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Cascade and Triangular Source Coding With Side
Information at the First Two Nodes

Haim H. Permuter, Member, IEEE, and Tsachy Weissman, Senior Member, IEEE

Abstract—We consider the cascade and triangular rate-distor-
tion problem where side information is known to the source en-
coder and to the first user but not to the second user. We char-
acterize the rate-distortion region for these problems, as well as
some of their extensions. For the quadratic Gaussian case, we show
that it is sufficient to consider jointly Gaussian distributions, which
leads to an explicit solution.

Index Terms—Cascade source coding, empirical coordination,
multihop coding, Pareto frontier, quadratic Gaussian, rate distor-
tion, side information, source coding, triangular source coding.

I. INTRODUCTION

Y AMAMOTO [1] considered the cascade source coding
problem, where a source sends a message to User 1, and

then User 1 sends a message to User 2. In this paper, we extend
Yamamoto’s cascade source coding problem to the case where
side information is known to the source and to User 1, but not
to User 2. The problem is depicted in Fig. 1.

More recently, Vasudevan et al. [2] have considered the cas-
cade source coding problem, where side information is known
to the source encoder and to User 1, additional side information
is known to User 2, and the Markov relation – – holds. They
provided an inner and an outer bound and showed that the bounds
coincide for the Gaussian case. Cuff et al. [3] considered the cas-
cade problem where the side information is known only to the in-
termediate nodeand provided an inner andan outer bound. An ad-
ditional related problem, which was considered and solved in [4],
is that of cascade source coding when side information is known
to all nodes with a limited rate. Table I summarizes the literature
on cascade source coding with side information.1
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1The case that was considered in [1] seems slightly different from the case
where all switches are open; however, the cases are equivalent. Yamamoto con-
sidered in [1] the case where there are two sources available to the encoder,
called � , � ; decoder 1 reproduces � by �� , and decoder 2 reproduce � by
�� . Clearly, if we consider � � � in [1], we obtain the case of Fig. 2 where
all switches are open. Conversely, if we take in Fig. 2 the source to be �� �
���� �, the distortion function � � ��� �� � to equal � ��� �� �, and similarly
� � ��� �� � � � ��� �� �� we obtain exactly the case that is considered in [1].

Fig. 1. Cascade rate-distortion problem with three nodes (encoder, User 1, and
User 2), where the first two nodes have side information � . User 1 and User 2
need to reconstruct the source � , within distortion criteria.

The cascade source coding framework, of compressing a
source through an intermediate node (or relay) which may
reconstruct the source and then relay it to the next node, is a
building block of fundamental importance in a growing variety
of compression and communication scenarios. It captures key
aspects of multihop coding common in wireless communication
in general [5], and in particular in cellular communication [6],
sensor networks [7], [8], and ad hoc networks [9].

The specific setting that we consider in this paper is the case
where the intermediate node has side information that is also
available to the source. For instance, the side information may
be a modified version of the source sent in a previous transmis-
sion. The work in this paper has been recently extended by Chia
et al. [10] for the case where additional side information is avail-
able at the last node and has been recently used by Tandon et al.
[11] to derive the cascade rate-distortion function when the side
information is an eraser.

Of special interest in lossy source coding is the Gaussian
case with quadratic distortion, which in many source coding
problems is amenable to an analytical solution such as in the
Wyner--Ziv problem [12] where side information is available to
the decoder, the Heegard--Berger problem [13] where side in-
formation at the decoder may be absent, Kaspi’s problem [14],
[15] where side information is known to the encoder and may
or may not be known to the decoder, the multiple description
problem [16], [17], the two-way source coding problem [18], the
multiterminal problem [19], [20], the CEO problem [21]–[23],
rate distortion with a helper [24], [25], and successive refine-
ment [26] and its extension to successive refinement for the
Wyner--Ziv problem [27].

Our main result in this paper is that the achievable region for
the problem depicted in Fig. 1 is given by , which is
the set of all rate pairs that satisfy

(1)

(2)

for some joint distribution for which

(3)
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TABLE I
LITERATURE OVERVIEW OF CASCADE SOURCE CODING WITH SIDE INFORMATION AS SHOWN IN FIG. 2

Fig. 2. Cascade rate-distortion problem with several options of side informa-
tion. Table I summarizes the literature on this problem.

An extension of the cascade source coding problem is the
triangular setting [28], where there is an additional direct link
from the source encoder to User 2. We solve this problem where
side information exists at the source encoder and User 1, but not
at User 2.

The remainder of this paper is organized as follows. In
Section II, we formalize the problem and present the theorem
establishing the achievable region. In Section III, we provide
the converse and achievability proofs of the theorem, and in
Section IV we explicitly compute the rate region for the Gaussian
case. In Section V, we extend our result to the triangular case,
and conclude in Section VI with further extensions to multiple
users and to the corresponding coordination problem.

II. CASCADE RATE DISTORTION: PROBLEM DEFINITIONS AND

MAIN RESULTS

Here, we formally define the cascade rate-distortion problem
where side information is known to the source encoder and to
User 1. We present a single-letter characterization of the achiev-
able region. We use the regular definitions of rate distortion, and
we follow the notation of [29]. The source sequences

, and the side information sequence
are discrete random variables drawn from

finite alphabets and , respectively. The random variables
are i.i.d. . Let and be the recon-

struction alphabets, and , be
single-letter distortion measures. Distortion between sequences
is defined in the usual way

(4)

Let denote a set of positive integers for
.

Definition 1 (cascade rate-distortion code with side informa-
tion at the first two nodes): An code for
source and side information consists of two encoders

(5)

and two decoders

(6)

such that

(7)

The rate pair of the code is de-
fined by

(8)

Definition 2: Given a distortion pair , a rate pair
is said to be achievable if, for any , and suffi-

ciently large , there exists an
code for the source with side information .

Definition 3: The (operational) achievable region
of cascade rate distortion is the closure of

the set of all achievable rate pairs.
Our the main result is the following.

Theorem 1: For the cascade rate-distortion problem with side
information at the source and User 1, as depicted in Fig. 1, the
achievable region is given by

(9)

where the region is defined in (1)–(3).

III. PROOF OF THEOREM 1

Achievability: The proof follows classical arguments, and
therefore, the technical details will be omitted. We describe
only the coding structure and justify why the indicated region
is achievable. We fix a joint distribution for which
(3) holds, and , and we show that there exists a code with
rates

(10)

(11)
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complying with the distortion constraints.
Generate randomly codewords using an i.i.d.

. Then, bin the codewords into bins. In

each bin, there are
codewords. In addition, for any typical sequences ,

generate codewords using the pmf
.

The source encoder receives the sequences and first
looks for a codeword that is jointly typical with . If
there is such a codeword, the source encoder sends the index
of the bin that includes this codeword to User 1. User 1 looks
which codeword in the received bin is jointly typical with the
side information . Since there are less than in the
bin, with high probability only one codeword will be jointly typ-
ical with and it would be the codeword sent by the encoder.
User 1 then forwards the codeword to User 2.

Now we can think of a new problem where the source en-
coder and User 1 have side information , and hence,
a rate is needed to generate that is
jointly typical with . Therefore, a total rate to
User 1 of

is needed, and an additional rate
is needed from User 1 to User 2.

Converse: Assume that we have an
code as in Definition 1. We will show the

existence of a joint distribution that satisfies
(1)–(3). Denote , and

. Then

(12)

where equality (a) follows from the fact that the reconstruction
at time , , is a deterministic function of . Now consider

(13)

where equality (a) follows from the fact that is a determin-
istic function of and , and, similarly, equality (b) follows
from the fact that and are deterministic functions of

and , respectively.
The proof is concluded in the standard way by letting be a

random variable independent of , uniformly distributed
over the set , and considering the joint distribu-
tion of . For this joint distribution, inequal-
ities (12) and (13) imply that (1) and (2) hold, respectively, and
(7) implies that (3) holds.

IV. CASCADE RATE DISTORTION: THE GAUSSIAN CASE

In this section, we explicitly calculate the rate region
for the cases where and are jointly Gaussian

and the distortion is the square-error distortion. The converse
and the achievability in the previous sections are proved for
the finite alphabet case, but it can be extended to the Gaussian
case [12].

Our first step in finding the achievable region for the quadratic
Gaussian case is to show that it suffices to consider only jointly
Gaussian distributions in order to exhaust the rate
region. Then, we solve an optimization problem to find the
achievable rate region explicitly.

Lemma 2 (Optimality of Jointly Gaussian Distributions):
For the quadratic Gaussian cascade rate-distortion problem
with side information known to the source encoder and to User
1, i.e., , are jointly Gaussian and ,

, it suffices to consider only jointly
Gaussian distributions in order to exhaust the rate
region given in (1)–(3).

Proof: Let us fix a point in the rate re-
gion and let be a joint distribution that satisfies
(1)–(3). Such a distribution must exist since inequalities (1)–(3)
define the rate region (Theorem 1). Note that it is enough to
consider only distributions where the mean of

and is zero since , have zero mean and the distortion
is the mean square distortion. Let denote the covariance ma-
trix induced by and let denote a normal
joint distribution with mean zero and covariance matrix . Now
let us show that (1)–(3) also hold where the joint distribution
is . Inequality (3) is automatically satisfied, since it

depends on the distribution of only through the
covariance matrix . Consider

(14)

where equality (a) is true for any set of scalars and
in particular if we choose those who are the linear estimator of

given . Note that the coefficients and
the variance are a function
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Fig. 3. Gaussian quadratic rate region. The graph on the left-hand side shows the rate region for the case where � � � � �,� � ����, and� � ���. Since
� � � , the rate region is given by cases (a) and (b) in (17). The right-hand side graph shows the rate region for the case where � � � � �,� � ����,
and � � ���. Since � � � , the rate region is given by cases (c) and (d) in (17).

only of the covariance matrix . Inequality (b) follows from the
fact that conditioning reduces entropy, and (c) follows from the
fact that, given a variance, the Gaussian distribution maximizes
the differential entropy.

The term denotes the mutual information
induced by the Gaussian distribution , and equality
(d) follows from the fact that for the Gaussian distribution the
error, i.e., , is independent of the
observations .

Similarly, we have

(15)

where the last inequality follows from the same steps as (14).
The next theorem provides an explicit expression for the

Gaussian case. The proof is provided in Appendix A and is
based on Lemma 2 and on solving an optimization problem
with quadratic constraints and a linear objective.

Theorem 3 (Cascade Gaussian Case): The rate region of the
cascade source coding with side information at the first two
nodes, where the source and the side information
are jointly Gaussian distributed, where and are mutually
independent, and where the distortion is quadratic, is given by

(16)
where is given by four cases in (17), which is shown at

the bottom of the page and .

Fig. 3 depicts the regions for two specific values of and
such that it captures all four cases of (17). Now, let us consider
several extreme cases that can be easily solved using Theorem 3.

1) Side Information Is Independent of the Source :
This means that and . For such a
case, (17) becomes

if and

if and
if , and

(18)

and this implies that

(19)

recovering a result that appears in the successive refine-
ment source coding paper [26].

2) Side Information Equals the Source, i.e., : For this
case, ; hence, and , con-
sistent with the well-known rate-distortion function of the
Gaussian source.

3) If , then

(20)

and if , then

(21)

if and

if and

if and

if , and

(17)
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Fig. 4. Extreme case where the rate� and the distortions� are large enough
so that the message that User 2 receives depends only on the side information.

Fig. 5. Triangular rate-distortion problem with three nodes (encoder, User 1,
and User 2), where side information � is known to the encoder and User 1, but
not to User 2. User 1 and User 2 need to reconstruct the source � to within
distortion criteria.

Note that for this case we can assume that the side infor-
mation is known to all three nodes; hence, only is
manifested in the expression.

4) The Message That User 2 Receives Depends Only on the
Side Information: In this extreme case, the rate and the
distortion are large enough so that the message that
User 2 receives depends only on the side information. This
case is depicted in Fig. 4.
For this extreme, the rate region is simply

(22)

for all joint Gaussian distributions that satisfy

and .
More explicitly, this region is given by

(23)

(24)

Indeed, if (23) holds, then according to Theorem 3,

.

V. TRIANGULAR SOURCE CODING WITH SIDE INFORMATION

In this section, we extend the cascade source coding discussed
in previous sections by adding a direct link from the encoder
to the second user, as depicted in Fig. 5. The definition of the
code is similar to the one given in
Definition 1 for the cascade case, with an additional message

at rate sent from the source to User 2.

A. Main Theorem and Its Proof

Theorem 4 (The Achievable Rate Region for the Triangular
Case): The achievable region for the problem depicted in Fig. 5
is given by , which is defined as the set of all rate
triples that satisfy

(25)

(26)

(27)

for some joint distribution satisfying

(28)

where the cardinality of the auxiliary variable may be
bounded by .

Lemma 5, which appears later in the section, shows that one
can restrict the joint distribution to

without affecting the region.
Proof of Converse Part of Theorem 4: Assume that we

have an code. We will show
the existence of a joint distribution that satis-
fies (25)–(28). Denote ,

, and
. Then,

(29)

where equality (a) follows from the fact that is a deterministic
function of and , and, similarly, equality (b) follows from
the fact that is a deterministic function of and

from defining . Now, consider

(30)
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where equality (a) follows from definition of
. In addition, consider

(31)

where equality (a) follows from the definition of
and the fact that is a deterministic

function of .
The proof is concluded in the standard way by letting be a

random variable independent of , uniformly distributed
over the set , and considering the joint distribu-
tion of . For this joint distribution, in-
equalities (29), (30), and (31) imply that (25), (26), and (27)
hold, respectively, and the fact that the code we have fixed sat-
isfies the distortion constraints implies that (28) holds.

To prove the cardinality bound of , we invoke the support
lemma [30, pp. 310]. The external random variable must have

letters to preserve plus three
more to preserve the expressions , ,

. Note that preserving implies that
for is also preserved.

For the achievability part, we first establish the following.

Lemma 5 (Optimality of ): The
rate region , which is defined by (25)–(28), does
not decrease by restricting the joint distribution to the form

.
Proof: For a fixed , let the rate-triple

Then, there exists a joint
distribution

(32)

for which (25)–(28) hold. Let and be
the conditional distribution induced by . We
now claim that (25)–(28) are satisfied under the joint distribution

(33)

This is true, since expressions (25)–(28) depend on
only through the marginals

and . Now notice that those marginals are the
same whether the joint distribution is or

.
Sketch of Proof of Achievability Part of Theorem 4: The

achievability proof follows directly from the achievability of

cascade source coding as given in Theorem 1. First, we fix a
joint distribution of the form
such that (25)–(28) hold. Since and

, then according to Theorem 1, we can
generate that with high probability would be
jointly typical with according to the distribution

. Now, since is known both to the
encoder and to User 2, we need a rate
to generate such that with high probability it is jointly
typical with . Finally, because of the Markov relation

we can invoke the Markov lemma, and
conclude that the sequences are jointly
typical, and therefore, the distortion criteria are satisfied.

B. Gaussian Triangular Case

We now evaluate the rate region of the triangular network
depicted in Fig. 5 for the quadratic Gaussian case, i.e.,
are jointly Gaussian and ,

. We first show that it suffices to consider only Gaussian
joint distributions for exhausting the region, and then we show
that by a small change in the Gaussian cascade region we obtain
the Gaussian triangular region.

Lemma 6 (Optimality of Jointly Gaussian Distributions):
For the quadratic Gaussian triangular rate-distortion problem
with side information known to the source encoder and to User
1, it suffices to consider only jointly Gaussian distributions

in order to exhaust the rate region
given in (25)–(28).

Before proving the lemma, let us introduce the Pareto frontier
[31] of a region and show that if two rate regions have the same
Pareto frontier, then they are identical. The Pareto frontier of a
region , which we denote by , is the set of all points
for which there is no strictly better point in the region. Formally

(34)

where denotes that for all and
for some , .

Lemma 7: If two closed rate regions, and , have the
same Pareto frontier, then they are identical.

Proof: Let us show that the assumptions and
lead to a contradiction. If , then the

contradiction follows from the assumption that the sets have the
same Pareto frontier and they are both closed which implies that
the Pareto frontier is part of the sets. If , then
there exists a point that satisfies . Since

, it follows that . Finally, since
and , then , which contradicts the

assumption.

Proof of Lemma 6: As a result of Lemma 7, we conclude that
it suffices to prove Lemma 6 only for the points in the Pareto
frontier. In addition, we notice that points that are Pareto optimal
satisfy (25)–(27) with equality, which may be also written as

(35)

(36)

(37)
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Fig. 6. Triangular rate-distortion problem with � � � users, where the side information � is known to the encoder and to Users �� �� � � � � �, but not to Users
� � �� � � �� � � � � � � �.

Finally, assuming without loss of generality is real valued
and using similar arguments as in Lemma 2, we conclude that
for any joint distribution there exists a Gaussian
joint distribution, , with the same covariance ma-
trix as , for which the induced right-hand sides of
(35)–(37) do not increase.

Now, with a small change in the solution to the Gaussian cas-
cade, we obtain the triangular Gaussian region. The proof is de-
ferred to Appendix B.

Theorem 8 (Triangle Gaussian Case): The rate region of
the triangular source coding with side information at the first
two nodes, where the source and the side information

are jointly Gaussian distributed, where and are
mutually independent, and where the distortion is quadratic,
is given by (16)–(17), where is replaced by i.e.,

.

VI. EXTENSIONS

Here, we present two further extensions. The first is obtained
by generalizing the triangular network results to more users. The
second is obtained by considering a more general problem of
empirical coordination rather than distortion criteria.

A. Multiple Users

The triangular problem depicted in Fig. 5 can be extended to
users, where the side information is known to the source

encoder and to Users , but is not known to Users
. This problem is depicted in Fig. 6, and its

region is given by the next theorem.

Theorem 9: The achievable region for the problem depicted
in Fig. 6 is given by the vector rates that
satisfy

(38)

for some distribution for
which

(39)

where the cardinality of the auxiliary variable may be
bounded by .

The proof of Theorem 9 follows similar steps as the proof of
Theorem 4 and is therefore omitted.

B. Empirical Coordination

In [32], two coordination problems were introduced: empir-
ical coordination, where the goal is to generate sequences with
a specific empirical distribution, and strong coordination, where
the goal is to generate sequences with a distribution that is close
(in total variation) to a specific i.i.d. distribution. The empir-
ical coordination problem is a generalization of the rate-distor-
tion problem, since a distortion constraint defines a half-plane
in the empirical distribution space. Hence, if we find the op-
timal rate needed to generate a specific empirical distribution,
we also find the optimal rate needed to generate a specific dis-
tortion constraint. We adopt the definitions from [32] for the
cascade problem.

Definition 4 (Joint Type): The joint type of a tuple
of sequences is the empirical probability mass
function, given by

for all , where is the indicator function.

Definition 5 (Total Variation): The total variation between
two probability mass functions is half the distance between
them, given by
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The coordination code is the same as the
code defined in Definition 1 without the distortion criteria given
in (7). The difference is the goal of the code which is given in
the following definition.

Definition 6 (Achievability): A rate pair is achiev-
able for a desired distribution if there
exists a sequence of codes such that under
the induced distribution of the source and the code, i.e.,

, the total variation between the joint type of
the actions in the network and the desired distribution goes to
zero in probability. That is,

Definition 7 (Rate-Coordination Region): The rate-co-
ordination region is the set of all pair
rates that are achievable for the desired distribution

.
For the cascade rate-distortion problem with side information

at the first two nodes, the extension to the empirical coordination
problem is straightforward.

Theorem 10 (Rate Coordination in the Cascade Problem):
The rate coordination region of the cas-
cade problem, where side information is known to the first two
nodes, where , and where an empirical distri-
bution is desired, is given by

(40)

where the joint distribution evaluating the mutual information
expression is .

Proof: The achievability proof follows immediately
from the achievability proof of Theorem 1, where we fixed
an empirical distribution and showed that it can be achieved
using the aforementioned rates. The converse also follows
from the converse of Theorem 1, but in the last step we
need to invoke [32, Proposition 2], which states that the
expected empirical distribution equals the distribution of
the random variables chosen uniformly over the time se-
quence , i.e.,

.
However, the triangular coordination problem is an open

problem, even without side information. The solution here
is heavily based on the fact that in the achievability proof
it suffices to consider only a specific empirical distribution
(with a Markov structure), but for an arbitrary distribution the
coordination problem remains open.

APPENDIX A
PROOF OF THEOREM 3

Following Lemma 2, we can rewrite the rate region for the
Gaussian case as

(41)

(42)

where the vector is jointly Gaussian distributed
and satisfies

(43)

(44)

where .
Without loss of generality, let us choose the following struc-

ture:

(45)

where the random variables , , , are jointly Gaussian
and mutually independent, with variances , , , , re-
spectively, and the coefficients are real number scalars.

Equations (42)–(44) become

(46)

(47)

(48)

where and .
Inequalities (46) and (47) follow directly from (41) and

(43), respectively. Equation (48) follows from combining the
following two equations: (49) and (50). If , then
(44) is automatically satisfied, and then is not needed (may
be independent of anything else) and therefore

(49)

If , then

(50)

The last equality is due to the fact that we can choose
such that .

Now let us fix , , and , and
let us find the function , which defines the rate
region. (The condition on is due to the fact that if
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Fig. 7. Case 1: the maximum of � , where both constraints hold, is obtained
at the maximum of (53).

, the rate will not be achievable for any .) To find
, we need to solve the following optimization problem:

(51)

(52)

(53)

The objective (51) follows from the fact that depends
only on and (52) and (53) follow from (46) and (47), re-
spectively. To solve this optimization problem, we divide the
problem into four cases, where each case has a simple solution
[each case corresponds to a line in (17)].

Case 1: For this case, we assume that

(54)
and

(55)

Because of the assumption in (54), (53) holds with equality,
since otherwise can be increased until it hits the boundary
of (53).

The argument that achieves the maximum of a quadratic form
is ; hence, the argument that maximizes (53) is

(56)

and the maximum is

(57)

Note that (57) can also be written as

(58)

Fig. 8. Case 2: the maximum of � , where both constraints hold, is obtained
at the intersection of (52) and (53).

If satisfy (52), then the solution to the optimization
problem is simply and using (48) we obtain

(59)

Now let us investigate when satisfies (52) [or equiva-
lently (46)]

(60)

where (a) follows from (47), (b) from (57), and (c) from (56).
Case 2: Assume that

(61)

and

(62)

Now if (60) is not satisfied, then the maximum of should be
on the boundary of the constraints, namely, both (52) and (53)
should hold with equality. This is because the upper part of the
intersection should be either increasing or decreasing. Such a
case is shown in Fig. 8.

Consider the case where (46) and (47) hold with equality.
Then, we obtain

(63)

which implies that

(64)
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Fig. 9. Case 3: the maximum of � , where both constraints hold, is obtained
at infinity, since there is an infinite overlap between the constraints. The darker
region is the overlap of the regions defined by (52) and (53).

Now substituting given by (64) into (52), we obtain

(65)

which simplifies to

(66)

Taking the square root on each side of the equation, we obtain
two possible solutions for :

(67)

Since we need to maximize , which is proportional to
[see (64)], we choose the solution with the plus sign.

Case 3: (The case corresponds to the fourth line in (17).) As-
sume that

(68)

and

(69)

If the coefficient of in (53) is larger than the coefficient of
in (52), i.e.,

(70)

which is equivalent to (69), then the maximum of is ob-
tained at infinity (as illustrated in Fig. 9), which implies that

(71)

Case 4: Assume that

(72)

Fig. 10. Case 4: the maximum of � , where both constraints hold, is obtained
at the intersection of (52) and (53).

and

(73)

If (70) does not hold, then the maximum of should be
at the boundary of the constraint, namely, (52) and (53) should
hold with equality. This is because the upper part of the inter-
section should be either increasing or decreasing. Such a case is
shown in Fig. 10.

APPENDIX B
PROOF OF THEOREM 8

Let us rewrite the rate-region equations similarly to (42)–(44)
as

(74)

(75)

(76)

where the vector is jointly Gaussian distributed
and satisfies

(77)

(78)

Without loss of generality, we may assume that , , ,
have the same structure as in (45) and where

is independent of , , , ). Furthermore,
we note that we can assume that (76) holds with equality, since if
not, we can change and such that equality will hold, and the
change will only decrease —therefore (74)–(78) will
continue to hold. Now, the equality in (76) implies that

(79)

Hence, (77) becomes

(80)

Now we note that we obtain the same optimization problem as
in (46)–(48), just that is replaced by .
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