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Abstract—1In this paper, we consider the finite-state multiple
access channel (MAC) with partially cooperative encoders and
delayed channel state information (CSI). Here, partial coopera-
tion refers to the communication between the encoders via finite-
capacity links. The channel states are assumed to be governed by
a Markov process. Full CSI is assumed at the receiver, while at the
transmitters, only delayed CSI is available. The capacity region
of this channel model is derived by first solving the case of the
finite-state MAC with a common message. Achievability for the
latter case is established using the notion of strategies, however,
we show that optimal codes can be constructed directly over the
input alphabet. This results in a single codebook construction
that is then leveraged to apply simultaneous joint decoding.
Simultaneous decoding is crucial here because it circumvents
the need to rely on the capacity region’s corner points, a task
that becomes increasingly cumbersome with the growth in the
number of messages to be sent. The common message result is
then used to derive the capacity region for the case with partially
cooperating encoders. Next, we apply this general result to the
special case of the Gaussian vector MAC with diagonal channel
transfer matrices, which is suitable for modeling, e.g., orthogonal
frequency division multiplexing-based communication systems.
The capacity region of the Gaussian channel is presented in terms
of a convex optimization problem that can be solved efficiently
using numerical tools. The region is derived by first presenting an
outer bound on the general capacity region and then suggesting
a specific input distribution that achieves this bound. Finally,
numerical results are provided that give valuable insight into
the practical implications of optimally using conferencing to
maximize the transmission rates.

Index Terms— Capacity region, common message, convex
optimization, cooperative encoders, delayed CSI, diagonal
vector gaussian multiple-access channel, finite-state channel,
multiple-access channel, simultaneous decoding, strategy letters.

I. INTRODUCTION

EMPORAL variations, a characteristic typical of wire-
less channels, may occur due to atmospheric changes,
changes in the environment, the mobility of transmitters and/or
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receivers or time-varying intentional or unintentional interfer-
ence. Since accurate channel state information (CSI) at both
the transmitting and the receiving ends is crucial for efficient
communications, measures are commonly incorporated in the
communication protocol to enable channel state estimation.
For example, the long term evolution (LTE) cellular commu-
nication standard relies on pilot signals transmitted at pre-
scheduled time intervals and frequency slots to estimate the
channel’s state [1]. Performed at the receiver, these estimations
are then typically fed back to the transmitter, but obtaining
perfect CSI at both ends of the channel in practical systems is
a formidable challenge. More often than not, CSI is subject to
channel estimation errors and feedback is not instantaneous
due to some inevitable processing delay, and as a result,
receivers and transmitters typically have access to only par-
tial CSI. The impact of such partial CSI on the achievable
performance, therefore, has attracted much attention in recent
years. In the case of multiuser communication, performance
is affected not only by channel characteristics, but also by
interactions between the users. In particular, different forms
of cooperation between the transmitting and receiving ends,
a subject of growing interest in recent years (see [2], [3]),
may significantly enhance performance. This paper aims to
investigate the combined impact of both partial CSI and coop-
eration. More specifically, we focus on a two-user finite state
Markov multiple access channel (FSM-MAC), with partially
cooperative encoders and delayed CSI, as illustrated in Fig. 1
and explained in the following text.

In the communication scenario under discussion, each of
the two encoders wishes to send an independent private
message through a time-varying MAC to the decoder. Delayed
CSI is assumed to be available at the encoders, while full
delayless CSI is assumed at the decoder. Different users may
be subject to different CSI delays. It is further assumed that
prior to each transmission block, the two encoders are allowed
to hold a conference. More specifically, it is assumed that
the encoders can communicate with each other over noise-
free communication links of given capacities. We restrict the
discussion to the case in which the conference held between
the encoders is independent of the CSIL.

The non-state-dependent MAC with partially cooperative
encoders was first introduced by Willems [4], who also derived
the capacity region for the discrete memoryless setting. Special
cases of this channel model include that in which the encoders
are ignorant of each other’s messages (i.e., the capacities of
the communication links between them are both zero) and that
in which the encoders fully cooperate (i.e., the capacities of
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the communication links are infinite). The first setting, where
no conference is held, corresponds to the classical MAC, for
which the capacity region was determined by Ahlswede [5]
and Liao [6]. In contrast, in the second setting, where total
cooperation is available, the encoders can act as one by fully
sharing their private messages via the conference. The capacity
region for this case is the part of the first quadrant below the
so-called total cooperation line. This triangle-shaped region
always contains the capacity region for the classical MAC.

In his proof of achievability for the conferencing MAC,
Willems [4] introduced a coding scheme based on the capacity
region for the MAC with a common message, derived by
Slepian and Wolf in [7]. Willems showed that in order to
achieve the capacity region, the encoders should use the
cooperation link to share parts of their private messages and
then use a coding scheme for the ordinary MAC with a
common message. Although Willems’s model allows interac-
tive communication between the encoders, it was shown both
in [4] and later in [8] that a single round of communication
between the encoders (referred to as a “pair of simultaneous
monologues” in [4]) suffices to achieve optimality.

Additional multiuser settings that involve cooperation
between users through communication links of finite capacities
have been extensively treated in the literature. See [9] and
[10] for studies of the MAC, [2] and [11]-[16] for studies of
the interference channel with cooperating nodes, [17] for the
broadcast channel, [18] and [19] for cooperative relaying and
[3] and [20] and references therein for cooperation in cellular
architectures. A comprehensive survey of cooperation and its
role in communication can be found in [21]. It is important
to note, however, that in all of the above settings the channel
was not assumed to be time-varying.

Multiuser settings that combine both time-varying channels
and user cooperation are obviously of major interest as well.
A Gaussian fading MAC with cooperating encoders that have
access to delayless CSI was considered in [22] and [23]. As in
our case, these works assume that cooperation is allowed only
before the CSI becomes available at the encoders. The case
in which the CSI becomes available to the encoders prior to
transmission is treated in [24], where a MAC with perfect

FSM-MAC with partially cooperative encoders, CSI at the decoder and delayed CSI at the encoders with delays di and d5.

noncausal CSI is considered. The coding scheme introduced
in [24] uses conferencing to share parts of the messages as
well as CSL

The notion of modeling time-varying channels as
state-dependent channels dates back to Shannon [25], who
characterized the capacity of the state-dependent, memory-
less point-to-point channel with independent and identically
distributed (i.i.d.) states available causally at the encoder.
To establish achievability, Shannon presented a code construc-
tion that relied on “strategies” (or “strategy letters”) [26], a
notion we also exploit in this paper. Gelfand and Pinsker [27],
and later Heegard and El Gamal [28], studied the case in
which the encoder observes the channel states noncausally.
In both [27] and [28] a single letter expression for the capacity
is derived using random binning. In [29], Goldsmith and
Varaiya considered a fading channel with perfect CSI at both
the transmitter and the receiver. It was shown that in such a
case, the optimal strategy is to employ waterfilling over time.

As was already stated, because perfect CSI is difficult to
obtain in practical systems, models that involve partial or
imperfect CSI have attracted a lot of attention in recent years.
At first, different settings involving an i.i.d. state sequence
with imperfect CSI were treated. Initially, various point-to-
point channel scenarios with partial CSI were studied. Among
others, the causal, noncausal, rate-limited and noisy cases were
addressed [30]-[32]. Extension of the result to the MAC with
rate-limited CSI can be found in [33]. In [34], the authors
derive the capacity region for the MAC with asymmetric
quantized CSI at the encoders, where the quantization models
the imperfection in the channel state estimation (full CSI at
the decoder is assumed). Later, in [35] Lapidoth and Steinberg
provided an inner bound for the capacity region of the MAC
with strictly causal CSI at the encoders. In contrast to the
point-to-point setting, where strictly causal CSI regarding an
ii.d. state sequence does not increase capacity, the capacity
region of the MAC with causal CSI is strictly larger than
the corresponding region without CSI. Li et al. presented an
improved inner bound for the same setting in [36]. A com-
prehensive monograph on channel coding in the presence
of side information can be found in [37], where an i.i.d.
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state sequence is assumed. An information theoretic model
for a single user channel involving delayed CSI and a state
process that is no longer restricted to be memoryless and i.i.d.
was first introduced by Viaswanathan [38], who derived the
capacity while assuming a FSM channel. This result was later
generalized by Caire and Shamai in [26], where they addressed
a point-to-point channel in which the CSIs at both encoder and
decoder admit some general joint probability law. A general
capacity formula, which relies on the notion of inf-information
rate [39], is then provided for the case of state processes
with memory. The result is then shown to boil down to a
single-letter characterization in the case in which perfect CSI
is available to the receiver, the CSI at the transmitter is given
by a deterministic function of the channel state, and the two
processes are jointly stationary and ergodic. By an appropriate
choice of the above deterministic function, the result for
Viswanathan’s delayed CSI model [38] is obtained as a special
case of the result in [26]. A generalization of the point-to-
point results of [26] to the MAC was presented by Das and
Narayan in [40]. The generality of the channel model therein
leads to multiletter characterization of the capacity region in
various settings, which unfortunately provides limited insight
into practical encoding schemes for channel models in this
framework.

Taking a practically oriented approach, we focus in this
paper on a specific channel definition that leads to single-
letter results. Following [38], we model temporal variations
by means of a FSM channel [41], [42]. The channel state
is determined on a per symbol basis and governed by the
underlying FSM process. An important extension of this
idea to the multiuser case was introduced by Basher et al.
in [43], presenting the FSM-MAC with delayed CSI and
non-cooperating encoders, i.e., where no conference is held
(see also [44] for a related source coding analysis). In the
proof of the capacity region for this model, achievability was
established by employing a coding scheme based on rate-
splitting and multiplexing-coding combined with successive
decoding at the receiver. Successive decoding was used in [43]
to demonstrate that the two corner points of the capacity region
are achievable. The whole capacity region is then achievable
via time-sharing. Although the setting in [43] constitutes a
special case of the general model in [40], the main contribution
of [43] is the single-letter characterization of the capacity
region and the detailed construction of the coding scheme.

In the current paper, accounting for the availability of a
conferencing link between the encoders, we take a different
approach than that taken in [43]. We base the proof of
achievability on the coding scheme for the MAC with a
common message as presented in [4], and therefore, we start
by deriving the capacity region for the FSM-MAC with a
common message and the same CSI properties as in [43].
We thus provide a solution to what has been, until now, an
unsolved problem. Next, using the achievable scheme for the
common message setting, the achievability of the conferencing
region is established. We note that the large number of corner
points induced by the presence of an additional transmission
rate (namely, the rate of the common message) render the
provision of an achievable coding scheme for the common
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message setting based on achieving the region’s corner points
an awkward task. Moreover, the use of rate-splitting and
multiplexing-coding when a common message is involved
yields a rather complex coding scheme which we sought to
avoid.

Therefore, we present an alternative coding scheme that
employs strategy letters in the code construction (see [25],
[26], [40]) and simultaneous decoding. However, unlike the
case of Shannon’s classical result for the point-to-point chan-
nel with causal encoder CSI, here we show that optimal codes
can be constructed directly over the input alphabet (as also
shown for certain special cases in [40]). Namely, a single
codebook is generated for each of the three messages over
a super-alphabet that corresponds to the different realizations
of the delayed CSI available at the encoders. At each time
instance, a symbol that is correlated with the current available
delayed CSI is selected by the encoders and transmitted to
the channel. Thus, in contrast to previous works involving
delayed CSI (see [38], [43]), here rate-splitting is no longer
required. The decoder then uses its access to full CSI (which
deterministically defines the delayed state sequences as well)
to reduce each codeword (originally constructed over a super-
alphabet) to a sequence over the input alphabet and executes
a simultaneous decoding scheme based on joint typicality.
Indeed, one of the most signicant contributions of our paper
is this coding scheme for the MAC with a common message
and delayed CSI. Not only does it successfully avoid the
unnecessary complexity of its rate-splitting and multiplexing
counterpart and relies on a simpler codebook construction, it
also achieves every possible point in the region rather than
only the corner points. Furthermore, this two-user coding
scheme is easily extendable to the case of multiple users with
a single common message.

Based on the general results for the FSM-MAC with confer-
encing, we continue with the derivation of the capacity region
for the special case of a vector Gaussian FSM-MAC with
diagonal channel transfer matrices. This channel model can be
used to represent an orthogonal frequency-division multiplex-
ing (OFDM)-based communication system, employing single
receive and transmit antennas, where the diagonal entries of
the channel matrices represent the orthogonal sub-channels
used by the OFDM scheme.

To derive the capacity region for the latter channel, we use
a multivariate extension of a novel tool first derived in [45]
(namely, a necessary and sufficient condition for a Gaussian
triplet of random variables to satisfy a certain Markov rela-
tion), and demonstrate that Gaussian multivariate distributions
maximize certain mutual information expressions under a
Markovity constraint. The scalar version of this tool was
employed by Lapidoth et al. [46] to provide an outer bound for
the capacity region of the scalar Gaussian non-state-dependent
MAC with conferencing encoders. Wigger and Kramer also
used this tool in their solution for the capacity region of the
three-user, non-state-dependent MIMO MAC with conferenc-
ing [47]. The need to use the tool from [45] stems from the fact
that the input distribution of the conferencing channel must
admit a certain Markovity constraint. For cases in which no
Markov relation needs to be satisfied, the traditional approach
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to proving the optimality of Gaussian multivariate distributions
involves employing either the Vector Max-Entropy Theorem
(a direct extension of [48, Th. 12.1.1]) or a conditional version
of it. Here, however, this approach fails since replacing a
non-Gaussian vector satisfying the Markovity condition by
a Gaussian vector of the same covariance matrix may result
in a Gaussian vector that violates the Markovity condition.
To overcome this issue we use a sufficient and necessary
condition on the (auto- and cross-) covariance matrices of the
involved Gaussian random vectors for them to admit a Markov
relation [49, Section 2, Theorem 1].

We note that although Gaussian input vectors are shown
to be optimal in this setting, the original form of the
capacity region involves a non-convex optimization problem.
To circumvent this difficulty, new variables are introduced to
convert the optimization problem into a convex problem that
can then be solved using numerical tools such as CVX [50].
The capacity region for the corresponding scalar Gaussian
channel can be immediately derived from the result for the
vector channel setting and serves as an extension of the result
in [46] to the state-dependent case. The capacity region of
the vector Gaussian FSM-MAC with a common message and
the same CSI properties can also be easily derived from the
result for the conferencing channel by exploiting the strong
correspondence between the two models and using a simple
analogy.

To gain some insight into the practical implications of the
results we conclude this paper with a specific example, namely,
a scalar AWGN channel with two possible states (‘Good’
and ‘Bad’). Numerical results are included to demonstrate
the impact of different channel parameters on the capacity
region and the optimal input distribution. Our interpretation
of interactions between the different parameters produces
valuable insights.

The remainder of the paper is organized as follows.
In Section II we describe the two communication models
of interest — the FSM-MAC with a common message and
delayed CSI and the FSM-MAC with partially cooperative
encoders and delayed CSI. In Sections III and IV, we state
the capacity results for the common message and conferencing
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FSM-MAC with a common message, full CSI at the decoder and delayed CSI at the encoders with delays d; and d.

models, respectively. Each result is followed by its proof.
Section V follows with the definition of the vector Gaussian
FSM-MAC with diagonal channel transfer matrices and the
derivation of the maximization problem defining its capacity
region. The regions for the corresponding common message
model and the scalar setting are given as special cases. The
two-state Gaussian example is discussed in this section as
well. Finally, Section VI summarizes the main achievements
and insights presented in this paper along with some possible
future research directions and extensions.

II. CHANNEL MODELS AND NOTATION

In this paper, we investigate the capacity region of the
FSM-MAC with partially cooperative encoders, full CSI at
the decoder (receiver) and delayed CSI at the encoders
(transmitters), as illustrated in Fig. 1. To this end, we first
consider a different setting, which is the FSM-MAC with a
common message and the same CSI properties, as depicted
in Fig. 2. The derivation of the capacity region for the latter
common message setting forms the basis for the achievability
proof for the former setting where a conferencing link exists
between the encoders. Since most definitions for both channels
follow similar lines, we start by defining the common message
setting and then extend the description for the setting of
partially cooperative encoders.

We use the following notations. Matrices are denoted by
nonitalicized capital letters, e.g., X. Calligraphic letters denote
sets, e.g., X', while the cardinality of a set X’ is denoted by | X|.
X" stands for the n-fold Cartesian product of X'. An element
of A" is denoted by x" = (x1, x2, . . ., X;;), and its substrings as
x} = (xi,Xi41,...,x;); when i = 1, the subscript is omitted.
We use the notation x™V = (X1,...,Xi—1, Xitls-..,Xn).
Whenever the dimension n is clear from the context, vectors
(or sequences) are denoted by boldface letters, e.g., x. Random
variables are denoted by uppercase letter, e.g., X, with similar
conventions for random vectors. X lj stands for the sequence
of random variables (X;, X;;1,...,X;), while X stands
for X". The probability of an event A4 is denoted by P[.A],
while ]P’[A|B] denotes conditional probability of A given B.
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Probability mass functions (PMFs) are denoted by the capital
letter P with a subscript that identifies the random variable
and its possible conditioning. For example, for two jointly
distributed random variables X and Y, let Px, Py y, and Px|y
denote, respectively, the PMF of X, the joint PMF of (X, Y),
and the conditional PMF of X given Y. In particular, when
X and Y are discrete, Px|y represents the stochastic matrix
whose elements are given by Px|y(x|y) = IF’[X =x|Y = y].
We omit the subscripts if the arguments of the distribution
are lower case versions of the random variables.

A. FSM-MAC With a Common Message and Delayed CSI

The FSM-MAC with a common message considered in
this paper is illustrated in Fig. 2. The MAC setting consists
of two senders and one receiver. Each sender j € {1,2}
chooses a pair of indices, (mo, m;), uniformly from the set
{1,...,2"R0}x{1,...,2"Ri}, where mq denotes the common
message and m;, j € {1,2}, denotes the private message of
the corresponding sender. The choices of mq, m and my are
independent. The input to the channel from encoder j € {1, 2}
is denoted by Xj = (X1, Xj2,..., X»), and the output of
the channel is denoted by Y" = (Y1, Y2, ..., Yp).

At each instance of time, the FSM channel is assumed to
be in one of a finite number of states S = {s1, s2, ..., sk}.
In each state, the channel is a discrete memoryless channel
(DMC), with input alphabets X7, X> and output alphabet ) .
Let the random variable S; denote the channel state at time i.
Similarly, we denote by X1 ;, X2; and Y; the inputs and the
output of the channel at time i. The channel transition prob-
ability distribution at time i depends on the state S; and the
inputs X1 ;, X»; at time i, and it is given by P (y;|x1,i, x2,;, 8;)-
The channel output at any time i is assumed to depend only
on the channel inputs and state at time i. Hence,

P(yilxi, xb, ") = P(yilx1,i, x2,0, i) (1

The state process, {S,-}l'.'zl, is assumed to be an irreducible,
aperiodic, finite-state, homogeneous and stationary Markov
chain and is therefore ergodic. The state process is independent
of the channel inputs and output when conditioned on the
previous states, i.e.,

Psils™™ x7 X7 v = Psilsion). )

Furthermore, we assume that the state process is independent
of the messages My, M; and My, i.e.,

n
P(s", mo,mi,ma) = [ | P(silsi—1)P(mo) P(m1)P(ma). (3)
i=1
We assume that full CSI is available at the decoder (i.e., the
decoder knows S; at each time instance i). However, the
encoders are only assumed to have access to delayed CSI, with
delays d; and d; for Encoder 1 and Encoder 2, respectively.
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We let S,-_d_]., J € 1,2, denote the channel state at time i —d,
and assume without loss of generality that di > dp. Now,
let K be the one-step state-transition probability matrix of the
Markov process that governs the channel states, and let 7 be
its steady state probability distribution. The joint distribution
of (Si, Si—q) is stationary and is given by

7a(Si = 51, Si—a = 5j) = w(s))K (51, 57), 4

where K9(s;, s j) is the (/, j)-th element of the d-step tran-
sition probability matrix K¢ of the Markov state process.
To simplify the notation, we define the joint distribution of
the random variables (S, 51, 52) as the joint distribution of
(Si, Si—ay» Si—ay), 1€,

Pg 5 5051557, ) = (s )K" (5., s YK (51, 5,),  (5)

where (s;, 57,5,) € S3.

Definition 1 (Code Description): A (n, 21Ro pnRionRy
dy, dr) code for the FSM-MAC with CSI at the decoder and
delayed CSI at the encoders with delays dy and dy consists of:

1) Three sets of integers Mo = {1,2,...,2"%0} M| =
(1,2,...,2"R} and My = (1,2, ...,2"R2) referred to
as the message sets.

2) Two encoding functions fj, j € {1,2}. Each function f;
is defined by means of a sequence of functions fj;, i €
{1,2,...,n}, that depend only on the pair of messages
(Mo, M), and the channel states up to time i —d;. The
output of Encoder j at time i, X;; € X}, is given by

—{fj’i(MO’Mj)s 1<ic=<d;

= . 6
W= Mo, My, 5740, dy 1 <i <0 ©

3) A decoding function:

y Y x 8" —> My x M x M. @)
The average probability of error for the (n,2'Ro, 27K
2"R2 gy dy) code is given in (8) at the bottom of the
page. We use standard definitions of achievability and of the
capacity region [48]. Namely, a rate triplet (Ro, Ry, R2) is
achievable for the FSM-MAC if there exists a sequence of
(n,2MR0 2nR1 onRe g, gy codes with P — 0 as n — oc.
The capacity region is the closure of the set of achievable rates
(Ro, Ry, R).

B. FSM-MAC With Partially Cooperative Encoders
and Delayed CSI

The FSM-MAC with partially cooperative encoders and
delayed CSI is depicted in Fig. 1. The channel definition
relies on Subsection II-A, while taking the common message
set to be My = . Here, however, conferencing between
the encoders is introduced under the assumption that confer-
encing links of fixed and finite capacities C12 and Cp; exist
between the encoders. Accordingly, the amount of information
exchanged between the encoders during the conference is

1
(n) _ -
P‘-’ ~ 2n(Ro+R1+R2)
(mo,my,mz) s"

> ZPSH(S")P[V/(Y"J") # (mo, mi, ma) | (Mo, My, M) = (mo, my, mz), S" = S"] ®)
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bounded by Ci2 and Cz;. The conference is assumed to take
place prior to the transmission of a codeword through the
channel and consists of ¢ consecutive pairs of communications,
simultaneously transmitted by the encoders. Each communica-
tion depends on the message to be transmitted by the sending
encoder and previously received communications from the
other encoder. We denote the communications transmitted
from encoder j € {1,2} to the other encoder by V!. Note
that here the state process is also assumed to be independent
of the conference communications, i.e.,

n
P(s",0f,05) = P(s")P(0f,05) = [ | P(silsi—1) P (v, 05).
i=1

C)

Definition 2 Code Description: A (n, €, nRionRy g, d)
code for the FSM-MAC with CSI at the decoder, delayed CSI
at the encoders with delays d\ and d, and conferencing links
with capacities C12 and Cp1 consists of:

1) Two sets of integers My = {1,2,...,2"%1} and My =

(1,2,...,2"R2) referred to as the message sets.

2) Two encoders, where each encoder is completely
described by an encoding function, fj, and a set of ¢
(€ = 1) communication functions, {hj1,h;2,...,hj ¢},
j € {1, 2} (similar definitions were also used in [4]).

3) The encoding function, f;, maps the message M,
j € {1,2}, and what was learned from the confer-
ence with the other encoder into channel codewords of
length n. Each function f; is defined by means of a
sequence of functions fj; that depend only on the mes-
sage M, the received communications from the other
encoder in the conferencing stage, and the channel states
up to time i — dj. We emphasize that since encoding
occurs only after the conferencing stage has finished,
each fj; depends on all received communications.

4) Each of the two communication functions hi; and
hyi, i € {1,2,...,¢}, maps the message M| (or M>,
respectively) and the sequence of previously received
communications from the other encoder Vzi_1 (or Vli _1,
respectively), onto the i-th communication Vy; (or Vo,
respectively). More specifically, the communications are
defined as:

Vii=hii (M, Vi~ Vai = hoi(Ma, V™). (10)
5) The encoding function for Encoder 1 satisfies
Li (M, V), I1<i=<d
Xy = ML), | (1)
fl,l(M17V27S ])’ d1+1§l§n5

and the encoding function for Encoder 2 is defined
analogously (using the private message My, the com-
munications Vf and the delay d,).

6) The random variable V;; for j € ({1,2} and
i € {1,2,...,¢} ranges over the finite alphabet V; ;.
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A conference is (Cia, Co1)-permissible if the sets of
communication functions are such that [4]:
3 ¢
D log Vil <nCiai D log Vil <nCar. (12)
i=1 i=1

7) A decoding function:

w Y x 8" —> M x Mj. (13)

The average probability of error for the (n, ¢, 2R,

2Ry db) code is given by (14) at the bottom of the page.

The achievable rates and the capacity region for this channel
are defined analogously to their definitions in Section II-A.

III. THE CAPACITY REGION OF THE FSM-MAC WITH A
COMMON MESSAGE AND DELAYED TRANSMITTER CSI

In this section we state the capacity region of the
FSM-MAC with a common message and delayed transmitter
CSI, after which we present its proof.

Theorem 1: The capacity region of the FSM-MAC with
a common message, CSI at the decoder and asymmetrically
delayed CSI at the encoders with delays d; and d3, such that
di > dj, is the union of all sets of rate triplets (Ro, Ry, R2) €
Ri satisfying:

R < I(X1:Y|X2,U,S,8,%) (15a)

Ry < I(X»; Y|X1,U,S,51,8) (15b)

Ri+ Ry < I(X1,X2: YU, S,81,8) (15¢)

Ro+ Ri+ Ry < I(X1,X2: YIS, 81, %), (15d)

where the union is over all joint distrib}ttiqns
PU|§1 PX1|51,UPX2|51,§2,U' The joint distribution of (S, S1, S2)

is specified in (5) and |U| < |X;|-|Xs|-|S|? +2. Furthermore,
the capacity region is convex.
Proof:

A. Converse

We need to show that for every achievable rate triplet
(Ro, Ry, Rp), there exists a joint distribution Pg 5.5
Pyis, Pxi3,.0Px,15,.5,.0 PY1X1.x