 ) + I (M1; Y n

1 |T n
1 , Zn

2 ) + H (Zn
2)

+I (M2; Y n
2 |Zn

2 ) + nεn

≤ H (Y n
2 |Xn

2 , Zn
2 ) + H (Y n

1 |T n
1 , Zn

2 ) + H (Zn
2)

+ H (Y n
2 |Zn

2 ) − H (Y n
2 |M2, Zn

2 ) + nεn

= H (Y n
2 |Xn

2 , Zn
2 ) + H (Y n

1 |T n
1 , Zn

2 ) + H (Zn
2)

+ H (Y n
2 |Zn

2 ) − H (Y n
2 |M2, Xn

2 , Zn
2 ) + nεn

(b)= H (Y n
2 |Xn

2 , Zn
2 ) + H (Y n

1 |T n
1 , Zn

2 ) + H (Zn
2)

+ H (Y n
2 |Zn

2 ) − H (Y n
2 |Xn

2 , Zn
2 ) + nεn

= H (Y n
1 |T n

1 , Zn
2 ) + H (Zn

2) + H (Y n
2 |Zn

2 ) + nεn

= H (Y n
1 |T n

1 , Zn
2 ) + H (Y n

2 , Zn
2 ) + nεn

≤
n∑

i=1

H (Y1i |T1i , Wi ) +
n∑

i=1

H (Y2i , Z2i |Wi ) + nεn,

(43)

where step (a) uses the fact that H (T n
1 |Zn

2 ) ≤ H (Y n
2 |Xn

2 , Zn
2 ),

which is proved below:

H (T n
1 |Zn

2 ) ≤ H (T n
1 )

= H (Y n
2 |Xn

2 )

= H (Y n
2 |Xn

2 , Zn
2 ),

and step (b) follows because M2 − (Xn
2 , Zn

2 ) − Y n
2 .

Fig. 11. The Injective Deterministic S-D Z-C.

The second bound on the sum-rate is established in (44) as
follows:

n(R1 + R2)

= H (M1, T n
1 |Zn

2 ) + H (M2)

≤ H (T n
1 |Zn

2 ) + H (M1|T n
1 , Zn

2 ) + I (M2; Y n
2 ) + nεn

≤ H (Y n
2 |Xn

2 , Zn
2 ) + I (M1; Y n

1 |T n
1 , Zn

2 ) + H (Y n
2 )

− H (Y n
2 |M2) + nεn

≤ H (Y n
2 |Xn

2 , Zn
2 ) + H (Y n

1 |T n
1 , Zn

2 ) + H (Y n
2 )

− H (Y n
2 |Xn

2 , Zn
2 ) + nεn

= H (Y n
1 |T n

1 , Zn
2 ) + H (Y n

2 ) + nεn

≤
n∑

i=1

H (Y1i |T1i , Wi ) +
n∑

i=1

H (Y2i) + nεn . (44)

In (40)-(44), we can introduce a time-sharing random vari-
able Q uniformly distributed on [1 : n]. Defining W to be
(WQ , Q) and (X1, X2, Y1, Y2) to be (X1Q, X2Q , Y1Q , Y2Q),
we get the required bounds on the rates.

We also require the Markov relationship X1 − W − X2 to
be satisfied. Since Wi is chosen to be Zi−1

2 , we immediately
have X1i − Wi − X2i and hence X1 − W − X2. Finally, the
bound on the cardinality of W can be established using the
standard convex cover method.

VI. EXTENSIONS

A. State-Dependent Z-Channel

The result in Theorem 3 can be extended easily to
Z-channels in which transmitter 1 also wishes to communicate
a message M21 at rate R21 to receiver 2, as shown in Fig. 11.

Theorem 6: The capacity region of the injective deter-
ministic state-dependent Z-channel is the set of rate pairs
(R1, R21, R2) that satisfy

R1 ≤ H (Y1|S, Q),

R2 ≤ H (Y2|T1, Q),

R21 ≤ H (T1|S, Q),

R1 + R21 ≤ H (T1, Y1|S, Q),

R2 + R21 ≤ H (Y2|Q) − I (T1; S|Q),

R1 + R2 + R21 ≤ H (Y1|T1, S, Q) + H (Y2|Q) − I (T1; S|Q),

for some pmf p(q)p(x1|s, q)p(x2|q), where |Q| ≤ 6.
The achievability scheme for this case is similar to the

achievability scheme for the Z-IC described in Section IV-C
except that now the vn codewords at encoder 1 are also binned,
and this bin-index corresponds to the message M21, that is
to be communicated from transmitter 1 to receiver 2. The
converse can be established by following similar steps as the
converse for the Z-IC.
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Fig. 12. State-Dependent Injective Deterministic Z-Interference Channel with
Unidirectional Partial Cribbing.

Remark 4: Since broadcast channel and multiple-access
channel are special cases of the Z-channel, Theorem 6 also
provides the capacity region for the deterministic broadcast
channel and the injective deterministic multiple-access
channel.

B. State-Dependent Injective Deterministic Z-IC With
Unidirectional Partial Cribbing

To illustrate further the advantages of the multicoding
scheme, we consider a model that combines the state-
dependent Z-IC and the Z-IC with unidirectional partial
cribbing, as depicted in Fig. 12. We can combine the
achievability schemes for the two component setups from
Sections IV-C and V-B in a straightforward manner to get an
achievability scheme for this setup. It turns out that this is
capacity-achieving, resulting in the following theorem.

Theorem 7: The capacity region of the channel in Fig. 12
is given by the convex closure of rate pairs (R1, R2) satisfying

R1 < H (Y1|W, S)

R2 < H (Y2, Z2|T1, W )

R2 < min(H (Y2), H (Y2, Z2|W )) − I (T1; S|W )

R1 + R2 < H (Y1|W, T1, S) + min(H (Y2), H (Y2, Z2|W ))

− I (T1; S|W )

for pmf of the form p(w)p(x2|w)p(x1|w, s).
The proof of the converse combines ideas from the converse

proofs we have presented for the state-only case and the
cribbing-only case.

VII. DISCUSSION

Note that there is one difference between the multicoding-
based achievability scheme for the canonical interference
channel and the achievability schemes for the settings in
Sections IV and V. For the former, the codebook associated
with the auxiliary random variable U is used at both receivers
during decoding, whereas for the cribbing setup, the code-
book associated with auxiliary random variable Ud is only
used at the desired receiver, while that associated with the
auxiliary random variable Uc is only used at the undesired
receiver. One way to understand this dichotomy is to observe
similarities with the inner bound for broadcast channel which
combines Marton coding and superposition coding, given in
[37, Proposition 8.1] which involves three auxiliary random
variables U0, U1, U2. Here, the random variable U0 is used at
both receivers during decoding, while U1 and U2 are used only
at the respective receivers. Now for the deterministic cribbing

setup that we have considered, we can think that in the optimal
scheme, U0 can be set to be the empty random variable φ,
and U1 and U2 correspond to Ud and Uc respectively, i.e.,
there is no superposition coding, only Marton coding is used
(with the distinction from usual Marton coding that the set
of Un

c codewords is not binned). The situation is similar for
deterministic and semideterministic broadcast channels where
U0 = φ is optimal too. On the other hand, the Han-Kobayashi
scheme employing superposition coding can be thought of as
setting U2 to φ, and U0 and U1 correspond to U and X
respectively (no Marton coding, only superposition coding).
The key observation is that in the Han-Kobayashi scheme, it is
not necessary to think of U as encoding a part of the message
explicitly, which can be exploited to view the superposition
coding instead in a manner resembling Marton coding, as we
have shown in Section III (again with the distinction from
usual Marton coding that the set of codewords corresponding
to the auxiliary random variable is not binned). This clarifies
the dichotomy mentioned at the beginning of this paragraph.
Alternatively, we can understand both ways of decoding in a
unified manner, as in [39].
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APPENDIX I
EQUIVALENCE TO HAN-KOBAYASHI REGION

We show that the region in (13) is equivalent to the
Han-Kobayashi region.

• Consider the upper bound on R1:

e − a = I (U1, X1; U2, Y1)
(a)= I (X1; U2, Y1)
(b)= I (X1; Y1|U2), (45)

where step (a) follows since U1 − X1 − (U2, Y1) is a
Markov chain, and step (b) follows since X1 is indepen-
dent of U2.

• Similarly,
i − b = I (X2; Y2|U1). (46)

• Consider the first upper bound on the sum-rate
c + j − a − b:

c + j − a − b

= I (X1; U1, U2, Y1) + I (U2; X2) + I (U1; Y2)

+ I (U2, X2; U1, Y2) − I (U2; X2) − I (U1; X1)
(a)= I (X1; U2, Y1|U1) + I (U1; Y2) + I (U2, X2; U1, Y2)
(b)= I (X1; U2, Y1|U1) + I (U1; Y2) + I (X2; U1, Y2)
(c)= I (X1; U2, Y1|U1) + I (U1; Y2) + I (X2; Y2|U1)
(d)= I (X1; Y1|U1, U2) + I (X2, U1; Y2), (47)

where step (a) follows by the chain rule of mutual
information, step (b) follows by the Markov chain U2 −
X2 − (U1, Y2), step (c) follows since U1 and X2 are
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independent and step (d) follows by the independence
of U2 and (U1, X1).

• By similar steps, f + g − a − b =
I (X1, U2; Y1) + I (X2; Y2|U1, U2). (48)

• The remaining upper-bound on the sum-rate d +h −a −b
can be simplified as follows:

d + h − a − b

= I (X1, U2; U1, Y1) + I (X2, U1; U2, Y2)

− I (U1; X1) − I (U2; X2)

= I (X1, U2; Y1|U1) + I (X2, U1; Y2|U2), (49)

which follows by the chain rule of mutual information
and the independence of (U1, X1) and (U2, X2).

• The upper bound on 2R1 + R2 can be simplified as
follows:

c + h + f − 2a − b
= I (X1; U1, U2, Y1) + I (X2, U1; U2, Y2) + I (U1, X1)

+ I (U2; Y1) + I (U1, X1; U2, Y1) − 2I (U1; X1)

− I (U2; X2)
(a)= I (X1; U2, Y1|U1) + I (X2, U1; Y2|U2) + I (U2; Y1)

+ I (U1, X1; U2, Y1)
(b)= I (X1; U2, Y1|U1) + I (X2, U1; Y2|U2) + I (U2; Y1)

+ I (X1; Y1|U2)
(c)= I (X1; Y1|U1, U2) + I (X2, U1; Y2|U2)

+ I (X1, U2; Y1), (50)

where step (a) holds by the chain rule of mutual informa-
tion and the independence of U1 and (U2, X2), step (b)
follows by U1−X1−(U2, Y1) and the independence of X1

and U2, and step (c) follows by the chain rule of mutual
information and the independence of U2 and (U1, X1).

• Finally, d + g + j − a − 2b can be similarly shown to be
equal to

I (X2; Y2|U1, U2) + I (X1, U2; Y1|U1) + I (X2, U1; Y2).

(51)

APPENDIX II
MULTIVARIATE PACKING LEMMA

Lemma 1: Consider the following four assumptions.
(A) Let {U, X1, X2, . . . , X K , Y } be random variables that

have some joint distribution pU,X1,X2,...,X K ,Y .
(B) Let (Ũn, Ỹ n) ∼ p(ũn, ỹn) be a pair of arbitrarily distrib-

uted sequences.
(C) For each j ∈ [1 : K ], let {Xn

j (m j ), m j ∈ A j }, where
|A j | ≤ 2nR j , be random sequences each distributed
according to

∏n
i=1 pX j |U (x j i |ũi ).

(D) For each j ∈ [1 : K ] and each m j , assume
that Xn

j (m j ) is pairwise conditionally independent of(
. . . , Xn

j−1(m j−1), Xn
j+1(m j+1), . . . , Ỹ n

)
given Ũn for

all (. . . , m j−1, m j+1, . . . ), but arbitrarily dependent on
other Xn

j (·) sequences.
Then there exists δ(ε) that tends to zero as ε → 0 such that

P((Ũn, Xn
1 (m1), Xn

2 (m2), . . . , Xn
K (mK ), Ỹ n) ∈ T (n)

ε

for some m1 ∈ A1, m2 ∈ A2, . . . , mK ∈ AK )

tends to 0 as n → ∞ if
K∑

j=1

R j <

K∑
j=1

H (X j |U) − H (X1, X2, . . . , X K |U, Y ) − δ(ε).

(52)

P
((

Ũn, {Xn
j (m̃ j )}K

j=1, Ỹ n
)

∈ T (n)
ε

)

=
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)P
((

Ũn, Xn
1 (m1), Xn

2 (m2), . . . , Xn
K (mK ), Ỹ n

)
∈ T (n)

ε

∣∣∣Ũn = ũn, Ỹ n = ỹn
)

(a)=
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)P
((

ũn, Xn
1 (m1), Xn

2 (m2), . . . , Xn
K (mK ), ỹn) ∈ T (n)

ε

∣∣∣Ũn = ũn
)

(b)=
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)
∑

T (n)
ε (X1,X2,...,X K |ũn,ỹn)

p(xn
1 , . . . , xn

K |ũn)

(c)=
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)
∑

T (n)
ε (X1,X2,...,X K |ũn,ỹn)

K∏
j=1

p(xn
j |ũn)

≤
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)
∣∣∣T (n)

ε

(
X1, X2, . . . , X K |ũn, ỹn) ∣∣∣

K∏
j=1

2−n(H(X j |U )−δ(ε))

≤
∑

(ũn,ỹn)∈T (n)
ε

p(ũn, ỹn)2n(H(X1,...,X K |U,Y )+δ(ε))
K∏

j=1

2−n(H(X j |U )−δ(ε))

= 2n(H(X1,...,X K |U,Y )+δ(ε))
K∏

j=1

2−n(H(X j |U )−δ(ε)). (53)
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Proof: The proof follows on similar lines as that of the
packing lemma in [37, Ch. 3].

Consider a fixed tuple (m̃1, m̃2, . . . , m̃K ). The chain
of inequalities resulting in (53), as shown at the bot-
tom of the previous page, bounds the probability of(
Ũn, {Xn

j (m̃ j )}K
j=1 , Ỹ n

)
being jointly typical, where (a),

(b) and (c) follow from assumptions (C) and (D). Then
we can apply the union bound over all possible tuples
(m̃1, m̃2, . . . , m̃K ) to get the condition (52).

Example 1: For the case U = φ and random variables
X1, X2, Y , the condition (52) can be expressed as follows:

R1 + R2 < H (X1) + H (X2) − H (X1, X2|Y ) − δ(ε)

= I (X1; X2) + I (X1, X2; Y ) − δ(ε). (54)

Example 2: For the case U = φ and random variables
X1, X2, X3, Y , the condition (52) can be expressed as follows:

R1 + R2 + R3 < H (X1) + H (X2) + H (X3)

− H (X1, X2, X3|Y ) − δ(ε)

= I (X1; X2) + I (X3; Y )

+ I (X1, X2; X3, Y ) − δ(ε). (55)
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