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Abstract—We clarify the relationship among several ex-
isting achievable multiple description rate-distortion regions
by investigating the role of refinement layer in multiple de-
scription coding. Specifically, we show that the refinement layer
in the El Gamal-Cover (EGC) scheme and the Venkatara-
mani–Kramer–Goyal (VKG) scheme can be removed; as a
consequence, the EGC region is equivalent to the EGC* region
(an antecedent version of the EGC region) while the VKG region
(when specialized to the 2-description case) is equivalent to the
Zhang–Berger (ZB) region. Moreover, we prove that for multiple
description coding with individual and hierarchical distortion
constraints, the number of layers in the VKG scheme can be
significantly reduced when only certain weighted sum rates are
concerned. The role of refinement layer in scalable coding (a
special case of multiple description coding) is also studied.

Index Terms—Contra-polymatroid, multiple description coding,
rate-distortion region, scalable coding, successive refinement.

I. INTRODUCTION

A fundamental problem of multiple description coding is to
characterize the rate-distortion region, which is the set of

all achievable rate-distortion tuples. El Gamal and Cover (EGC)
obtained an inner bound of the 2-description rate-distortion re-
gion, which was shown to be tight for the no excess rate case
by Ahlswede [1]. Zhang and Berger (ZB) [24] derived a dif-
ferent inner bound of the 2-description rate-distortion region
and showed that it contains rate-distortion tuples not included
in the EGC region. The EGC region has an antecedent version,
which is sometimes referred to as the EGC* region. The EGC*
region was shown to be tight for the quadratic Gaussian case by
Ozarow [13]. However, the EGC* region has been largely aban-
doned in view of the fact that it is contained in the EGC region
[24]. Other work on the 2-description problem can be found in
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[7], [8], [12], and [25]. Recent years have seen growth of interest
in the general -description problem [14], [15], [18], [19], [21].
In particular, Venkataramani, Kramer, and Goyal (VKG) [21]
derived an inner bound of the -description rate-distortion re-
gion. It is well understood that for the 2-description case both
the EGC region and the ZB region subsume the EGC* region
while all these three regions are contained in the VKG region;
moreover, the reason that one region contains another is simply
because more layers are used. Indeed, the ZB scheme has one
more common description layer than the EGC* scheme while
the EGC scheme and the VKG scheme have one more refine-
ment layer than the EGC* scheme and the ZB scheme, respec-
tively. Although it is known [24] that the EGC* scheme can
be strictly improved via the inclusion of a common description
layer, it is still unclear whether the refinement layer has the same
effect. We shall show that in fact the refinement layer can be
safely removed; as a consequence, the EGC region is equivalent
to the EGC* region and the VKG region is equivalent to the ZB
region.

An important special case of the 2-description problem is
called scalable coding, also known as successive refinement1.
The rate-distortion region of scalable coding has been charac-
terized by Koshelev [10] [11], Equitz and Cover [5] for the
no rate loss case and by Rimoldi [16] for the general case. In
scalable coding, the second description is not required to re-
construct the source; instead, it serves as a refinement layer to
improve the first description. However, it is clearly of interest
to know whether the refinement layer itself in an optimal scal-
able coding scheme can be useful, i.e., whether one can achieve
a nontrivial distortion using the refinement layer alone. This
problem is closely related, but not identical, to multiple descrip-
tion coding with no excess rate.

To the end of understanding the role of refinement layer in
multiple description coding as well as scalable coding, we need
the following elementary result.

Lemma 1: Let , and be jointly distributed random
variables taking values in finite sets , and , respectively.
There exist a random variable , taking values in a finite set
with , and a function
such that:

1) is independent of ;
2) ;
3) form a Markov chain.

Proof: See Appendix A.

It is worth mentioning that Lemma 1 is not completely
new. Indeed, its variants can be found in [9], [23], and even in

1The notion of successive refinement is sometimes used in the more restrictive
no rate loss scenario.
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Shannon’s paper [17]. Roughly speaking, this lemma states that
one can remove random variable by introducing random
variable and deterministic function . It will be seen in the
context of multiple description coding that can be incorpo-
rated into other random variables due to its special property,
which results in a reduction of the number of random variables.

The remainder of this paper is devoted to the applications of
Lemma 1 to multiple description coding and scalable coding.
In Section II, we show that the refinement layer in the EGC
scheme is not needed; therefore, the EGC region is equivalent
to the EGC* region and the ZB region includes the EGC region.
We examine the general -description problem in Section III. It
is shown that the final refinement layer in the VKG scheme can
be removed. This result implies that the VKG region, when spe-
cialized to the 2-description case, is equivalent to the ZB region.
Furthermore, we prove that for multiple description coding with
individual and hierarchical distortion constraints, the number of
layers in the VKG scheme can be significantly reduced when
only certain weighted sum rates are concerned. We study scal-
able coding with an emphasis on the role of refinement layer in
Section IV.

II. TWO-DESCRIPTION CASE

We shall first give a formal definition of the multiple descrip-
tion rate-distortion region. Let be an i.i.d. process
with marginal distribution on , and
be a distortion measure, where and are finite sets. Define

for any positive integer .

Definition 1: A rate-distortion tuple
is said to be achievable if for any , there exist

encoding functions , and decoding
functions , such that

for all sufficiently large , where
. The multiple description rate-distortion region is

the set of all achievable rate-distortion tuples.
We shall focus on the 2-description case (i.e., ) in

this section. The following two inner bounds of are at-
tributed to El Gamal and Cover.

The EGC* region is the convex closure of the set of
quintuples for which there exist
auxiliary random variables and , jointly distributed
with , and functions , such that

The EGC region is the convex closure of the set of
quintuples for which there exist

auxiliary random variables , jointly dis-
tributed with , such that

(1)

(2)

(3)

To see the connection between these two inner bounds, we
shall write the EGC region in an alternative form. It can be
verified that the EGC region is equivalent to the set of quintu-
ples for which there exist auxil-
iary random variables , jointly distributed
with , and functions , such that

It is easy to see from this alternative form of the EGC region
that the only difference from the EGC* region is the additional
random variable , which corresponds to a refinement
layer; by setting to be constant (i.e., removing the
refinement layer), we recover the EGC* region. Therefore, the
EGC* region is contained in the EGC region. It is natural to
ask whether the refinement layer leads to a strict improvement.
The answer turns out to be negative as shown by the following
theorem, which states that the two regions are in fact equivalent.

Theorem 1: .
Proof: In view of the fact that , it

suffices to prove .
For any fixed , the region specified by

(1)–(3) has two vertices

where

We just need to show that both vertices are contained in the
EGC* region. By symmetry, we shall only consider vertex .

It follows from Lemma 1 that there exist a random variable ,
jointly distributed with , and a function

such that
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1) is independent of ;
2) ;
3) form a Markov chain.
By the fact that form a

Markov chain and that is a deterministic function of
, we have

Moreover, since is independent of , it follows
that

By setting , we can rewrite the coordinates
of as

where , and
. Therefore,

it is clear that vertex is contained in the EGC* region. The
proof is complete.

Remark: It is worth noting that the proof of Theorem 1 im-
plicitly provides cardinality bounds for the auxiliary random
variables of the EGC* region.

Now we shall proceed to discuss the ZB region, which is also
an inner bound of . The ZB region is the set of
quintuples for which there exist
auxiliary random variables , and , jointly dis-
tributed with , and functions , such that

Note that the ZB region is a convex set. It is easy to see from
the definition of the ZB region that its only difference from the
EGC* region is the additional random variable , which corre-
sponds to a common description layer; by setting to be con-
stant (i.e., removing the common description layer), we recover
the EGC* region. Therefore, the EGC* region is contained in
the ZB region, and the following result is an immediate conse-
quence of Theorem 1.

Corollary 1: .

Remark: Since the ZB region contains rate-distortion tuples
not in the EGC region as shown in [24], the inclusion can be
strict.

III. -DESCRIPTION CASE

The general -description problem turns out to be consider-
ably more complex than the 2-description case. The difficulty
might be attributed to the following fact. The collection of
nonempty subsets of has a tree structure;2 however,
this is not true for subsets of when . Indeed, this
tree structure of distortion constraints is a fundamental feature
that distinguishes the 2-description problem from the general

-description problem.

A. VKG Region

The VKG region [21], which is a natural combination and ex-
tension of the EGC region and the ZB region, is an inner bound
of the -description rate-distortion region. We shall show that
the final refinement layer in the VKG scheme is dispensable,
which implies that the VKG region, when specialized to the
2-description case, coincides with the ZB region. It is worth
noting that the VKG scheme is not the only scheme known
for the -description problem. Indeed, there are several other
schemes in the literature [14], [15], [18] which can outperform
the VKG scheme in certain scenarios where the distortion
constraints do not exhibit a tree structure. However, the VKG
scheme remains to be the most natural one for tree-structured
distortion constraints.

We shall adopt the notation in [21]. For any set , let
be the power set of . Given a collection of sets , we define

. Note that (which is a random
variable) should not be confused with (which is interpreted
as a constant). We use to denote for .

The VKG region is the set of rate-distortion tuples
for which there exist auxiliary

random variables , jointly distributed with , and
functions , such that

(4)

(5)

where

Note that the VKG region is a convex set.3 In fact, [21] contains
a weak version and a strong version of the VKG region, and the
one given here is in a slightly different form from those in [21].
Specifically, one can get the weak version in [21] by replacing
(5) with , and get the strong version in
[21] by replacing (5) with . It is easy
to verify that the strong version is equivalent to the one given
here while both of them are at least as large as the weak version;
moreover, all these three versions are equivalent when .

2A collection of nonempty sets is said to have a tree structure if for any two
sets � and � in this collection, one of the following is true: 1) � � �, 2)
� � �, 3) � � � � �. A collection of distortion constraints is said to have a
tree structure if these distortion constraints are imposed on a collection of sets
(of descriptions) with a tree structure.

3The convexity of the ZB region and the VKG region follows from the fact
that one can incorporate a time-sharing random variable into� .
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Fig. 1. Multiple description coding with individual and hierarchical distortion constraints.

We shall first give a structural characterization of the VKG
region.

Lemma 2: For any fixed , the rate region
is a contra-poly-

matroid.
Proof: See Appendix B.

Note that the random variable corresponds to the final
refinement layer in the VKG scheme. Now we proceed to show
that this refinement layer can be removed. Define the VKG* re-
gion as the VKG region with set to be a constant.

Theorem 2: .
Proof: The proof is given in Appendix C.

It is asked in [21] whether the VKG region strictly contains
the ZB region. A direct consequence of Theorem 2 is that the
VKG region, when specialized to the 2-description case, is
equivalent to the ZB region.

Corollary 2: For the 2-description problem,
.

Remark: For the 2-description VKG region, the cardinality
bound for can be derived by invoking Carathéodory’s
theorem while all the other auxiliary random variables can be
assumed, with no loss of generality, to be defined on the re-
construction alphabet . Therefore, one can deduce cardinality
bounds for the auxiliary random variables of the ZB region by
leveraging Corollary 2.

B. Multiple Description Coding With Individual and
Hierarchical Distortion Constraints

We can see that for the VKG* region, the number of aux-
iliary random variables is exactly the same as the number
of distortion constraints. Intuitively, the number of auxiliary
random variables can be further reduced if we remove certain
distortion constraints. We formulate the problem of multiple
description coding with individual and hierarchical distortion
constraints, which is a special case of tree-structured distortion
constraints, and somewhat surprisingly, we show that in this
setting the number of layers in the VKG scheme can be sig-
nificantly reduced when only certain weighted sum rates are

concerned; i.e., the number of auxiliary random variables can
be significantly less than the number of distortion constraints.

For any nonnegative integer , define if
if , and

if . Multiple description coding with individual and hier-
archical distortion constraints (see Fig. 1) refers to the scenario
where only the following distortion constraints: ,
are imposed. Specializing the VKG region to this setting, we
can define the VKG region for multiple description coding with
individual and hierarchical distortion constraints
as the set of rate-distortion tuples
for which there exist auxiliary random variables , ,
jointly distributed with , and functions , such
that

Define
. It is observed in

[3] that for the quadratic Gaussian case, the number of auxil-
iary random variables can be significantly reduced when only
certain supporting hyperplanes of
are concerned. We shall show that this phenomenon is not
restricted to the quadratic Gaussian case.

Theorem 3: For any , we have

(6)

where the minimization in (6) is over , and
, subject to the constraints
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Proof: The proof of Theorem 3 is given in Appendix D.

Corollary 3: For any , we have

(7)

where the minimization in (7) is over subject to
the constraints

Proof: See Appendix E.

Remark: It should be noted that , in (7) are
defined on the reconstruction alphabet ; moreover, for in
(7), the cardinality bound can be easily derived by invoking
Carathéodory’s theorem. In view of the proof of Corollary 3,
one can derive cardinality bounds for the auxiliary random vari-
ables in (6) by leveraging the cardinality bounds for the auxil-
iary random variables in (7). This explains why “ ” instead
of “ ” is used in (6).

C. Multiple Description Coding With Individual and Central
Distortion Constraints

A special case of multiple description coding with indi-
vidual and hierarchical distortion constraints is one where only
individual distortion constraints , and central
distortion constraint are imposed (see [3] and [22]). Let

. We can define the VKG region for
multiple description coding with individual and central distor-
tion constraints as the set of rate-distortion tuples

for which there exist auxiliary
random variables , jointly distributed with , and
functions , such that

Define
. The following

result is a simple consequence of Theorem 3 and Corollary 3.

Corollary 4:
1) is equivalent to the set of rate-distortion tuples

for which there exist auxiliary
random variables , jointly distributed
with , and functions , such that

2) is also equivalent to the set of rate-distortion
tuples for which there exist
auxiliary random variables , jointly dis-
tributed with , such that

3) For any , let be a permutation on
such that ; we have

(8)

(9)

where the minimization in (8) is over ,
and , subject to the constraints

while the minimization in (9) is over subject
to the constraints

IV. SCALABLE CODING

Scalable coding is a special case of the 2-description problem
in which the distortion constraint on the second description, i.e.,

, is not imposed. In such a setting the first description is
commonly referred to as the base layer while the second de-
scription is referred to as the refinement layer.

A. Scalable Coding Rate-Distortion Region

The scalable coding rate-distortion region is defined
as
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It is proved in [16] that the quadruple
if and only if there exist auxiliary random variables

and jointly distributed with such that

Roughly speaking, here and correspond to the base
layer and the refinement layer, respectively. It is clear that one
can obtain this standard form of from by setting

to be a constant.
Since the EGC region is equivalent to the EGC* region, it

is not surprising that can be written in an alternative
form which resembles the EGC* region. Indeed, by leveraging
Lemma 1, one can express as the set of quadruples

for which there exist independent
random variables and , jointly distributed with ,
and a function , such that

In contrast with the standard form of , here cor-
responds to the refinement layer ( still corresponds to the
base layer). It will be seen that this alternative form of
is useful for clarifying the role of refinement layer in scalable
coding.

B. On the Role of Refinement Layer in Scalable Coding

Although is not imposed in scalable coding, it is cer-
tainly of interest to know whether the refinement layer itself can
be useful, i.e., whether one can use the refinement layer alone to
achieve a nontrivial reconstruction distortion. However, without
further constraint, this problem is essentially the same as the
multiple description problem. Therefore, we shall focus on op-
timal greedy scalable coding schemes (which will be defined
precisely).

Let denote the rate-distortion function, i.e.,

Define the minimum scalably achievable total rate
with respect to as

It is clear that [16]

Here we assume the right-hand side of the equality is greater
than or equal to ; otherwise,

. Now we proceed to study the minimum in
the scenario where and

. Define

We shall refer to as the minimum distortion
achievable by the refinement layer in optimal greedy scalable
coding schemes.

Let denote the convex closure of the set of quintuples
for which there exist auxiliary

random variables , jointly distributed with
, such that

Note that is essentially the EGC region with an additional
constraint (i.e., and are
independent).

Lemma 3: The EGC region as well as is tight if
; more precisely

Proof: Note that this problem is closely related to multiple
description coding without excess rate. Indeed, for the special
case , this lemma follows
immediately from Ahlswede’s classical result [1]. In fact, even
for the general case, Ahlswede’s proof technique [1] (also cf.
[20]) can be directly applied with no essential change. Note that
for the no excess rate case, the two descriptions are (approx-
imately) independent (see (3.4) in [1]). It is easy to verify that
this (approximate) independence also holds under the constraint

. The rest of the proof is es-
sentially the same as that in [1] and is omitted.

Though is in principle computable
using Lemma 3, the calculation is often complicated by the
convex-hull operation in the definition of the EGC region
and . We shall show that under mild technical conditions
such a convex-hull operation is not needed for the purpose of
computing .

We need the following definition of weak independence from
[2].
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Definition 2: For jointly distributed random variables and
is weakly independent of if the rows of the stochastic

matrix are linearly dependent.
The following lemma can be found in [2].

Lemma 4: For jointly distributed random variables and ,
there exists a random variable satisfying

1) form a Markov chain;
2) and are independent;
3) and are not independent;

if and only if is weakly independent of .

Theorem 4: If is not weakly independent of for any
induced by that achieves , then

(10)

where the minimization is over , and subject
to the constraints

Here one can assume that is defined on a finite set with
cardinality no greater than .

Proof: First we shall show that the right-hand side of (10)
is achievable. Given any and for which there exist
auxiliary random variables , jointly dis-
tributed with , and a function such that

and we have

Therefore, the quintuple , where

is contained in the EGC* region for any function . This proves
the achievability part.

Now we proceed to prove the converse part. Let
and .

Since the VKG region includes the EGC region, Lemma 3
implies that the VKG region is also tight when the total rate is
equal to . Therefore, if the quintuple

is achievable, then there exist
auxiliary random variables , jointly distributed
with such that

By the definition of and ,
we must have

which implies that
1) and are independent;
2) form a Markov chain;
3) form a Markov chain;
4) form a Markov chain;
5) achieves .

Since is not weakly independent of , it follows from
Lemma 4 that and are independent, which further im-
plies that and are independent. By Lemma 1, there
exist a random variable on with
and a function such that

1) is independent of ;
2) ;
3) form a Markov chain.

By setting , it is easy to verify that

where

and

The proof is complete.

Remark: Theorem 4 is quite natural in view of the alternative
form of defined in Section IV-A. Moreover, it is easy to
show that (10) can be alternatively written as
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where the minimization is over subject to
the constraints

Now we give an example for which can be
calculated explicitly.

Theorem 5: For a binary symmetric source with Hamming
distortion measure

for .
Proof: The proof is given in Appendix F.

APPENDIX A
PROOF OF LEMMA 1

Let be a random variable independent of and uniformly
distributed over [0, 1]. It is obvious that for each we can
find a function satisfying

Now define a function such that

It is clear that

It can be shown by invoking Carathéodory’s theorem that there
exist a finite set with and a
random variable on , independent of , such that

We can see that is preserved if is set to be equal to
. Now we incorporate into the probability space by

setting . It can be readily verified that
is preserved and indeed form a Markov

chain. The proof is complete.

APPENDIX B
PROOF OF LEMMA 2

By the definition of contra-polymatroid [4], it suffices to show
that the set function satisfies 1)
(normalized), 2) if (nondecreasing), 3)

(supermodular).
1) Normalized: We have

2) Nondecreasing: If , then

3) Supermodular: We have

where . The proof is complete.
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APPENDIX C
PROOF OF THEOREM 2

It is clear that . Therefore, we just need
to show that .

In view of Lemma 2 and the property of contra-poly-
matroid [4], for fixed and ,
the region specified by (4) and (5) has vertices:

is a vertex for
each permutation on , where

Since the VKG* region is a convex set, it suffices to show that
these vertices are contained in the VKG* region.

Without loss of generality, we shall assume that
. In this case, we have

Now we proceed to write as a sum of certain mutual
information quantities. Define

Note that

We arrange the sets in in some arbitrary order and denote
them by , respectively, where

. Then for each

Therefore, we have

(11)

It follows from Lemma 1 that there exist an auxiliary random
variable and a function such that

1) is independent of ;
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2) ;
3) form a Markov chain.

Therefore, we have

and

for and . Now it can be
easily verified that
is preserved if we substitute with , set
to be a constant, and modify , accord-
ingly. By the definition of the VKG* region, it is clear that

. The
proof is complete.

APPENDIX D
PROOF OF THEOREM 3

Let , and
. By Lemma 2 and the property of contra-polymatroid [4],

is a vertex of the rate region
; moreover, we have

(12)

where the minimization in (12) is over , and
, subject to the constraints

It follows from Theorem 2 that can be eliminated. In-
specting (11) reveals that the same method can be used to elim-
inate , successively in the reverse order
(i.e., the bottom-to-top and right-to-left order in Fig. 2). For
from to , we write in a form analogous to (11) and
execute this elimination procedure. In this way, all the auxiliary
random variables, except , are eliminated.
It can be verified that the resulting expression for
is

The proof is complete.

APPENDIX E
PROOF OF COROLLARY 3

First, we shall show that (6) is greater than or equal
to (7). Let , and

. It can
be verified that

where .
Now we proceed to show that (7) is greater than or equal to

(6). It follows from Lemma 1 that there exist a random variable
and a function such that

1) is independent of ;
2) ;
3) form a Markov chain.

Note that

Therefore, we can substitute with and elim-
inate . It is clear that one can successively eliminate

in a similar manner. The proof is complete.

APPENDIX F
PROOF OF THEOREM 5

It is obvious that if .
Therefore, we shall only consider the case .
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Fig. 2. Structure of auxiliary random variables for the VKG region.

Since binary symmetric sources are successively refinable, it
follows that

where is the binary entropy function. If , then
is achieved if and only if is a binary sym-

metric channel with crossover probability ; it is clear that
is not weakly independent with the resulting . There-

fore, Theorem 4 is applicable here.
Define . Note that we must have

and

which implies that form a
Markov chain and is a binary symmetric channel
with crossover probability . Therefore, is
completely specified by the backward test channels shown in
Fig. 3. Now it is clear that one can obtain by
solving the following optimization problem:

subject to the constraints
1) and are independent;
2) is a deterministic function of and ;
3) form a Markov chain.
Assume that takes values in for some

finite . We tabulate , and
for ease of reading.

Fig. 3. Backward channels for successive refinement of a binary symmetric
source: � � .

According to (cf. Fig. 3), it is easy to see that

(13)

Furthermore, one can verify the following statements.
1) The fact that and are independent and that

is uniformly distributed over implies

(14)

2) The fact that is a deterministic function of
implies

(15)
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3) The fact that form a Markov
chain implies

(16)

According to (15), there are four possibilities for each

Moreover, in view of (14), we can partition
into four disjoint sets , such that

(17)

Combining (16) and (17) yields

It is easy to see that different values in each ,
can be combined. That is to say, we can assume that
takes values in with no loss of generality. As a con-
sequence, and can be re-tabulated
shown at the top of the page.

Note that and satisfy
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where the first four equalities follow from (16) while the others
follow from (13). Using to reconstruct , one can achieve

It can be easily verified that is minimized when
. Therefore, we have
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