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Abstract— In this paper, the multiple access channel (MAC)
with combined cooperation and partial cribbing is studied, and
its capacity region is characterized. Cooperation means that each
of the two encoders sends a message to the other via a rate-
limited link prior to transmission, while partial cribbing means
that each of the two encoders obtains a deterministic function of
the other encoder’s output with or without delay. Prior work in
this field dealt separately with cooperation and partial cribbing,
but by combining these two methods, we can achieve significantly
higher rates. Surprisingly, the capacity region of the MAC with
combined cooperation and partial cribbing can be expressed
using only one auxiliary random variable (RV) similar to the
capacity regions of the MAC with cooperation and with partially
cribbing encoders. The reason is that in an optimal coding
scheme, the encoders use both cooperation and partial cribbing to
generate a common message between the encoders. Furthermore,
the Gaussian MAC with combined one-sided cooperation and
quantized cribbing is studied. For this model, an achievability
scheme is given. This scheme shows how many cooperation or
quantization bits are required to practically achieve the capacity
region of the Gaussian MAC with full message cooperation or
perfect cribbing. To ratify the main results, two additional models
are studied. In both models, only one auxiliary RV is needed. The
first is a rate distortion dual setting for the MAC with degraded
message set and combined cooperation and cribbing. The second
is a state-dependent MAC with cooperation, where the state
is known at a partially cribbing encoder and at the decoder.
However, there are cases where more than one auxiliary RV is
needed, e.g., when the cooperation and the cribbing are not used
for the same purposes. The MAC with an action-dependent state
is presented, where the action is based on the cooperation but not
on the cribbing. Therefore, in this case, more than one auxiliary
RV is needed. As a result, when the common information shared
by the two encoders is used unevenly by the users in the channel,
more than one auxiliary RV is needed to express the capacity
region.

Index Terms— Action, block Markov coding, cooperation,
duality, double rate splitting, Gaussian MAC, Gelfand-Pinsker
coding, multiple access channels, partial cribbing, state.

Manuscript received April 3, 2014; revised May 1, 2015; accepted
September 7, 2015. Date of publication November 11, 2015; date of current
version January 18, 2016. This work was supported in part by the European
Commission in the framework of the Seventh Framework Programme Network
of Excellence in Wireless Communications (NEWCOM#), in part by the
European Research Council Starting Grant, in part by the Israel Science
Foundation, and in part by the S. and N. Grand Research Fund. This paper was
presented at the 2014 IEEE International Symposium on Information Theory.

T. Kopetz and H. Permuter are with the Department of Electrical and Com-
puter Engineering, Ben-Gurion University of the Negev, Beersheba 8410501,
Israel (e-mail: kopetz@post.bgu.ac.il; haimp@bgu.ac.il).

S. Shamai is with the Department of Electrical Engineering,
Technion–Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
sshlomo@ee.technion.ac.il).

Communicated by T. Liu, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2015.2499759

I. INTRODUCTION

THE MAC with cooperating encoders was first stud-
ied by Willems [1]–[3], who introduced two separate

approaches to cooperating encoders. In the first, the two
encoders use a rate-limited cooperation link to cooperate
and share as much of their private messages as possi-
ble. In the second approach, named cribbing, each encoder
“listens” to and obtains the output of the other. Capacity
regions for the two approaches were established separately by
Willems. Furthermore, the cribbing setting was generalized
in [4] to partial cribbing, which means that each of the
two encoders obtains a deterministic function of the other
encoder’s output. The partial cribbing is especially important
in the continuous alphabet, such as in the Gaussian MAC,
because perfect cribbing in a continuous alphabet means full
cooperation between the encoders regardless of the cribbing
delay.

In this paper, we combine cooperation and partial cribbing
and use them simultaneously to obtain better performance
and a larger capacity region. In a MAC with combined
cooperation and partial cribbing, depicted in Fig. 1, Encoder 1
and Encoder 2 obtain messages M21 and M12 prior to
transmission. As for the cribbing part, we address two
cases. In Case A, the cribbing is done strictly causally by
both encoders, i.e., Encoder 1 forms X1,i as a function of
(M1, M21, Zi−1

2 ) and Encoder 2 forms X2,i as a function of

(M2, M12, Zi−1
1 ) where Z1,i and Z2,i are deterministic func-

tions of X1,i and X2,i , respectively. In Case B, the cribbing is
done strictly causally by Encoder 1 and causally by Encoder 2,
i.e., Encoder 1 forms X1,i as a function of (M21, Zi−1

2 ) and
Encoder 2 forms X2,i as a function of (M12, Zi

1). The idea
behind the approach is that the deterministic function, Z1, is
on a sliding scale where one end is Z1,i = X1,i (the actual
output) and the other end is when Z1,i is a constant, which
does not give any information about X1,i . The same applies
for Z2. In this research, it was our goal to obtain a generic
capacity region for a scheme with both cooperation and partial
cribbing.

Cooperation and cribbing carry practical implications.
In [5, Ch. 8], Simone et al. considered cooperative wireless
cellular systems and analyzed their performance with separate
cooperation and cribbing (referred to as Out-of-Band coopera-
tion and In-Band cooperation, respectively). The results show
how cooperation and cribbing separately increase capacity in
wireless cellular systems. In the expected 3GPP Release 12,
a standard called Proximity Services (ProSE) will be added
to the LTE-Advanced “grab bag” of technologies [6].
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Fig. 1. MAC with combined cooperation and partial cribbing. Encoder 1 and Encoder 2 obtain messages M21 and M12 prior to transmission. The cribbing
is done strictly causally by both encoders. This setting corresponds to Case A.

The ProSE protocol will address issues of spectrum utilization,
overall throughput, and energy consumption, while enabling
new peer to peer and location based applications and services,
all of which will be applied using cooperation between
“nearby” users in the network. The communication between
the users can be attained by using mobile ad hoc networks
(Out-of-Band/Cooperation) or by using the same band as
the cell sites (In-Band/Cribbing). The settings of combined
cooperation and cribbing considered in this paper give the
fundamental limits and insights on how to design optimal
coding for communication systems where the users have
cognition capabilities, and therefore, “listen” to each other’s
signals and, in addition, cooperate with each other via dedi-
cated links. We show that combining cribbing and cooperation
is straightforward since it does not require any additional
auxiliary RV compared with either cribbing or cooperation
exclusively. Therefore, the combination of cooperation and
cribbing should be considered in future cooperative wireless
cellular systems such as ProSE.

In this paper, we solve the general model that incorporates
both cooperation and partial cribbing, which enables the
encoders to form a common message consisting of information
that is known to both of them. In [9], Slepian and Wolf studied
the MAC with a common message and two private messages
and found that its capacity region is generally larger than that
of the MAC with only private messages. Moreover, the impact
of the common message on the capacity region can be captured
using only one auxiliary RV. Accordingly, the capacity regions
for separate cooperation and partial cribbing [1], [4] consist
of an auxiliary RV, U . One of the results in our work is that
the combination of the models does not require an additional
auxiliary RV, as it is possible to use only one auxiliary RV that
represents the common information. This implies that if for the
MAC with partial cribbing we have a “good code”, namely,
a code that achieves the capacity region, then by performing
minor modifications, namely, increasing the common message
rate, we can construct a “good code” for the MAC in which
cooperation and partial cribbing are combined. The coding
techniques we use in this paper include block Markov coding
(introduced by Willems), joint typicality decoding, backward
decoding, and double rate splitting, the last of which is
necessary because we need to split the original message twice:

one part will be obtained through the cooperation link and the
other part using partial cribbing.

Combining cooperation and cribbing was first considered
by Bracher and Lapidoth [10] in the context of feedback
and state information. In [10], however, only strictly-causal
perfect cribbing was considered, and in our paper we consider
the cases of strictly causal and causal partial cribbing.
We show that it is preferable to compare cooperation with
partial cribbing because of their similarity, i.e., in both cases,
only part of the private message is shared.

After establishing our main results, we present the Gaussian
MAC with combined one-sided cooperation and partial
cribbing. One can see that an outer bound for the capacity
region of this setting is when Encoder 2 knows the message
of Encoder 1. Inspired by the work of Asnani and Permuter [4]
and Bross et al. [11], we describe an achievability scheme that
coincides with this outer bound in some cases.

To obtain further support for our results, we consider the
channel-coding rate-distortion duality that was first presented
by Shannon in [12]. We provide a duality between a MAC
with a degraded message set and combined cooperation and
cribbing and the rate distortion model known as “Successive
Refinement (SR) With Decoder Cooperation” presented
in [13]. The decoder cooperation is through a dedicated link
and partial cribbing. Indeed, the rate region of combined
cooperation and partial cribbing in the SR problem consists
of one auxiliary RV.

Using only one auxiliary RV for both cooperation and
partial cribbing is not always possible. To see this, we study
the impact of cooperation and cribbing on state-dependent
MACs where the state may provide a refined characterization
of the channel, which is a widely accepted approach in the
literature to state-dependent channels. We address two dif-
ferent state-dependent MACs with cooperation and cribbing
(see [10], [14] for further reading). The first is a MAC
with cooperation and channel state known non-causally at a
partially cribbing encoder and at the decoder. In this case, we
use our results to establish a capacity region with a single
auxiliary RV, only one of which is needed since the purpose
of both cooperation and partial cribbing is to generate a
common message between the encoders. The second is a MAC
where an action-dependent state is known non-causally at
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a cribbing encoder, at which a one-sided cooperation
link is attained. Action-dependent states, introduced by
Weissman in [15], comprise an action based on the private
message of the cribbing encoder and the message from the
cooperation link. Because the purpose of the cooperation is
not only to generate a common message but also to contribute
to the action and affect the channel state, in the case of the
action-dependent state, one auxiliary RV will not suffice.

The remainder of the paper is organized as follows:
In Section II, we define the MAC with combined cooper-
ation and partial cribbing and provide its capacity region
for two cases. The first is for strictly causal partial cribbing
(Case A) and the second is for mixed causal and strictly causal
partial cribbing (Case B). Thereafter, the proof for both cases
is provided. In Section III, we give an achievability scheme
for the Gaussian MAC with combined one-sided cooperation
and partial cribbing. In Section IV, we establish the duality
between the MAC with combined cooperation and partial
cribbing at the encoders and the SR problem with combined
cooperation and partial cribbing at the decoders. We show
that one auxiliary RV is needed to characterize the rate region
of the SR problem. In Section V, we give an example of a
state-dependent MAC with combined cooperation and partial
cribbing where only one auxiliary RV is needed. In Section VI,
we study the case of the MAC with an action-dependent state
where more than one auxiliary RV is needed and explain why.
In Section VII we conclude the paper and state open problems
such as noncausal partial cribbing and combined cooperation
and cribbing in the interference channel.

II. THE MAC WITH COMBINED COOPERATION

AND PARTIAL CRIBBING

A. Definitions and Main Results

Let us consider the MAC with combined cooperation and
partial cribbing depicted in Fig. 1. The MAC setting consists
of two transmitters (encoders) and one receiver (decoder).
Each transmitter l ∈ {1, 2} chooses an index ml uniformly
from the set {1, . . . , 2nRl } and independently of the other
transmitter. RVs are denoted by capital letters, and their
realizations by the respective lower case letters. Xn

m denotes
the random vector (Xm, . . . , Xn) and Xn denotes the random
vector (X1, . . . , Xn). The input to the channel from Encoder
l ∈ {1, 2} is denoted by {Xl,1, Xl,2, Xl,3, . . . }. Encoder 1
and Encoder 2 obtain deterministic functions of the form
Z2,i = g2(X2,i ) and Z1,i = g1(X1,i ), respectively. We address
two cases in this setting:

• Case A: Both Encoder 1 and Encoder 2 obtain
Z2,i and Z1,i , respectively, with unit delay.

• Case B: Encoder 1 obtains Z2,i with unit delay and
Encoder 2 obtains Z1,i without delay.

Additionally, Encoder 1 obtains a message m21 ∈ {1, . . .,
2nC21} from Encoder 2 and Encoder 2 obtains a message m12 ∈
{1, . . . , 2nC12} from Encoder 1. Both messages are obtained
prior to the transmission of (Xn

1 , Xn
2 ) through the channel.

The output of the channel is denoted by {Y1, Y2, Y3, . . . }.
The channel is characterized by a conditional probability
P(yi |x1,i , x2,i). The channel probability does not depend on
the time index i and is memoryless, i.e.,

P(yi |xi
1, xi

2, yi−1) = P(yi |x1,i , x2,i ), (1)

where the superscripts denote sequences as follows: xi
l = (xl,1,

xl,2, . . . , xl,i ), l ∈ {1, 2}. Since the settings in this paper do
not include feedback from the receiver to the transmitters,
i.e., P(x1,i , x2,i |xi−1

1 , xi−1
2 , yi−1) = P(x1,i , x2,i |xi−1

1 , xi−1
2 ),

equation (1) implies that

P(yi |xn
1 , xn

2 , yi−1) = P(yi |x1,i , x2,i ). (2)

Definition 1: A (2nR1 , 2nR2 , 2nC12 , 2nC21, n) code for the
MAC with combined cooperation and partial cribbing,
as shown in Fig. 1, consists of encoding functions at
Encoder 1 and Encoder 2

f12 : {1, . . . , 2nR1} �→ {1, . . . , 2nC12}, (3)

f21 : {1, . . . , 2nR2} �→ {1, . . . , 2nC21}, (4)

f1,i : {1, . . . , 2nR1} × {1, . . . , 2nC21} × Z i−1
2 �→ X1,i , (5)

f A
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Z i−1

1 �→ X2,i , (6)

f B
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Z i

1 �→ X2,i , (7)

where i ∈ {1, . . . , n}, and a decoding function

g : Yn �→ {1, . . . , 2nR1} × {1, . . . , 2nR2}. (8)

The average probability of error for a (2nR1 , 2nR2 ,
2nC12, 2nC21, n) code is defined in (9) at the bottom of the
page.

A rate (R1, R2) is said to be achievable for the MAC with
combined cooperation and partial cribbing if there exists a
sequence of (2nR1 , 2nR2 , 2nC12 , 2nC21, n) codes s.t. P(n)

e → 0.
The capacity region of the MAC is the closure of all achievable
rates. The following theorem describes the capacity region of
a MAC with combined cooperation and partial cribbing.

Let us define the regions RA and RB that are contained in
the set of nonnegative two-dimensional real numbers, which
we henceforth denote by R

2+. The region RA is defined in (10)
at the bottom of the page. The region RB is defined with the

P(n)
e = 1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n) �= (m1, m2)|(m1, m2) sent}. (9)

RA =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 ≤ I (X1; Y |X2, Z1, U) + H (Z1|U) + C12,
R2 ≤ I (X2; Y |X1, Z2, U) + H (Z2|U) + C21,

R1 + R2 ≤ I (X1, X2; Y |U, Z1, Z2) + H (Z1, Z2|U) + C12 + C21,
R1 + R2 ≤ I (X1, X2; Y ), for
P(u)P(x1|u)�z1=g1(x1) P(x2|u)�z2=g2(x2) P(y|x1, x2).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10)
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same set of inequalities as in (10), but the second inequality,
i.e., the rate bound on R2, is replaced by

R2 ≤ I (X2; Y |X1, Z2, U) + H (Z2|U, Z1) + C21, (11)

and the joint distribution is of the form

P(u)P(x1|u)�z1=g1(x1) P(x2|u, z1)�z2=g2(x2) P(y|x1, x2).

(12)

Theorem 1 (Capacity Region of the MAC With Combined
Cooperation and Partial Cribbing): The capacity regions
of the MAC with combined cooperation and strictly causal
(Case A) and mixed strictly causal and causal (Case B) partial
cribbing, as described in Def. 1, are RA and RB , respectively.

We note that H (Z1|U) = I (Z1; X1|U), which practically
represents the capacity between Encoder 1 and Encoder 2.
Thus the cribbing term, I (Z1; X1|U), plays the same role
(in a quantitative sense) as the cooperation link term, C12; both
are capacities between Encoder 1 and Encoder 2. Similarly, the
role of I (Z2; X2|U) to C21 and of I (Z1, Z2; X1, X2|U) to
C12 + C21. Hence, the important feature here is the mutual
information of the cooperation, whether the cooperation is
done by cribbing or by dedicated links, since they both behave
similarly.

Remark 1 In Willems’ definition of conferencing [1],
a conference between two encoders consists of K subsequent
pairs of communications, (V K

1 , V K
2 ), emitted by both encoders

simultaneously prior to transmission over the channel. Each
cooperation transmission relies on the private message and

past received transmissions, i.e., V1,i = f (M1, V i−1
2 ) and

V2,i = f (M2, V i−1
1 ). The number of information bits trans-

mitted after K rounds is nC12 and nC21 at Encoder 2 and
Encoder 1, respectively. Since cooperation occurs prior to
transmission, it can be modeled as a rate-limited link between
the encoders and the capacity region is the same for both
definitions. Furthermore, without cribbing, it is implicit that
having cooperation prior to transmission yields a capacity
region which is greater than or equal to the capacity region
when cooperation occurs during transmission. However, when
cribbing is available, this assumption is not straightforward.
In Appendix A we prove that when partial cribbing is
available, cooperation prior to transmission and during trans-
mission yield the same capacity region.

In the case of a common message, the capacity region is
as follows. We define the rate regions RA

0 and RB
0 exactly

as RA and RB , respectively, but the last inequality in (10),
i.e., R1 + R2 ≤ I (X1, X2; Y ), is replaced by

R0 + R1 + R2 ≤ I (X1, X2; Y ). (13)

Theorem 2 (Capacity Region in the Case of a Common
Message): The capacity regions of the MAC with combined
cooperation and strictly causal (Case A) and mixed strictly
causal and causal (Case B) partial cribbing and a common
message are RA

0 and RB
0 , respectively.

The proof for this Theorem is given in Appendix B.

B. Proof of Theorem 1

1) Converse for Case A:: Given an achievable rate (R1, R2),
we need to show that there exists a joint distribution of
the form P(u)P(x1|u)�z1=g1(x1) P(x2|u)�z2=g2(x2) P(y|x1, x2)
such that the inequalities (10) are satisfied. Since (R1, R2)
is an achievable rate-pair, there exists a (2nR1 , 2nR2 ,
2nC12, 2nC21, n) code with an arbitrarily small error probabil-
ity P(n)

e . By Fano’s inequality,

H (M1, M2|Y n) ≤ n(R1 + R2)P(n)
e + H (P(n)

e ). (14)

We set

(R1 + R2)P(n)
e + 1

n
H (P(n)

e ) � εn, (15)

where εn → 0 as P(n)
e → 0. Hence,

H (M1|Y n, M2) ≤ H (M1, M2|Y n) ≤ nεn, (16)

H (M2|Y n, M1) ≤ H (M1, M2|Y n) ≤ nεn . (17)

For R1 we have the following:

n R1 = H (M1) (18)
(a)= H (M1, M12, Zn

1 |M2) (19)
(b)= H (M12|M2) + H (Zn

1 |M12, M2)

+ H (M1|Zn
1 , M12, M2) (20)

= H (M12) + H (Zn
1 |M12, M21, M2)

+ H (M1|Zn
1 , M12, M2)

+ H (M1|Y n, Zn
1 , M12, M2)

− H (M1|Y n, Zn
1 , M12, M2) (21)

(c)≤ H (M12) + H (Zn
1 |M12, M21, M2)

+ I (M1; Y n|Zn
1 , M12, M2, M21) + nεn (22)

(d)= H (M12) +
n∑

i=1

[H (Z1,i |Zi−1
1 , M12, M21, M2)

+ I (M1; Yi |Y i−1, Zn
1 , M12, M2, M21)] + nεn (23)

(e)= H (M12) +
n∑

i=1

[H (Z1,i |Zi−1
1 , Zi−1

2 , M12, M21, M2)

+ I (M1, X1,i ; Yi |Y i−1, Zn
1 , Zi−1

2 , M12, M2, M21)]
+ nεn (24)

( f )≤ H (M12) +
n∑

i=1

[H (Z1,i |Zi−1
1 , Zi−1

2 , M12, M21)

+ I (X1,i ; Yi |X2,i , Zi
1, Zi−1

2 , M12, M21)] + nεn ,

(25)

where (a) follows since messages M1 and M2 are independent
and since (M12, Zn

1 ) = f (M1, M2), (b) and (d) follow from
the chain rule, (c) follows from Fano’s inequality and because
M21 is a function of M2, (e) follows since Zi−1

2 is a function of
(M12, M2, Zi−2

1 ) and X1,i is a function of (M1, M21, Zi−1
2 ),

and step (f) follows since conditioning reduces entropy and

from the Markov chain Yi −(X1,i , X2,i , M12, M21, Zi
1, Zi−1

2 )−
(M1, M2, Y i−1, Zn

1,i+1). We set the following RV

Ui � (Zi−1
1 , Zi−1

2 , M12, M21), (26)
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and obtain

R1 ≤ C12 + 1

n

n∑

i=1

[H (Z1,i|Ui )

+ I (X1,i ; Yi |X2,i , Z1,i , Ui )] + εn . (27)

Similarly to (27), we obtain

R2 ≤ C21 + 1

n

n∑

i=1

[H (Z2,i|Ui )

+ I (X2,i ; Yi |X1,i , Z2,i , Ui )] + εn . (28)

Now, consider

n(R1 + R2)

= H (M1, M2) (29)
(a)= H (M1, M2, Zn

1 , Zn
2 , M12, M21) (30)

(b)= H (M12) + H (M21|M12)

+ H (Zn
1, Zn

2 |M12, M21)

+ H (M1, M2|Zn
1 , Zn

2 , M12, M21) (31)
(c)≤ H (M12) + H (M21)

+ H (Zn
1, Zn

2 |M12, M21)

+ I (M1, M2; Y n|Zn
1 , Zn

2 , M12, M21) + nεn (32)
(d)≤ nC12 + nC21

+
n∑

i=1

[H (Z1,i, Z2,i |Zi−1
1 , Zi−1

2 , M12, M21)

+ I (M1, M2; Yi |Y i−1, Zn
1 , Zn

2 , M12, M21)] + nεn (33)
(e)= nC12 + nC21

+
n∑

i=1

[H (Z1,i, Z2,i |Zi−1
1 , Zi−1

2 , M12, M21)

+ I (M1, X1,i , M2, X2,i ; Yi |Y i−1, Zn
1 , Zn

2 , M12, M21)]
+ nεn (34)

( f )= nC12 + nC21

+
n∑

i=1

[H (Z1,i, Z2,i |Zi−1
1 , Zi−1

2 , M12, M21)

+ I (X1,i , X2,i ; Yi |Zi
1, Zi

2, M12, M21)] + nεn , (35)

where (a) follows from the fact that (M12, M21, Zn
1 , Zn

2 ) =
f (M1, M2), (b) and (d) follow from the chain rule,
(c) follows from Fano’s inequality and because M21
is independent of M12, (e) follows from the fact that
(X1,i , X2,i ) = f (M1, M2), and step (f) follows from
the Markov chain Yi − (X1,i , X2,i , Zi

1, Zi
2, M12, M21) −

(M1, M2, Y i−1, Zn
1,i+1, Zn

2,i+1). From the definition of the
RV U , we obtain

R1 + R2 ≤ C12 + C21 + 1

n

n∑

i=1

[H (Z1,i, Z2,i |Ui )

+ I (X1,i , X2,i ; Yi |Z1,i , Z2,i , Ui )] + εn. (36)

Furthermore, consider

n(R1 + R2) = H (M1, M2) (37)

= H (M1, M2) + H (M1, M2|Y n)

− H (M1, M2|Y n) (38)

(a)≤ I (M1, M2; Y n) + nεn (39)
(b)= I (Xn

1 , Xn
2 ; Y n) + nεn (40)

(c)=
n∑

i=1

I (Xn
1 , Xn

2 ; Yi |Y i−1) + nεn (41)

(d)=
n∑

i=1

I (X1,i , X2,i ; Yi ) + nεn, (42)

where (a) follows from Fano’s inequality, (b) follows from the
fact that (Xn

1 , Xn
2 ) is a deterministic function of (M1, M2) and

from the Markov chain Y n −(Xn
1 , Xn

2 )−(M1, M2), (c) follows
from the chain rule, and step (d) follows from the memoryless
property of the channel. Thus we obtain

R1 + R2 ≤ 1

n

n∑

i=1

I (X1,i , X2,i ; Yi ) + εn. (43)

Finally, to prove the Markov chains, we will use the graphic
method as in [16, Sec. II]. In this method we choose a joint
distribution, draw each RV of the joint distribution as an
edge and connect the edges according to the Markov chains
corresponding to the joint distribution. For example, if we have
the joint distribution P(a, b, c) = P(a)P(b|a)p(c|b), i.e., the
Markov chain A− B −C holds, then edge a will be connected
to edge b, edge b will be connected to edges (a, c), and edge c
will be connected to edge b. We now prove the following
Markov chains:

• Z2,i − Ui − Z1,i - Using the undirected graph
in Fig. 2, we can see that the Markov Chain
Z2,i − (M12, M21, Zi−1

1 , Zi−1
2 ) − Z1,i holds since we

cannot get from node Z2,i to node Z1,i without going
through nodes (M12, M21, Zi−1

1 , Zi−1
2 ).

• X1,i − (Ui , Z1,i ) − Z2,i - Using the undirected graph
in Fig. 2, we can see that the Markov Chain
X1,i −(M12, M21, Zi

1, Zi−1
2 )− Z2,i holds since we cannot

get from node X1,i to node Z2,i without going through
nodes (M12, M21, Zi

1, Zi−1
2 ).

• X2,i − (Ui , Z2,i ) − X1,i - Using the undirected graph
in Fig. 2, we can see that the Markov Chain
X2,i −(M12, M21, Zi−1

1 , Zi
2)−X1,i holds since we cannot

get from node X2,i to node X1,i without going through
nodes (M12, M21, Zi−1

1 , Zi
2).

• Yi − (X1,i , X2,i ) − (Z1,i , Z2,i , Ui ) - Follows since the
channel output at time i depends on the history (Xi

1, Xi
2)

only through (X1,i , X2,i ).
Finally, let Q be an RV independent of (Xn

1 , Xn
2 , Y n) and

uniformly distributed over the set {1, 2, 3, . . . , n}. We define
the RVs U � (Q, UQ), X1 � X1,Q, X2 � X2,Q , and Y � YQ

to obtain the region given in (10). This completes the converse
for Case A. �

Converse for Case B: For the first, third and fourth inequali-
ties we repeat the same approach as for Case A. For the bound
on R2 we have the following:

n R2 = H (M2) (44)
(a)= H (M2, M21, Zn

2 |M1) (45)
(b)= H (M21|M1) + H (Zn

2 |M21, M1)

+ H (M2|Zn
2 , M21, M1) (46)
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Fig. 2. Proof of the Markov Chain X2,i − (M12, M21, Zi−1
1 , Zi−1

2 ) − X1,i using the undirected graphical technique [16, Sec. II]. This

graph corresponds to the joint distribution P(m1)P(m2)P(m12|m1)P(m21|m2)
∏i−1

k=1 P(z1,k |m1, m21, zk−1
2 )P(z2,k |m2, m12, zk−1

1 )P(x1,i |m21, m1, zi−1
2 )

P(x2,i |m12, m2, zi−1
1 )P(z1,i |x1,i )P(z2,i |x2,i ).

= H (M21) + H (Zn
2 |M12, M21, M1)

+ H (M2|Zn
2 , M21, M1) + H (M2|Y n, Zn

2 , M21, M1)

− H (M2|Y n, Zn
2 , M21, M1) (47)

(c)≤ H (M21) + H (Zn
2 |M12, M21, M1)

+ I (M2; Y n|Zn
2 , M12, M1, M21) + nεn (48)

(d)= H (M21) +
n∑

i=1

[H (Z2,i|Zi−1
2 , M12, M21, M1)

+ I (M2; Yi |Y i−1, Zn
2 , M12, M1, M21)] + nεn (49)

(e)= H (M21) +
n∑

i=1

[H (Z2,i|Zi
1, Zi−1

2 , M12, M21, M1)

+ I (M2, X2,i ; Yi |Y i−1, Zn
2 , Zi

1, M12, M1, M21)]+nεn

(50)
( f )≤ H (M21) +

n∑

i=1

[H (Z2,i|Zi−1
1 , Zi−1

2 , M12, M21, Z1,i )

+ I (X2,i ; Yi |X1,i , Zi
2, Zi−1

1 , M12, M21)] + nεn, (51)

where (a) follows since messages M1 and M2 are independent
and since (M21, Zn

2 ) = f (M1, M2), (b) and (d) follow from
the chain rule, (c) follows from Fano’s inequality and because
M12 is a function of M1, (e) follows since Zi

1 is a function of
(M21, M1, Zi−1

2 ) and X2,i is a function of (M2, M12, Zi−1
1 ),

and step (f) follows since conditioning reduces entropy and
from the Markov chain Yi −(X1,i , X2,i , M12, M21, Zi−1

1 , Zi
2)−

(M1, M2, Y i−1, Z1,i , Zn
2,i+1). From the definition of the

RV U , we obtain

R2 ≤ C21 + 1

n

n∑

i=1

[H (Z2,i|Ui , Z1,i )

+ I (X2,i ; Yi |X1,i , Z2,i , Ui )] + εn . (52)

Additionally, we need to show the Markov chain X2,i −
(Ui , Z1,i , Z2,i ) − X1,i rather than X2,i − (Ui , Z2,i ) − X1,i

as in Case A. Since for Case A the Markov chain
X2,i − (M12, M21, Zi−1

1 , Zi
2) − X1,i holds, then X2,i −

(M12, M21, Zi
1, Zi

2) − X1,i also holds. �

2) Achievability for Case A: To prove the achievabil-
ity of the capacity region, we need to show that for
a fixed distribution of the form P(u)P(x1|u)�z1=g1(x1)

P(x2|u)�z2=g2(x2) P(y|x1, x2) and for (R1, R2) that satisfy
the inequalities in (10), there exists a sequence of

(2nR1, 2nR2 , 2nC12, 2nC21 , n) codes for which P(n)
e → 0 as

n → ∞.
The idea behind this proof is to convert the cooperation

problem into a setting that corresponds to the MAC with
a common message and partially cribbing encoders consid-
ered in [4] and rely on its capacity region to show that
the cooperation capacity region is indeed achievable. This
is done by sharing as much as possible of the original
private messages, (m1, m2), through the communication links
to create a common message; the unshared parts of the original
messages serve as the new private messages. By doing so, the
coding scheme of the setting with a common message can be
employed. The capacity region found in [4] for the MAC with
a common message and partially cribbing encoders is

R̃1 ≤ H (Z1|U) + I (X1; Y |X2, Z1, U),

R̃2 ≤ H (Z2|U) + I (X2; Y |X1, Z2, U),

R̃1 + R̃2 ≤ I (X1, X2; Y |U, Z1, Z2) + H (Z1, Z2|U),

R̃0 + R̃1 + R̃2 ≤ I (X1, X2; Y ). (53)

Let us define the following rates

R̃0 = C12 + C21, (54)

R̃1 = R1 − C12, (55)

R̃2 = R2 − C21, (56)

i.e., we defined the common message as the messages that
are transmitted through the cooperation links. With respect
to these definitions, the inequalities in (53) can be rewritten
as (57), given at the bottom of the next page. This region is
equivalent to the region in (10). �

Achievability for Case B: The achievability of Case B is
very similar to that of Case A with minor modifications
since Z1,i is known causally at Encoder 2. The encoding
part is the same, but now the codewords Zn

2 and Xn
2 are

generated according to a code-tree (or a Shannon’s strategy).
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Fig. 3. Gaussian MAC with one-sided combined cooperation and quantized cribbing. Message M12 is sent prior to transmission and Zi is known causally
at Encoder 2.

At every time index i ∈ {1, . . . , n}, for every z1 ∈ Z1 we
generate Z2,i and X2,i according to the distribution p(z2|u, z1)

and p(x2|u, z1, z2), respectively. This will result in 2n(R′
2+R′′

2 )

code-trees.
Decoding is done backwards as in Case A, but here the

decoder looks for Xn
2 differently. Since at block b the decoder

already decoded zn
1, it knows the correct path on the code-

tree, i.e., it can identify the correct leaf in the code-tree. First,
the decoder follows the chosen path on the the tree to find
the correct zn

2. Then, it looks for a typical Xn
2 from the set

of codewords that correspond to the chosen path on the tree
of X2. The rest of the proof is the same as in Case A. �

III. GAUSSIAN MAC WITH COMBINED COOPERATION

AND QUANTIZED CRIBBING

We now consider a Gaussian MAC where Y = X1+X2+W
and W ∼ N(0, N), depicted in Fig. 3.

We assume that the power constraint over the outputs of
Encoder 1 and Encoder 2 is

1

n
E

[
n∑

i=1

X2
l,i

]
≤ Pl , for l = 1, 2. (58)

Prior to transmission, Encoder 1 sends a message M12
to Encoder 2. In addition, Encoder 2 cribs causally from
Encoder 1 and obtains Zi , which is a scalar quantization
of the signal X1,i . First, we examine an inner bound to
the capacity region. Since Encoder 2 can ignore the cribbed
symbols and the messages that it obtains from Encoder 1,
the capacity region of the Gaussian MAC without cooperation
and quantized cribbing is contained in the capacity region with
combined cooperation and quantized cribbing. Hence, we have
the following inner bound:

R1 ≤ 1

2
log(1 + P1

N
),

R2 ≤ 1

2
log(1 + P2

N
),

R1 + R2 ≤ 1

2
log(1 + P1 + P2

N
). (59)

On the other hand, an outer bound is obtained when there is
full cooperation or perfect cribbing, i.e., Encoder 2 obtains
the message m1 before sending X2. The capacity region in
this case is

R2 ≤ 1

2
log(1 + P2

N
(1 − ρ2)),

R1 + R2 ≤ 1

2
log(1 + P1 + 2ρ

√
P1 P2 + P2

N
). (60)

We now present an achievable region by choosing a joint
distribution for the region RB . The choice of the distribution
of each RV is inspired by the work of Asnani and Permuter [4]
and Bross et al. [11]. In [4], an achievable region for the
Gaussian MAC with quantized cribbing has been described
(This region was not proven to be optimal), whereas in [11],
an achievable region for the Gaussian MAC with a common
message was provided (This region was proven to be optimal).
In our achievable region, we choose the distributions of the
RVs as a combination of the choices made in [4] and [11].
We set the following distributions:

X1 = λU + X ′
1, (61)

X2 = λ̄U + X ′
2, (62)

where

U ∼ N(0, P0), P0 =
(√

β̄1 P1 +
√

β̄2 P2

)2

,

PX ′
2|Z ,U (x ′

2|z, u) = ρ̄PX ′′
2
(x ′

2) + ρPX ′
1|Z ,U (x ′

2|z, u),

X ′
1 ∼ N(0, β1 P1), X ′′

2 ∼ N(0, β2 P2),

λ =
√

β̄1 P1

P0
, λ̄ = 1 − λ,

β1, β2, ρ ∈ [0, 1]. (63)

The intuition behind the choice of these distributions is as
follows. The common message, signified as U , is obtained via
the rate-limited link and the two encoders cooperate to send
that common message. Since the cooperation and cribbing are

R1 − C12 ≤ H (Z1|U) + I (X1; Y |X2, Z1, U),

R2 − C21 ≤ H (Z2|U) + I (X2; Y |X1, Z2, U),

(R1 − C12) + (R2 − C21) ≤ I (X1, X2; Y |U, Z1, Z2) + H (Z1, Z2|U),

(C12 + C21) + (R1 − C21) + (R2 − C21) ≤ I (X1, X2; Y ), (57)
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Fig. 4. Achievable regions for the Gaussian MAC with combined cooperation and quantized cribbing.

one-sided, only Encoder 2 can help Encoder 1 send its private
message. The idea behind the choice of PX ′

2|Z ,U (x ′
2|z, u) is

that Encoder 2 will send ρ̄ of the time its private message
and ρ of the time the estimation of Encoder 1’s private
message, X ′

1, conditioned on the cribbing Z and the coop-
eration U . Notice that under these definitions, by setting the
power constraints as P1 = P2 = 1, the power constraints on
both encoders hold. Evaluation of region RB with Z2 constant
and N = 1

2 is depicted in Fig. 4; achievable regions for 1-bit
and 2-bit quantizations are illustrated where C12 = 0.4. When
only one bit of quantization is available (LHS of Fig. 4), the
region of combined cooperation and cribbing encloses special
cases of cribbing [4] and cooperation [11]. However, when two
bits of quantization are available (RHS of Fig. 4), combining
cooperation and cribbing does not significantly increase the
region. This is because the difference between the achievable
region with a 2-bit quantizer (C12 = 0) and full cooperation is
negligible. As a result, for 2-bit quantization, this achievable
region practically achieves the capacity region of the Gaussian
MAC with full message cooperation or perfect cribbing.

IV. DUAL RATE DISTORTION SETTING

In this section we show how our methods for combined
cooperation and cribbing can be implemented in the rate-
distortion dual. The information-theoretic duality between rate
distortion and channel coding was first introduced by Shannon
in [12]. An important duality between the Wyner-Ziv rate dis-
tortion problem [17] and the Gelfand-Pinsker channel coding
problem [18] was pointed out by Cover and Chiang in [19]
(see [20] and [21] for further reading). In some cases, the
corner points of a rate distortion region and its dual channel
coding capacity region are the same. This property can help
one find a region based on its dual region.

In general, there is no solution for the dual setting of
the MAC. However, the rate distortion dual of the MAC with
degraded message set has been solved. In [13], Asnani et al.
considered the SR problem with decoder cooperation and its
channel coding dual. We establish the duality between the

Fig. 5. MAC with common message, private message, and combined
cooperation and cribbing. Encoder 2 obtains message M12 prior to
transmission. The cribbing is done causally.

MAC with a degraded message set and combined cooperation
and partial cribbing and the SR problem with combined
cooperation and partial cribbing at the decoders. As expected,
the rate region for the rate-distortion dual is established using
only one auxiliary RV. Table I, at the top of the next page,
describes the principles of duality between channel coding and
source coding.

We start with the channel coding problem and consider the
setting depicted in Fig. 5.

Following Theorem 2, the capacity region for this setting is

RM AC =
⎧
⎨

⎩

R1 ≤ I (X1; Y |Z , U) + H(Z |U) + C12,
R0 + R1 ≤ I (X1, U ; Y ), for
P(u)P(x1|u)�z= f (x1) P(x2|u, z)P(y|x1, x2).

⎫
⎬

⎭.

(64)

We go on to define the SR setting with combined cooperation
and partial cribbing at the decoders.

A. Successive Refinement With Combined Cooperation
and Partial Cribbing at the Decoders

We address the rate distortion setting depicted in Fig. 6.
The source sequence Xi ∈ X , i = 1, 2, . . . is drawn

i.i.d. ∼ p(x). Let X̂1 and X̂2 denote the reconstruction
alphabets, and di : X × X̂i �→ [0,∞), for i = 1, 2 denote
single letter distortion measures. Distortion between sequences
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TABLE I

PRINCIPLES OF DUALITY BETWEEN CHANNEL CODING AND SOURCE CODING

Fig. 6. SR with combined cooperation and partial cribbing at the decoders.
The cribbing is done causally.

is defined in the usual way;

dl(xn, x̂ n
l ) = 1

n

n∑

j=1

dl(x j , x̂l, j ), for l = 1, 2. (65)

Definition 2: A (2nR0 , 2nR1 , 2nC12 , n) rate-distortion code
for the SR with combined cooperation and partial cribbing
at the decoders, as shown in Fig. 6, consists of encoding
functions

f0 : X n �→ {1, . . . , 2nR0 }, (66)

f1 : X n �→ {1, . . . , 2nR1}, (67)

f12 : {1, . . . , 2nR0 } × {1, . . . , 2nR1} �→ {1, . . . , 2nC12}, (68)

and decoding functions at Decoder 1 and Decoder 2

g1 : {1, . . . , 2nR0} × {1, . . . , 2nR1} �→ X̂ n
1 , (69)

g2,i : {1, . . . , 2nR0} × {1, . . . , 2nC12} × Z i �→ X2,i . (70)

where i ∈ {1, . . . , n}.
A rate (R0, R1, D1, D2) is said to be achievable for the SR
with combined cooperation and partial cribbing at the decoders
if ∀ε > 0 and a (2nR0 , 2nR1 , 2nC12 , n) rate-distortion code,
the expected distortion for the decoders, is bounded as

E
[
dl(Xn, X̂n

l )
]

≤ Dl + ε, for l = 1, 2. (71)

The rate-distortion region R(D1, D2) is defined as
the closure of the set of all achievable rate-distortion
tuples (R0, R1, D1, D2).

Let us define the following region RS R(D1, D2) that is
contained in R

2+.

RS R(D1, D2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R0 ≥ I (X; Z , U) − H (Z |U) − C12,

R0 + R1 ≥ I (X̂1, U ; X), for
P(x, x1, u)�z=g(x1),x2= f (u,z1) s.t.

E
[
di(Xn , X̂n

i )
]

≤ Di + ε, for i = 1, 2.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(72)

Theorem 3 (Rate Distortion Region of the Successive
Refinement With Combined Cooperation and Partial Cribbing
Decoders): The rate-distortion region for the SR with
combined cooperation and partial cribbing, as defined
in Def. 2, is RS R(D1, D2).

Proof (Achievability): The achievability for this model
is the same as in [13] where the achievable region
was

R̃0 ≥ I (X; Z , U) − H (Z |U),

R̃0 + R̃1 ≥ I (X̂1, U ; X). (73)

In our case, we use rate splitting and set the following
rates

R̃0 = R0 + C12, (74)

R̃1 = R0 − C12. (75)

By setting these rates we obtain the region in (72).
Converse: Assume we have a (2nR0 , 2nR1 , 2nC12, n) rate

distortion code s.t. a (R0, R1, D1, D2) tuple is feasible. For
the first inequality

n R0 ≥ H (T0) (76)
(a)= H (Zn, T0, T12) − H (Zn|T12, T0) − H (T12|T0) (77)
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TABLE II

CORNER POINTS OF MAC AND SR

Fig. 7. Capacity region of the MAC and rate-distortion region of SR with combined cooperation and cribbing where A is I (Y ; X1|Z , U) + H (Z |U) + C12
and B is I (X; X̂1|Z , U) + H (Z |U) + C12.

(b)≥ I (Xn; Zn, T0, T12) − H (Zn|T12, T0) − H (T12) (78)

(c)≥
n∑

i=1

[I (Xi ; Zn, T0, T12|Xi−1)

− H (Zi|T12, T0, Zi−1)] − nC12 (79)

=
n∑

i=1

[I (Xi ; Zn, T0, T12, Xi−1)

− H (Zi|T12, T0, Zi−1)] − nC12 (80)
(d)≥

n∑

i=1

[I (Xi ; Zi , T0, T12) − H (Zi |T12, T0, Zi−1)]
− nC12 (81)

(e)=
n∑

i=1

[I (Xi ; Zi , Ui ) − H (Zi |Ui )] − nC12 (82)

= n
n∑

i=1

1

n
[I (Xi ; Zi , Ui ) − H (Zi |Ui )] − nC12 (83)

( f )= n[I (X Q ; Z Q, UQ |Q) − H (Z Q, UQ |Q) − C12]
(84)

= n[I (X Q ; Z Q, UQ , Q) − H (Z Q, UQ |Q) − C12]
(85)

≥ n[I (X Q ; Z Q, UQ) − H (Z Q, UQ) − C12], (86)

where (a) and (c) follow from the chain rule, (b) follows
since conditionality reduces entropy, (d) follows since
Xi is independent of Xi−1, (e) follows by setting
the RV Ui = (Zi−1, T0, T12), and (f) follows by defining the
RV Q independent of Xn and uniformly distributed over the
set {1, 2, 3, . . . , n}. For the second inequality

n(R0 + R1) ≥ H (T0, T1) (87)
(a)= I (Xn; T0, T1) (88)

=
n∑

i=1

I (Xi ; T0, T1|Xi−1) (89)

(b)=
n∑

i=1

I (Xi ; T0, T1, Xi−1) (90)

(c)=
n∑

i=1

I (Xi ; T0, T1, X̂1,i , Zi−1, T12, Xi−1) (91)

≥
n∑

i=1

I (Xi ; X̂1,i , Zi−1, T0, T12) (92)

=
n∑

i=1

I (Xi ; X̂1,i , Ui ) (93)

= nI (X Q ; X̂1,Q, UQ), (94)

where (a) follows since (T0, T1) is a function of Xn ,
(b) follows since X1,i is independent of Xi−1

1 , and (c) follows
since (X̂1,i , Zi−1, T12) is a function of (T0, T1). We com-
plete the proof by noting that the joint distribution of
(X Q, X̂1,Q , Z Q , UQ) is the same as that of (X, X̂1, Z , U).

B. Duality Results Between the MAC and the Successive
Refinement Settings With Combined Cooperation
and Partial Cribbing

After establishing regions RM AC and RS R(D1, D2),
we now point out the dualities between the two settings.
The similarity between the rate regions of the two settings is
evident. Let us consider the corner points depicted in Table II
and Fig. 7.

One can see that the corner points are the same if we apply
the duality rules X̂1 ↔ X1, X̂2 ↔ X2, X ↔ Y and ≥↔≤.
We notice that only one RV was used to describe the common
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Fig. 8. The MAC with cooperation and state known at a partially cribbing encoder and at the decoder. Encoder 1 and Encoder 2 obtain messages M21 and M12
prior to transmission. Corresponding to the strictly causal case, the partial cribbing is done strictly causally only by Encoder 2.

message in both settings. This means that our methods of
combining cooperation and cribbing can also be implemented
in source coding problems. In the next section we address
another case, in which only one RV is needed to describe
both cooperation and cribbing.

V. STATE-DEPENDENT MAC WITH COMBINED

COOPERATION AND PARTIAL CRIBBING

Following our results from Section II, we now show that
our methods can also be implemented for a state-dependent
channel where also only one auxiliary RV is needed. Let
us consider the MAC with cooperation and non-causal state
known at a partially cribbing encoder and at the decoder,
depicted in Fig. 8.

We note that message M12 is sent prior to message M21.
For this model we address two different cases:

• The strictly causal case (sc): Encoder 2 obtains Zi with
unit delay.

• The causal case (c): Encoder 2 obtains Zi without delay.

The channel probability does not depend on the time index i
and is memoryless, i.e.,

P(yi |xi
1, xi

2, si , yi−1) = P(yi |x1,i , x2,i , si ) (95)

Definition 3: A (2nR1 , 2nR2 , 2nC12 , 2nC21, n) code for the
MAC with cooperation and non-causal state known at a
partially cribbing encoder and at the decoder, as shown
in Fig. 8, consists at time i of encoding functions at
Encoder 1 and Encoder 2,

f12 : {1, . . . , 2nR1} �→ {1, . . . , 2nC12}, (96)

f21 : {1, . . . , 2nR2} × Sn × {1, . . . , 2nC12} �→ {1, . . . , 2nC21},
(97)

f1 : {1, . . . , 2nC21} × {1, . . . , 2nR1 } �→ X n
1 , (98)

f sc
2,i : {1, . . . , 2nC12} × {1, . . . , 2nR2} × Sn × Z i−1 �→ X2,i ,

(99)

f c
2,i : {1, . . . , 2nC12} × {1, . . . , 2nR2} × Sn × Z i �→ X2,i ,

(100)

and a decoding function

g : Sn × Yn �→ {1, . . . , 2nR1} × {1, . . . , 2nR2}. (101)

The average probability of error for a (2nR1 , 2nR2 ,
2nC12, 2nC21, n) code is defined in (102) at the bottom of the
page.

Let us define the following regions, Rsc
State and Rc

State, that
are contained in R

2+. The region Rsc
State is defined in (103) at

the bottom of the page. The region Rc
State is defined with the

same set of inequalities as in (103), but the joint distribution
is of the form

P(s)P(u|s)P(x1|u)�z=g1(x1) P(x2|s, u, z)P(y|x1, x2, s).

(104)

Theorem 4 (Capacity Region of the MAC With Cooperation
and State Known at a Partial Cribbing Encoder): The capacity
regions of the MAC with cooperation and non-causal state
known at a partially cribbing encoder and at the decoder for
the strictly causal case and the causal case, as described in
Def. 3, are Rsc

State and Rc
State, respectively.

P(n)
e = 1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n, Sn) �= (m1, m2)|(m1, m2) sent}. (102)

Rsc
State =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C21 ≥ I (U ; S),
R1 ≤ H (Z |U) + I (X1; Y |S, U, X2, Z) + C12,
R2 ≤ I (X2; Y |X1, S, U) + C21 − I (U ; S),

R1 + R2 ≤ I (X1, X2; Y |S),
R1 + R2 ≤ I (X1, X2; Y |U, Z , S) + H (Z |U) + C12 + C21 − I (U ; S), for

P(s)P(u|s)P(x1|u)�z=g1(x1) P(x2|s, u)P(y|x1, x2, s).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(103)
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Fig. 9. The MAC with one-way cooperation and action-dependent state known at a cribbing encoder. Encoder 2 obtains message M12 prior to transmission.
The cribbing is done strictly causally only by Encoder 2. This setting corresponds to the strictly causal case.

The role of the RV U is to generate an empirical coordi-
nation between the two encoders regarding the state channel
and to generate a common message between the two encoders
by combining the cooperation links and the partial cribbing.
We now examine two special cases of this capacity
region.

Case 1: The One-Sided Cooperation and No Cribbing Case,
i.e., |Z| = 1 and C12 = 0: In this case H (Z |U) = 0
and hence, the region Rsc

State coincides with the region
in [22, Th. 1].

Case 2: |S| = 1, MAC with a Constant State: Notice that
in this case, I (U ; S) = 0 and the region Rsc

State reduces to
region R2

State given in (105) at the bottom of the page. which
is the region in Theorem 1 where Z1 = Z and only Encoder 2
cribs from Encoder 1, i.e., |Z2| = 1.

The proof of Theorem 4 is given in Appendix C.

VI. MAC WITH COOPERATION AND ACTION-DEPENDENT

STATE KNOWN AT A CRIBBING ENCODER

Although we have shown that for combined cooperation
and cribbing only one auxiliary RV is needed to describe
the capacity region, in some cases this is not possible.
For instance, if the roles of the cribbing and cooperation
in the communication setting are different, then more than
one auxiliary RV is needed. In this section, we introduce a
MAC with cooperation and action-dependent state known at
a cribbing encoder. Because of the nature of actions and of
non-causal states, the actions depend only on the cooperation
and, therefore, two auxiliary RVs are needed, one for the
cooperation and one for the cribbing.

Consider the MAC with one-way cooperation and
action-dependent state known at a cribbing encoder, depicted

in Fig. 9. Notice that the action An is taken from
(m2, m12).

We address two cases for this setting:
• The strictly causal case (sc): Encoder 2 obtains X1,i with

unit delay.
• The causal case (c): Encoder 2 obtains X1,i without

delay.
The channel probability is defined as in (95).

Definition 4: A (2nR1 , 2nR2 , 2nC12 , n) code for the MAC
with one-way cooperation and action-dependent state known
at a cribbing encoder, as shown in Fig. 9, consists at time i
of encoding functions at Encoder 1 and Encoder 2

f12 : {1, . . . , 2nR1} �→ {1, . . . , 2nC12}, (106)

f1 : {1, . . . , 2nR1} �→ X n
1 , (107)

fA : {1, . . . , 2nR2} × {1, . . . , 2nC12} �→ An, (108)

f sc
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Sn × X i−1

1 �→ X2,i ,

(109)

f c
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Sn × X i

1 �→ X2,i ,

(110)

and a decoding function

g : Yn �→ {1, . . . , 2nR1} × {1, . . . , 2nR2 }. (111)

The average probability of error for a (2nR1 , 2nR2 , 2nC12, n)
code is defined as

P(n)
e = 1

2n(R1+R2)

·
∑

m1,m2

Pr{g(Y n) �= (m1, m2)|(m1, m2) sent}. (112)

R2
State =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 ≤ H (Z |U) + I (X1; Y |U, X2, Z) + C12,
R2 ≤ I (X2; Y |X1, U) + C21,

R1 + R2 ≤ I (X1, X2; Y ),
R1 + R2 ≤ I (X1, X2; Y |U, Z) + H (Z |U) + C12 + C21, for
P(u)P(x1|u)�z=g1(x1) P(x2|u)P(y|x1, x2).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(105)
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Rsc
Act ion =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 ≤ min{H (X1|V , W ), I (Y ; V , X1, U |W, A) − I (S; U |W, V , A)} + C12,
R2 ≤ I (U, A; Y |X1, V , W ) − I (U ; S|W, V , A),

R1 + R2 ≤ I (X1, V , U, A; Y |W ) − I (U ; S|W, V , A) + C12,
R1 + R2 ≤ I (X1, V , U, A, W ; Y ) − I (U ; S|W, V , A), for

P(w)P(v|w)p(a|w)P(s|a)P(x1|v,w)P(u, x2|s, v, a, w)P(y|x1, x2, s).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(113)

P(w)P(v|w)p(a|w)P(s|a)P(x1 |v,w)P(u|s, v, a, w)P(x2 |v, u, s, a, w, x1)P(y|x1, x2, s) (114)

R1
Act ion =

⎧
⎨

⎩

R2 ≤ I (U, A; Y |X1, V , W ) − I (U ; S|W, V , A),
R1 + R2 ≤ I (X1, V , U, A, W ; Y ) − I (U ; S|W, V , A), for

P(w)P(v|w)p(a|w)P(s|a)P(x1|v,w)P(u, x2|s, v, a, w)P(y|x1, x2, s).

⎫
⎬

⎭ (115)

R2
Act ion =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 ≤ H (X1|V , W ),
R2 ≤ I (U ; Y |X1, V , W ) − I (U ; S|W, V ),

R1 + R2 ≤ I (X1, V , U ; Y |W ) − I (U ; S|W, V ),
R1 + R2 ≤ I (X1, V , U, W ; Y ) − I (U ; S|W, V ), for

P(w)P(v|w)P(s)P(x1 |v,w)P(u, x2|s, v,w)P(y|x1, x2, s).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(116)

Let us define the following regions Rsc
Act ion and Rc

Act ion

that are contained in R
2+. The region Rsc

Act ion is defined
in (113) at the top of the page. The region Rc

Act ion is defined
with the same set of inequalities as in (113), but the joint
distribution is of the form given in (114) at the top of the
page.

Theorem 5 (Capacity Region of the MAC With Cooperation
and Action-Dependent State Known at a Cribbing Encoder):
The capacity regions of the MAC with one-way coopera-
tion and action-dependent state known at a strictly causal
and causal cribbing encoder, as described in Def. 3, are
Rsc

Act ion and Rc
Act ion , respectively.

In this case, U is a Gelfand-Pinsker coding RV [18].
The role of the RV W is to generate a common message
based on the cooperation link, whereas the RV V generates a
common message based on the cribbing. We cannot combine
the cooperation and cribbing in this case because only part
of the common information of both encoders is being used
to generate the action sequence An . This example shows that
in cases where only part of the common information that the
encoders share is being used for certain purposes, cooperation
and cribbing cannot be combined into one RV. We now address
two previous results in this field and show that they are special
cases of our result.

Case 1: The Action-Dependent MAC Where C12 = R1:
In this case the region reduces to region R1

Act ion given in
(115) at the top of the page. First, we notice that the cribbing
in this case is redundant. Second, since the action is now
taken from (M1, M2), we can set the RV W = X1 and V as
a constant and the region coincides with the capacity region
in [23].

Case 2: The State-Dependent MAC With State Known at
a Cribbing Encoder, i.e., |A| = 1 and C12 = 0: Notice that
in this case, the state is not action-dependent and the region
reduces to region R2

Act ion given in (116) at the top of the
page. If we set W as constant, the region coincides with the
capacity region in [24]. Since these regions are equal, this
shows that the capacity region in [24] is a special case of the
region in Theorem 5.

The proof of Theorem 5 is given in Appendix D.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the capacity region for
the MAC with combined cooperation and partial cribbing.
Remarkably, the solution necessitates the use of only one
auxiliary RV, which represents the common information
obtained at the two encoders via cooperation and cribbing.
Additionally, we have shown an achievability scheme for the
Gaussian MAC with combined one-sided cooperation and
causal partial cribbing. In this case, partial cribbing is a scalar
quantization of Encoder 1’s output obtained by Encoder 2.
Numerical plots of achievability regions were presented for
different numbers of quantization bits and capacity links. The
plots indicated under which certain conditions (full message
cooperation or perfect cribbing) the outer bound is achieved.
To obtain further support for our results, we considered
a dual setting for the MAC with a degraded message set
and combined cooperation and cribbing. By converting our
channel coding methods to rate-distortion, we successfully
characterized the rate-distortion region for the dual model
using a single auxiliary RV. Again, this RV represents
the common information obtained at the two decoders via
cooperation and cribbing. Continuing with an assessment
of whether using only one auxiliary RV is possible for the
state-dependent MAC with combined cooperation and partial
cribbing, we applied our methods to find the capacity region
for a MAC with cooperation and state known non-causally
at a cribbing encoder and at the decoder. The capacity region
consisted of only one auxiliary RV. Additionally, we addressed
a MAC with one-way cooperation and cribbing and action-
dependent state, where the action was based on the cooperation
between the encoders. In this case two auxiliary RVs were
needed. We deduced a rule that if only part of the common
information that the encoders share is being used for arbitrary
purposes, then cooperation and cribbing cannot be combined
into one auxiliary RV. For future work, we suggest that the
non-causal partial cribbing case and the interference channel
with combined cooperation and cribbing be considered.
An additional case to consider is that where the state or
action is known at the weak encoder (the non-cognitive
encoder).
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APPENDIX A
COOPERATION PRIOR TO AND DURING TRANSMISSION

For this model, we generalize Willems’ definition from [1]
to the case where partial cribbing is present. We consider the
transmissions of sequences (V n

1,−K+1, V n
2,−K+1) between the

two encoders, where K rounds occur prior to transmission
over the channel and n rounds occur during transmission over
the channel. The number of information bits transmitted after
n + K rounds is nC12 and nC21 at Encoder 2 and Encoder 1,
respectively, i.e.,

n∑

i=−K+1

log(|V1,i |) ≤ nC12,

n∑

i=−K+1

log(|V2,i |) ≤ nC21. (117)

Accordingly, we redefine the encoding functions for
i ∈ {−K + 1, . . . , 0} as

h1,i : {1, . . . , 2nR1} × V i−1
2,−K+1 �→ V1,i , (118)

h2,i : {1, . . . , 2nR2} × V i−1
1,−K+1 �→ V2,i , (119)

and for i ∈ {1, . . . , n} as

h1,i : {1, . . . , 2nR1} × V i−1
2,−K+1 × Z i−1

2 �→ V1,i , (120)

h2,i : {1, . . . , 2nR2} × V i−1
1,−K+1 × Z i−1

1 �→ V2,i , (121)

f1,i : {1, . . . , 2nR1} × V i−1
2,−K+1 × Z i−1

2 �→ X1,i , (122)

f2,i : {1, . . . , 2nR2} × V i−1
1,−K+1 × Z i−1

1 �→ X2,i . (123)

We note that for each transmission of the set (m1, m2) over the
channel, we use n + K cooperation transmissions. We allow
cooperation to occur in K rounds prior to transmission,
as in Willems’ model. Additionally, we allow the cooperation
to occur during transmission over the channel where cribbing
takes place. Indeed, this model generalizes Willems’ model to
use cooperation before and during transmission. In the proof
we show only the case of strictly causal partial cribbing. The
proof for causal partial cribbing is omitted for brevity.

A. Achievability

The scheme is the same as in [4] with minor modifications.
Since cooperation occurs before and during transmission,
the common message obtained by the two encoders prior
to transmission is that of the previous block, i.e., m0,b−1.
Thus, in the first block, no common information is known.
From the second block, the common messages known prior
to transmission are the cooperation messages obtained during
transmission in the previous block. Hence, we encode the
common message un using the message m0,b−1. The rest of
the proof is the same as in Subsection II-B2.

B. Converse

Given an achievable rate (R1, R2), we need to
show that there exists a joint distribution of the form
P(u)P(x1|u)�z1=g1(x1) P(x2|u)�z2=g2(x2) P(y|x1, x2), such
that the inequalities (10) are satisfied. Since (R1, R2) is
an achievable rate-pair, there exists a (2nR1 , 2nR2 , n) code

with an arbitrarily small error probability P(n)
e . By Fano’s

inequality,

H (M1, M2|Y n) ≤ n(R1 + R2)P(n)
e + H (P(n)

e ). (124)

We set

(R1 + R2)P(n)
e + 1

n
H (P(n)

e ) � εn, (125)

where εn → 0 as P(n)
e → 0. Hence,

H (M1, M2|Y n, V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 )

≤ H (M1, M2|Y n) ≤ nεn, (126)

H (M1|Y n, M2, V n
1,−K+1, V n

2,−K+1, Zn
1 )

≤ H (M1, M2|Y n) ≤ nεn, (127)

H (M2|Y n, M1, V n
2,−K+1, V n

2,−K+1, Zn
2 )

≤ H (M1, M2|Y n) ≤ nεn . (128)

For R1, we have the following:

n R1 = H (M1) (129)

= H (M1|M2) (130)
(a)= H (M1, V n

1,−K+1, V n
2,−K+1, Zn

1 |M2) (131)

= H (V n
1,−K+1, V n

2,−K+1, Zn
1 |M2)

+ H (M1|V n
1,−K+1, V n

2,−K+1, Zn
1 , M2), (132)

where (a) follows since (V n
1,−K+1, V n

2,−K+1, Zn
1 ) is a function

of (M1, M2). For the first term in (132) we have

H (V n
1,−K+1, V n

2,−K+1, Zn
1 |M2)

= H (V 0
1,−K+1, V 0

2,−K+1|M2)

+ H (V n
1 , V n

2 , Zn
1 |M2, V 0

1,−K+1, V 0
2,−K+1) (133)

(b)=
0∑

i=−K+1

H (V1,i, V2,i |V i−1
1,−K+1, V i−1

2,−K+1, M2)

+
n∑

i=1

H (V1,i, V2,i , Z1,i |V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , M2)

(134)

(c)=
0∑

i=−K+1

H (V1,i |V i−1
1,−K+1, V i−1

2,−K+1, M2)

+
n∑

i=1

H (V1,i, Z1,i |V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , M2) (135)

(d)=
0∑

i=−K+1

H (V1,i |V i−1
1,−K+1, V i−1

2,−K+1, M2)

+
n∑

i=1

H (V1,i, Z1,i |V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 , M2)

(136)

≤
n∑

i=1

H (Z1,i|V i
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 , M2)

+
n∑

i=−K+1

H (V1,i) (137)

(e)≤ nC12 +
n∑

i=1

H (Z1,i|V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 ).

(138)
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where (b) follows from the chain rule, (c) follows since V2,i is

a function of (M2, V i−1
1,−K+1, Zi−1

1 ), (d) follows since Zi−1
2 is

a function of (M2, V i−2
1,−K+1, Zi−2

1 ), and (e) follows from the
definition in (117). For the second term in (132) we have

H (M1|V n
1,−K+1, V n

2,−K+1, Zn
1 , M2)

( f )= I (M1; Y n|V n
1,−K+1, V n

2,−K+1, Zn
1 , M2) + nεn (139)

(g)=
n∑

i=1

I (M1, X1,i ; Yi |Y i−1, Zn
1 , Zn

2 , V n
1,−K+1,

V n
2,−K+1, M2, X2,i ) + nεn (140)

(h)≤
n∑

i=1

I (X1,i ; Yi |Zi
1, Zi−1

2 , V i−1
1,−K+1, V i−1

2,−K+1, X2,i ) + nεn,

(141)

where (f) follows from Fano’s inequality, (g) follows since
Zn

2 = f (M2, V n
1,−K+1, Zn

1 ), X1,i = f (M1, Zi−1
2 , V i−1

2,−K+1),
and X2,i = f (M2, Zi−1

1 , V i−1
1,−K+1), and step (h) fol-

lows since conditioning reduces entropy and from the

Markov chain Yi −(X1,i , X2,i , V i−1
1,−K+1, V i−1

2,−K+1, Zi
1, Zi−1

2 )−
(M1, M2, Y i−1, V n

1,i , V n
2,i , Zn

1,i+1, Zn
2,i ). We set the follow-

ing RV

Ui � (V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 ), (142)

and obtain

R1 ≤ 1

n

n∑

i=1

[H (Z1,i|Ui ) + I (X1,i ; Yi |X2,i , Z1,i , Ui )]

+ C12 + εn . (143)

Similar to (143), we obtain

R2 ≤ 1

n

n∑

i=1

[H (Z2,i|Ui ) + I (X2,i ; Yi |X1,i , Z2,i , Ui )]

+ C21 + εn . (144)

Now, consider

n(R1 + R2) = H (M1, M2) (145)
(a)= H (M1, M2, V n

1,−K+1, V n
2,−K+1, Zn

1 , Zn
2 )

(146)

= H (V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 )

+ H (M1, M2|V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 ),

(147)

where (a) follows since (V n
1,−K+1, V n

2,−K+1, Zn
1 ) is a function

of (M1, M2). For the first term in (147) we have

H (V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 )

= H (V 0
1,−K+1, V 0

2,−K+1)

+ H (V n
1 , V n

2 , Zn
1 , Zn

1 |V 0
1,−K+1, V 0

2,−K+1) (148)

(b)=
n∑

i=1

H (V1,i,V2,i ,Z1,i ,Z2,i |V i−1
1,−K+1,V

i−1
2,−K+1,Zi−1

1 ,Zi−1
2 )

+
0∑

i=−K+1

H (V1,i, V2,i |V i−1
1,−K+1, V i−1

2,−K+1) (149)

≤
n∑

i=−K+1

H (V1,i) + H (V2,i)

+
n∑

i=1

H (Z1,i, Z2,i |V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 ) (150)

(c)≤
n∑

i=1

H (Z1,i|V i−1
1,−K+1, V i−1

2,−K+1, Zi−1
1 , Zi−1

2 )

+ nC12 + nC21. (151)

where (b) follows from the chain rule and (c) follows from
the definition in (117). For the second term in (147) we
have

H (M1, M2|V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 )

(d)= I (M1, M2; Y n|V n
1,−K+1, V n

2,−K+1, Zn
1 , Zn

2 ) + nεn (152)

(e)=
n∑

i=1

I (M1, X1,i , M2, X2,i ; Yi |Y i−1, Zn
1 , Zn

2 ,

V n
1,−K+1, V n

2,−K+1) + nεn (153)

( f )≤
n∑

i=1

I (X1,i , X2,i ; Yi |Zi
1, Zi

2, V i−1
1,−K+1, V i−1

2,−K+1) + nεn,

(154)

where (d) follows from Fano’s inequality, (e) follows
since (X1,i , X2,i ) = f (M1, M2), and step (f) follows
since conditioning reduces entropy and from the Markov
chain Yi − (X1,i , X2,i , V i−1

1,−K+1, V i−1
2,−K+1, Zi

1, Zi
2) −

(M1, M2, Y i−1, V n
1,i , V n

2,i , Zn
1,i+1, Zn

2,i+1). From the definition
of the RV U , we obtain

R1 + R2 ≤ C12 + C21 + 1

n

n∑

i=1

[H (Z1,i, Z2,i |Ui )

+ I (X1,i , X2,i ; Yi |Z1,i , Z2,i , Ui )] + εn . (155)

For the fourth inequality and the proof of the Markov chains,
the derivations are similar to the proof for Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2

The proof for Theorem 2 follows directly from the proof of
Theorem 1 with minor modifications. We use the achievability
for the case of the MAC with partial cribbing and a common

message, given in [4], but now we set (R̃0, R̃1, R̃2) to be

R̃0 = R0 + C12 + C21, (156)

R̃1 = R1 − C12, (157)

R̃2 = R2 − C21. (158)

Given these modifications, we obtain the region RA
0 . The

achievability for Case B is the same as that for Case A, but now
we use code-trees since Z1 is known causally at Encoder 2.
In the converse, we follow the same derivations as in the
converse for Theorem 2. For the first three inequalities,
we condition all terms upon M0 and set

Ui = (M0, M12, M21, Zi−1
1 , Zi−1

2 ). (159)
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For the forth inequality, we obtain

R0 + R1 + R2 = H (M0, M1, M2) (160)

≤
n∑

i=1

I (X1,i , X2,i ; Yi ) + nεn . (161)

This completes the proof. �

APPENDIX C
PROOF OF THEOREM 4

A. Converse

Converse for the strictly causal case: Given an achiev-
able rate-pair (R1, R2), we need to show that there
exists a joint distribution of the form P(s)P(u|s)P(z, x1|u)
P(x2|s, u)P(y|x1, x2, s) such that the inequalities in (103) are
satisfied. Since (R1, R2) is an achievable rate-pair, there exists
a (2nR1 , 2nR2 , 2nC12 , 2nC21, n) code with an arbitrarily small
error probability P(n)

e . By Fano’s inequality,

H (M1, M2|Y n, Sn) ≤ n(R1 + R2)P(n)
e + H (P(n)

e ). (162)

We set

(R1 + R2)P(n)
e + 1

n
H (P(n)

e ) � εn, (163)

where εn → 0 as P(n)
e → 0. Hence,

H (M1|Y n, M2, Sn) ≤ H (M1, M2|Y n, Sn) ≤ nεn, (164)

H (M2|Y n, M1, Sn) ≤ H (M1, M2|Y n, Sn) ≤ nεn . (165)

For R1, we have the following:

n R1 = H (M1) (166)
= H (M1|M12) + H (M12) (167)
(a)= H (M1|M12, M2, Sn) + H (M12) (168)
= I (M1; Y n|M12, M2, Sn)

+ H (M1|Y n, M12, M2, Sn) + H (M12) (169)
(b)≤ I (M1; Y n|M12, M2, Sn) + nC12 + nεn (170)
(c)= I (Xn

1 , Zn; Y n|M12, M2, Sn) + nC12 + nεn (171)
(d)= I (Zn;Y n|M12,M2, Sn) + I (Xn

1 ;Y n|M12,M2, Sn,Zn)

+ nC12 + nεn (172)
(e)=

n∑

i=1

[I (Zi ; Y n|M12, M21, M2, Zi−1, Sn)

+ I (Xn
1 ; Yi |Y i−1, M12, M21, M2, Sn, Zn)]

+ nC12 + nεn (173)
( f )≤

n∑

i=1

[H (Zi |M21, Zi−1, M12, Si−1)

+ I (Xn
1 ; Yi |Y i−1, M12, M21, M2, Sn, Zn, X2,i )]

+ nC12 + nεn (174)
(g)≤

n∑

i=1

[H (Zi |M21, Zi−1, M12, Si−1)

+ I (X1,i ; Yi |M21, Si , Zi−1, M12, X2,i , Zi )]
+ nC12 + nεn (175)

(h)=
n∑

i=1

[H (Zi |Ui ) + I (X1,i ; Yi |Ui , X2,i , Si , Zi )]
+ nC12 + nεn, (176)

where (a) follows from the fact that the messages M1 and
(M2, Sn) are independent, (b) follows from Fano’s inequality,
(c) follows from the Markov chain M1 − (Xn

1 , Zn ,
M12, M2, Sn) − Y n , (d) and (e) follow from the chain rule
and since M21 = f (Sn, M2, M12), (f) follows since con-
ditioning reduces entropy and since X2,i = f (Sn, Zi−1,
M12, M2), (g) follows from the Markov Chain Yi −(X1,i , X2,i ,
Si , M12, M21, Zi ) − (Y i−1, M2, Sn

i+1, Zn
i+1), and (h) follows

by setting the RV

Ui � (M12, M21, Zi−1, Si−1). (177)

Thus, we obtain

R1 ≤ 1

n

n∑

i=1

[H (Zi |Ui ) + I (X1,i ; Yi |Ui , X2,i , Si , Zi )]

+ C12 + εn . (178)

Next, we consider R2;

n R2 = H(M2) (179)
(a)= H(M2|Sn , M1) (180)
(b)= H(M21, M2|Sn, M1) (181)

= H(M2|Sn , M21, M1) + H(M21|Sn , M1) (182)
(c)≤ I (M2; Y n |Sn , M1, M21) +

− I (M21; Sn |M1) + H(M21|M1)nεn (183)

(d)≤
n∑

i=1

[I (M2; Yi |Y i−1, Sn, M1, M21)

− I (Si ; M21|Si−1, M1)] + nC21 + nεn (184)

(e)=
n∑

i=1

[I (M2, X2,i ; Yi |Y i−1, M1, M12, M21, Sn, X1,i , Zi−1)

− I (Si ; M21, Si−1, M1, M12, Zi−1)] + nC21 + nεn (185)

( f )≤
n∑

i=1

[I (X2,i ; Yi |M21, M12, Si , Zi−1, X1,i )

− I (Si ; M21, Si−1, M12, Zi−1)] + nC21 + nεn (186)

=
n∑

i=1

[I (X2,i ; Yi |Ui , Si , X1,i ) − I (Si ; Ui )] + nC21 + nεn,

(187)

where (a) follows since M2 is independent of Sn and M1,
(b) follows since M21 = f (Sn, M2, M1), (c) follows from
Fano’s inequality, (d) follows from the chain rule, (e) follows
since Si is independent of (Si−1, M1) and since
(M12, Zi−1, X1,i ) = f (M21, M1), and (f) follows from
the same argument as in (175) and since conditioning reduces
entropy. Thus, we obtain

R2 ≤ 1

n

n∑

i=1

[I (X2,i ; Yi |Ui , Si , X1,i ) − I (Si ; Ui )]

+ C21 + εn . (188)

Now, consider

n(R1 + R2)

= H (M1, M2, M12) (189)
(a)= H (M1, M2|Sn, M12) + H (M12) (190)
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≤ H (M1, M2|M21, Sn, M12)

+ H (M21|Sn, M12) + nC12 (191)
(b)≤ I (M1, M2, Zn; Y n|Sn, M12, M21)

+ H (M21|Sn, M1) + nC12 + nεn (192)

≤ I (M1, M2; Y n|Sn, M12, M21, Zn)

+I (Zn; Y n|Sn, M12, M21) + H (M21|Sn, M1)

+ nC12 + nεn (193)
(c)≤ I (Xn

1 , Xn
2 ; Y n|Sn, M12, M21, Zn) + H (M21|Sn, M1)

+
n∑

i=1

H (Zi |Ui ) + nC12 + nεn (194)

(d)≤ I (Xn
1 , Xn

2 ; Y n|Sn, M12, M21, Zn)

+
n∑

i=1

[H (Zi|Ui ) − I (Si ; Ui)] + nC12 + nC21

+ nεn (195)

(e)=
n∑

i=1

[I (Xn
1 , Xn

2 ; Yi |Sn, Y i−1, M12, M21, Zn)

+ H (Zi |Ui ) − I (Si ; Ui)] + nC12 + nC21 + nεn (196)
( f )≤

n∑

i=1

[I (X1,i , X2,i ; Yi |Si , Si−1, M21, M12, Zi )

+ H (Zi |Ui ) − I (Si ; Ui)] + nC12 + nC21 + nεn (197)

≤
n∑

i=1

[I (X1,i , X2,i ; Yi |Si , Ui , Zi ) + H (Zi |Ui )

− I (Si ; Ui)] + nC12 + nC21 + nεn, (198)

where (a) follows since (M1, M2) is independent of Sn ,
(b) follows since Zn = f (M1, M21), (c) follows from the
same arguments as those given in (172)-(176) and from the
Markov chain (M1, M2) − (Xn

1 , Xn
2 , M12, M21, Zn, Sn) − Y n ,

(d) follows from the same arguments as those given
in (183)-(186), (e) follows from the chain rule, and (f) follows
from the same argument as those given in (175). Thus,
we obtain

R1 + R2 ≤ C12 + C21 + 1

n

n∑

i=1

[I (X1,i , X2,i ; Yi |Si , Ui , Zi )

+ H (Zi |Ui ) − I (Si ; Ui )] + εn . (199)

Additionally,

n(R1 + R2) ≤ H (M1, M2) (200)
(a)= H (M1, M2|Sn) (201)
(b)≤ I (M1, M2; Y n|Sn) + nεn (202)
(c)≤ I (Xn

1 , Xn
2 ; Y n|Sn) + nεn (203)

(d)=
n∑

i=1

I (Xn
1 , Xn

2 ; Yi |Sn, Y i−1) + nεn (204)

(e)≤
n∑

i=1

I (X1,i , X2,i ; Yi |Si ) + nεn, (205)

where (a) follows since (M1, M2) is independent of Sn ,
(b) follows from Fano’s inequality, (c) follows from encoding

relations (96)-(100), (d) follows from the chain rule, and step

(e) follows from the Markov Chain Yi −(X1,i , X2,i , Si )−Y i−1

and since conditioning reduces entropy. Thus, we obtain

R1 + R2 ≤ 1

n

n∑

i=1

I (X1,i , X2,i ; Yi |Si ) + εn . (206)

Finally,

nC21 ≥ H (M21) (207)

≥ H (M21|M1) (208)

≥ I (M21; Sn |M1) (209)

=
n∑

i=1

I (Si ; M21|Si−1, M1) (210)

(a)=
n∑

i=1

I (Si ; M21, Si−1, M1) (211)

≥
n∑

i=1

I (Si ; M21, Si−1, Zi−1, M12) (212)

=
n∑

i=1

I (Si ; Ui ), (213)

where (a) follows since Si is independent of (Si−1, M1).
Finally, let Q be an RV independent of (Xn

1 , Xn
2 , Y n) and

uniformly distributed over the set {1, 2, 3, . . . , n}. We define
the RV U � (Q, UQ) and obtain the region given in (103).

To complete the converse, we need to show the following
Markov relations:

• Zi − Ui − Si , X1,i − (Ui , Zi ) − Si , and X2,i −
(M12, M21, Zi−1, Si−1) − X1,i - These Markov rela-
tions can be proven by using the undirected graph
method in Fig. 11. For the first Markov chain, see
that it is impossible to get from node Zi to node Si

without going through nodes (Si−1, Zi−1, M12, M21).
For the second Markov chain, it is impossible to get
from node X1,i to node Si without going through
nodes (Si−1, Zi , M12, M21). Finally, for the third Markov
chain, we can see that it is impossible to get from
node X1,i to node X2,i without going through nodes
(Si , Zi−1, M12, M21).

• Yi − (X1,i , X2,i )− (Z1,i, Ui ) - Follows from the fact that
the channel output at any time i is assumed to depend
only on the channel inputs and state at time i .

This completes the converse part. �
Converse for the Causal Case: For the causal case, we

repeat the same converse as for the strictly causal case, except
that in the final step we need to show the Markov chain
X2,i − (Ui , Zi , Si ) − X1,i , rather than X2,i − (Ui , Si ) − X1,i ,
as in the strictly causal case. If we change node Zi−1

to Zi in Fig. 11, we can see that the Markov chain
X2,i − (M12, M21, Zi , Si ) − X1,i holds since we cannot get
from node X2,i to node X1,i without going through nodes
(M12, M21, Zi , Si ). �

B. Achievability

To prove the achievability, we will consider a similar setting
and then, by incorporating a minor modification, we will prove
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Fig. 10. MAC with a common message and state known at a partially cribbing Encoder.

Fig. 11. Proof of the Markov chains Zi − Ui − Si , X1,i − (Ui , Zi ) − Si ,
and X2,i − (M12, M21, Zi−1, Si−1) − X1,i using the undirected graphical
technique [16, Sec. II]. This graph corresponds to the joint distri-
bution P(sn)P(m1)P(m2)P(m12|m1)P(m21|m2, sn , m21)P(zi−1|m1, m21)
P(x1,i |m21, m1)P(zi |x1,i )P(x2,i |m12, m2, sn, zi−1).

our setting. We first prove the achievability for the strictly
causal case.

Achievability for the strictly causal case: Let us look at a
similar model depicted in Fig. 10.

First, we will solve the achievability for this
model. Fix a joint distribution P(s)P(u|s)P(z, x1|u)
P(x2|s, u)P(y|x1, x2, s) where P(s) and P(y|x1, x2, s) are
given by the channel. In the following achievability scheme,
we use block Markov coding, rate splitting, and double
binning.

Coding Scheme: We consider B blocks, each consisting
of n symbols; thus we transmit nB symbols. We transmit
B − 1 messages M1 in B blocks of information. Here, M1 ∈
{1, . . . , 2nR1}; thus asymptotically, for a large enough n, our
transmission rate would be nR1(B−1)

nB
n→∞−→ R1. At each block,

we split messages M1 and M2 into (M ′
1, M ′′

1 ) and (M ′
2, M ′′

2 )

at rates (R′
1, R′′

1 ) and (R′
2, R′′

2 ), respectively. We note that
R′

1 + R′′
1 = R1 and R′

2 + R′′
2 = R2.

Code Design: The following binning process is depicted
in Fig. 12. Generate 2n(R0+R′

1+C21) codewords un i.i.d. using
P(un) = �n

i=1 P(ui ). Bin all uns into 2n(R0+R′
1) super-bins.

In each super-bin, bin all uns into 2nR′
2 bins. Thus, we have

2n(R0+R′
1) super-bins, each consisting of 2nR′

2 bins, where in
each bin we have 2n(C21−R′

2) un codewords. For each un , gener-
ate 2nR′

1 codewords zn i.i.d. using P(zn |un) = �n
i=1 P(zi |ui ).

For each pair (un, zn), generate 2nR′′
1 codewords xn

1 i.i.d.
using P(xn

1 |un, zn) = �n
i=1 P(x1,i |ui , zi ). Additionally, for

each pair (un, sn), generate 2nR′′
2 codewords xn

2 i.i.d. using
P(xn

2 |un, sn) = �n
i=1 P(x2,i |ui , si ).

Encoding: We denote the realizations of the
sequences (M0, M ′

1, M ′′
1 , M ′

2, M ′′
2 ) at block b as

(m0,b, m′
1,b, m′′

1,b, m′
2,b, m′′

2,b). Since we use block Markov
coding, we set m′

1,B = 1. In block b ∈ {1, . . . , B}, Encoder 2
looks in super-bin (m0,b, m′

1,b−1) and bin m′
2,b for un such

that (un, sn) ∈ T (n)
ε (U, S) and sends its index l inside the

super-bin over the rate-limited cooperation link to Encoder 1,
where l ∈ {1, . . . , 2nC21}. If such a codeword un does not
exist, namely, among the codewords in the bin none is
jointly typical with sn , choose an arbitrary un from the bin
m′

2,b (in such a case the decoder will declare an error).
Encoder 1 looks in super-bin (m0,b, m′

1,b) for the bin that
un(l) lies in. That bin’s index is m′

2,b. Encoder 1 then
encodes message m′

1,b conditioned on (m0,b, m′
1,b−1, m′

2,b)

using zn(m′
1,b, un) and encodes message m′′

1,b conditioned on
(m0,b, m′

1,b−1, m′
2,b, m′

1,b) using xn
1 (m′′

1,b, un, zn). Encoder 2
encodes message m′′

2,b conditioned on (m0,b, m′
1,b−1, m′

2,b)

and sn using xn
2 (m2,b, un, sn). Send xn

1 (m′′
1,b, un, zn) and

xn
2 (m′′

2,b, un, sn) over the channel.
Decoding at Encoder 2: At the end of block b, Encoder 2

tries to decode message m′
1,b. Given (m0,b, m′

2,b) and assum-
ing that message m′

1,b−1 was decoded correctly at the end of
block b − 1, Encoder 2 looks for m̂′

1,b s.t.

(un(m0,b, m′
1,b−1, m′

2,b), zn(m̂′
1,b, un)) ∈ T (n)

ε (U, Z). (214)

If no such m̂′
1,b, or more than one such m̂′

1,b, is found, an
error is declared at block b and therefore, in the whole super-
block nB .
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Fig. 12. The binning process as explained in the code design. There are 2n(R0+R′
1) super-bins and 2n R′

2 bins in each super-bin. The number of codewords
in each bin must be greater than I (U; S) in order to find un such that (un , sn) ∈ T (n)

ε (U, S).

Decoding at the Receiver: At the end of block B , the
decoding is done backwards. At block b, assuming that
(m0,b+1, m1,b, m′

2,b+1) was decoded correctly in block b + 1,
the decoder looks for the set (m̂0,b, m̂′

1,b−1, m̂′′
1,b,

m̂′
2,b, m̂′′

2,b) s.t.

(un(m̂0,b, m̂′
1,b−1, m̂′

2,b, sn), zn(m̂′
1,b, un), xn

1 (m′′
1,b, un, zn),

xn
2 (m̂′′

2,b, un, sn), sn, yn) ∈ T (n)
ε (U, Z , X1, X2, S, Y ).

If no such tuple, or more than one such tuple, is found,
an error is declared in block b and therefore, at the whole
super-block nB .

Error Analysis: The probability that zn(1, un) = zn(i, un),
where i > 1 and where (un, zn(1, un)) ∈ T (n)

ε (U, Z) is
bounded by 2−n(H(Z |U )−δ(ε)), where δ(ε) goes to zero as ε
goes to zero. Hence, if

R′
1 < H (Z |U), (215)

then the probability that an incorrect message m′
1,b was

decoded goes to zero for a large enough n. To find in super-bin
(m̂0,b, m̂′

1,b−1) and in bin m′
2,b a codeword un that is jointly

typical with sn , we need to have more than I (U ; S) codewords
in each bin; thus, if

C21 − R′
2 ≥ I (U ; S), (216)

then the probability of finding a codeword un such that
(un, sn) ∈ T (n)

ε (U, S) goes to 1 for a large enough n.
We define the following event at block b:

Ei, j,k,b � (un(i, sn), zn(m̂′
1,b, un), xn

1 ( j, un, zn),

xn
2 (k, sn), sn, yn) ∈ T (n)

ε (U, Z , X1, X2, S, Y ). (217)

We can bound the probability of error as follows:

P(n)
e,b ≤ Pr(Ec

1,1,1,b) +
∑

i=1, j=1,k>1

Pr(E1,1,k,b)

+
∑

i=1, j>1,k=1

Pr(E1, j,1,b) +
∑

i=1, j>1,k>1

Pr(E1, j,k,b)

+
∑

i>1, j>1,k>1

Pr(Ei, j,k,b). (218)

We now show that each term in (218) goes to zero for a large
enough n.

• Upper-bounding Pr(Ec
1,1,1,b): Since we assume that

Encoders 1 and 2 encode the correct message-
tuple (m0,b, m′

1,b−1, m′′
1,b, m′

2,b, m′′
2,b) at block b and

that the decoder decoded the right (m0,b+1, m′
1,b,

m′′
1,b+1, m′

2,b+1, m′′
2,b+1) at block b + 1, by the L.L.N.,

Pr(Ec
1,1,1,b) → 0.

• Upper-bounding
∑

i=1, j=1,k>1 Pr(E1,1,k,b): Assuming
that m′

1,b was decoded correctly at block b + 1, the
probability for this event is bounded by

∑

i=1, j=1,k>1

Pr(E1,1,k,b) ≤ 2nR′′
2 2−n(I (X2;Y |S,U,Z ,X1)−δ(ε)

(219)

= 2nR′′
2 2−n(I (X2;Y |S,U,X1)−δ(ε).

(220)

• Upper-bounding
∑

i=1, j>1,k=1 Pr(E1, j,1,b): Assuming
that m′

1,b was decoded correctly at block b + 1, the
probability for this event is bounded by

∑

i=1, j>1,k=1

Pr(E1, j,1,b) ≤ 2n(R′′
1 )2−n(I (X1;Y |S,U,Z ,X2)−δ(ε).

(221)

• Upper-bounding
∑

i=1, j>1,k>1 Pr(E1, j,k,b): Assuming
that m′

1,b was decoded correctly at block b + 1, the
probability for this event is bounded by

∑

i=1, j>1,k>1

Pr(E1, j,k,b)

≤ 2n(R′′
1 +R′′

2 )2−n(I (X1,X2;Y |S,U,Z)−δ(ε). (222)

• Upper-bounding
∑

i>1, j>1,k>1 Pr(Ei, j,k,b): Assuming
that m′

1,b was decoded correctly at block b + 1, the
probability for this event is bounded by

∑

i>1, j>1,k>1

Pr(E1, j,k,b) ≤ 2n(R0+R′
1+R′′

1 +R′
2+R′′

2 )

·2−n(I (U,V ,Z ,X1,X2;Y |S)−δ(ε)

(223)

≤ 2n(R0+R′
1+R′′

1 +R′
2+R′′

2 )

·2−n(I (X1,X2;Y |S)−δ(ε).

(224)
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To summarize, we note that R′
1 = R1 − R′′

1 and R′
2 = R2 − R′′

2 ,
and thus, we obtained that if (R′′

1 , R′′
2 , R1, R2) satisfy

R1 − R′′
1 ≤ H (Z |U), (225)

R2 − R′′
2 ≤ C21 − I (U ; S), (226)

R′′
2 ≤ I (X2; Y |S, U, X1), (227)

R′′
1 ≤ I (X1; Y |S, U, Z , X2), (228)

R′′
1 + R′′

2 ≤ I (X1, X2; Y |S, U, Z), (229)

R0 + R′′
1 + R′′

2 ≤ I (X1, X2; Y |S), (230)

then there exists a code with a probability of error that goes
to zero as the block length goes to infinity. Using the Fourier-
Motzkin elimination and by setting R1 = R̃1, R0 = R̃0,
we obtain the following region

R̃1 ≤ H (Z |V , U) + I (X1; Y |S, U, X2, Z),

R2 ≤ I (X2; Y |X1, S, U) + C21 − I (U ; S),

R̃1 + R2 ≤ I (X1, X2; Y |U, Z , S) + H (Z |U)

+ C21 − I (U ; S),

R̃0 + R̃1 + R2 ≤ I (X1, X2; Y |S). (231)

After establishing the capacity region for the MAC with
common message, one-sided cooperation and non-causal state
known at a partially cribbing encoder and at the decoder,
we apply the following modification. If we set

R̃0 = C12, (232)

R̃1 = R1 − C12, (233)

then the inequalities can be rewritten as

R1 − C12 ≤ H(Z |U) + I (X1; Y |S, U, X2, Z),

R2 ≤ I (X2; Y |X1, V, S, U)

+ C21 − I (U ; S),

R1 − C12 + R2 ≤ I (X1, X2; Y |U, Z , S)

+ H(Z |U) + C21 − I (U ; S),

C12 + (R1 − C12) + R2 ≤ I (X1, X2; Y |S), (234)

and thus, we obtain the region in (103). �
Achievability for the Causal Case: The achievability part

follows similar to that of the strictly causal case, but now the
generation of Xn

2 is done i.i.d. according to the conditional
distribution of p(x2|u, s, z) induced by (104). �

APPENDIX D
PROOF OF THEOREM 5

A. Converse

Converse for the Strictly Causal Case: Given an achiev-
able rate-pair (R1, R2), we need to show that there
exists a joint distribution of the form P(w)P(v|w)p(a|w)
P(s|a)P(x1|v,w)P(u, x2|s, v, a, w) P(y|x1, x2, s) such that
the inequalities in (113) are satisfied. Since (R1, R2) is an
achievable rate-pair, there exists a (2nR1, 2nR2 , 2nC12, n) code
with an arbitrarily small error probability P(n)

e . By Fano’s
inequality,

H (M1, M2|Y n) ≤ n(R1 + R2)P(n)
e + H (P(n)

e ). (235)

We set

(R1 + R2)P(n)
e + 1

n
H (P(n)

e ) � εn, (236)

where εn → 0 as P(n)
e → 0. Hence,

H (M1|Y n, M2) ≤ H (M1, M2|Y n) ≤ nεn, (237)

H (M2|Y n, M1) ≤ H (M1, M2|Y n) ≤ nεn . (238)

For R1, we have the following:

n R1 = H (M1) (239)

= H (M1, M12) (240)
(a)= H (M1|M2, M12) + H (M12) (241)

≤ nC12 + I (M1; Y n|M2, M12)

+ H (M1|Y n, M2, M12) (242)
(b)≤ nC12 + I (M1; Y n|M2, M12) + nεn (243)
(c)= nC12 + I (Xn

1 ; Y n|M2, M12) + nεn (244)

(d)= nC12 +
n∑

i=1

I (X1,i ; Y n|M2, Xi−1
1 , M12) + nεn

(245)

≤ nC12 +
n∑

i=1

H (X1,i |M2, Xi−1
1 , M12) + nεn (246)

(e)≤ nC12 +
n∑

i=1

H (X1,i |Vi , Wi ) + nεn, (247)

where (a) follows from the fact that the messages M1 and M2
are independent, (b) follows from Fano’s inequality, (c) fol-
lows from the encoding relation in (107), (d) follows from
the chain rule, and step (e) follows since conditioning reduces
entropy and by setting the RVs

Vi � Xi−1
1 , (248)

Wi � M12. (249)

Thus, we obtain

R1 ≤ C12 + 1

n

n∑

i=1

H (X1,i |Vi , Wi ) + εn . (250)

Additionally,

n R1 = H (M1) (251)

= H (M1|M2, M12) + H (M12) (252)
(a)≤ I (M1; Y n|M2, M12) + nC12 + nεn (253)

(b)=
n∑

i=1

I (M1; Yi |Y i−1, M2, M12) + nC12 + nεn (254)

≤
n∑

i=1

I (Y i−1, M1, M2; Yi |M12) + nC12 + nεn (255)

=
n∑

i=1

[I (Y i−1, M1, M2, Sn
i+1; Yi |M12)

− I (Sn
i+1; Yi |M1, M2, Y i−1, M12)]

+ nC12 + nεn (256)

(c)=
n∑

i=1

[I (Y i−1, M1, M2, Sn
i+1, Xi−1

1 , X1,i ; Yi |M12)

− I (Si ; Y i−1|M1, M2, Sn
i+1, M12)]

+ nC12 + nεn (257)



KOPETZ et al.: MACs WITH COMBINED COOPERATION AND PARTIAL CRIBBING 845

(d)=
n∑

i=1

[I (Y i−1, M2, Sn
i+1, Xi−1

1 , X1,i ; Yi |Ai , M12)

− I (Si ; Y i−1|M1, M2, Ai , Sn
i+1, M12)]

+ nC12 + nεn (258)

(e)≤
n∑

i=1

[I (Y i−1, M2, Sn
i+1, Xi−1

1 , X1,i ; Yi |Ai , M12)

− I (Si ; Y i−1, M2, Sn
i+1|M1, Ai , M12)]

+ nC12 + nεn (259)

=
n∑

i=1

[I (Y i−1, M2, Sn
i+1, Xi−1

1 , X1,i ; Yi |Ai , M12)

− I (Si ; Y i−1, M2, Sn
i+1|M1, Ai , Xi−1

1 , M12)]
+ nC12 + nεn (260)

( f )=
n∑

i=1

[I (Y i−1, M2, Sn
i+1, Xi−1

1 , X1,i ; Yi |Ai , M12)

− I (Si ; Y i−1, M2, Sn
i+1|Ai , Xi−1

1 , M12)]
+ nC12 + nεn (261)

(g)=
n∑

i=1

[I (Vi , Ui , X1,i ; Yi |Ai , Wi )− I (Si ; Ui |Vi , Ai , Wi )]
+ nC12 + nεn, (262)

where (a) follows from Fano’s inequality, (b) follows from
the chain rule, (c) follows since Xi

1 = f (M1) and by
using the Csiszar Sum Equality, (d) follows since Ai =
f (M12, M2) and from the Markov Chain M1 − (M12, X1,i ,
Xi−1

1 , Y i−1, M2, Sn
i+1, Ai , M12) − Yi , (e) follows since Si is

independent of (M2, Sn
i+1) given (M1, Ai ), (f) follows from

the Markov Chain M1 − (M12, Xi−1
1 , Ai ) − (Y i−1, M2, Sn

i+1),
and (g) follows by setting the RVs W ,V and

Ui � (Y i−1, M2, Sn
i+1). (263)

Thus, we obtain

R1 ≤ 1

n

n∑

i=1

[I (Vi , Ui , X1,i ; Yi |Ai , Wi )

− I (Si ; Ui |Vi , Ai , Wi )] + C12 + εn . (264)

Next, we consider R2

n R2 = H (M2) (265)
= H (M2|M1) (266)
(a)≤ I (M2; Y n|M1) + nεn (267)

=
n∑

i=1

I (M2; Yi |Y i−1, M1) + nεn (268)

≤
n∑

i=1

I (Y i−1, M2; Yi |M1) + nεn (269)

(b)=
n∑

i=1

[I (Y i−1, M2, Sn
i+1; Yi |M1)

− I (Sn
i+1; Yi |M1, M2, Y i−1)] + nεn (270)

(c)=
n∑

i=1

[I (Y i−1, M2, Sn
i+1; Yi |M1, M12, X1,i , Xi−1

1 )

− I (Si ;Y i−1,M2, Sn
i+1|Ai ,M12,Xi−1

1 )] + nεn (271)

(d)=
n∑

i=1

[I (Y i−1, M2, Sn
i+1, Ai ; Yi |M1, M12, X1,i , Xi−1

1 )

− I (Si ;Y i−1,M2, Sn
i+1|Ai ,M12,Xi−1

1 )] + nεn (272)
(e)≤

n∑

i=1

[I (Y i−1, M2, Sn
i+1, Ai ; Yi |M12, X1,i , Xi−1

1 )

− I (Si ;Y i−1,M2, Sn
i+1|Ai ,M12,Xi−1

1 )] + nεn (273)

( f )=
n∑

i=1

[I (Ui , Ai ; Yi |Wi , X1,i , Vi )− I (Si ; Ui |Wi , Vi , Ai )]

+ nεn, (274)

where (a) follows from Fano’s inequality, (b) follows from the
chain rule, (c) follows since (M12, Xi

1) = f (M1) and from the
same arguments as given in (257) - (262), (d) follows since
Ai = f (M12, M2), (e) follows from the same arguments as
given in (258), and (f) follows by setting the RVs U , V and W .
Thus, we obtain

R2 ≤ 1

n

n∑

i=1

[I (Ui , Ai ; Yi |Wi , X1,i , Vi )

− I (Si ; Ui |Wi , Vi , Ai )] + εn . (275)

Now, consider

n(R1 + R2) = H (M1, M2) (276)
= H (M1, M2|M12) + H (M12) (277)
(a)≤ I (M1, M2; Y n|M12) + nC12 + nεn (278)

(b)=
n∑

i=1

I (M1, M2;Yi |Y i−1, M12) + nC12 + nεn

(279)
(c)≤

n∑

i=1

[I (M1, Y i−1, M2, Sn
i+1; Yi |M12)

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )]
+ nC12 + nεn (280)

(d)=
n∑

i=1

[I (M1,X1,i ,Xi−1
1 ,Y i−1,M2,S

n
i+1;Yi |M12)

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )]
+ nC12 + nεn (281)

(e)=
n∑

i=1

[I (X1,i ,Xi−1
1 ,Y i−1,M2,S

n
i+1,Ai ;Yi |M12)

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )]
+ nC12 + nεn (282)

=
n∑

i=1

[I (Ui , Vi , X1,i , Ai ; Yi |Wi )

− I (Ui ; Si |Vi , Ai , Wi )] + nC12 + nεn, (283)

where (a) follows from Fano’s inequality, (b) follows from
the chain rule, (c) follows from the same arguments as
given in (257)-(262), (d) follows since Xi

1 = f (M1) and
Ai = f (M12, M2), and (e) follows from the same arguments
as given in (258). Thus we obtain

R1 + R2 ≤ 1

n

n∑

i=1

[I (Ui , Vi , X1,i , Ai ; Yi |Wi )

− I (Ui ; Si |Vi , Ai |Wi )] + C12 + εn . (284)
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Again,

n(R1 + R2)

= H (M1, M2) (285)
(a)≤ I (M1, M2; Y n) + nεn (286)

(b)=
n∑

i=1

I (M1, M2; Yi |Y i−1) + nεn (287)

(c)≤
n∑

i=1

[I (M1, Y i−1, M2, Sn
i+1; Yi )

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )] + nεn (288)

(d)=
n∑

i=1

[I (M1, M12, X1,i , Xi−1
1 , Y i−1, M2, Sn

i+1; Yi )

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )] + nεn (289)

(e)=
n∑

i=1

[I (M12, X1,i , Xi−1
1 , Y i−1, M2, Sn

i+1, Ai ; Yi )

− I (Y i−1, M2, Sn
i+1; Si |M12, Ai , Xi−1

1 )] + nεn (290)

≤
n∑

i=1

[I (Wi , Ui , Vi , X1,i , Ai ; Yi )

− I (Ui ; Si |Wi , Vi , Ai )] + nεn, (291)

d where (a) follows from Fano’s inequality, (b) follows from
the chain rule, (c) follows from the same arguments as
given in (257)-(262), (d) follows since Xi

1 = f (M1) and
Ai = f (M12, M2), and (e) follows from the same arguments
as given in (258). Thus, we obtain

R1 + R2 ≤ 1

n

n∑

i=1

[I (Wi , Ui , Vi , X1,i , Ai ; Yi )

−I (Ui ; Si |Wi , Vi , Ai )] + εn. (292)

Finally, we need to prove the following Markov chains:

• Ai − Wi − Vi -

p(ai |m12, xi−1
1 ) =

∑

m2∈M2

p(m2|m12, xi−1
1 )

· p(ai |m12, m2, xi−1
1 )

(a)=
∑

m2∈M2

p(m2|m12)p(ai |m12, m2)

= p(ai |m12), (293)

where (a) follows since m2 is independent of m1 and
since ai = f (m2, m12).

• Si − Ai −(Wi , Vi ) - Follows from the fact that the channel
state at any time i is assumed to depend only on the action
at time i .

• X1,i − (Vi , Wi ) − (Ai , Si ) -

p(x1,i |m12, xi−1
1 , ai , si ) =

∑

m1∈M1

p(m1|m12, xi−1
1 , ai , si )

· p(x1,i |m12, m1, xi−1
1 , ai , si )

(a)=
∑

m1∈M1

p(m1|m12, xi−1
1 )

· p(x1,i |m1, m12, xi−1
1 )

= p(x1,i |m12, xi−1
1 ), (294)

where (a) follows since m1 is independent of (ai , si )
given (m12, xi−1

1 ) and since x1,i = f (m1).
• (Ui , X2,i ) − Si , Ai , Wi , Vi − X1,i -

p(x1,i |m12, xi−1
1 , ai , sn

i , yi−1, m2, x2,i )

=
∑

m1∈M1

p(m1|m12, xi−1
1 , ai , sn

i , yi−1, m2, x2,i )

· p(x1,i |m1, m12, xi−1
1 , ai , sn

i , yi−1, m2, x2,i )
(a)=

∑

m1∈M1

p(m1|m12, xi−1
1 , ai , si )

· p(x1,i |m1, m12, xi−1
1 , ai , si )

= p(x1,i |m12, xi−1
1 , ai , si ), (295)

where (a) follows since m1 is independent of
(sn

i+1, yi−1, m2, x2,i ) given (m12, xi−1
1 , ai , si ) and

since x1,i = f (m1).
• Yi −(X1,i , X2,i , Si )−(Wi , Vi , Ui , Ai ) - Follows from the

fact that the channel output at any time i is assumed to
depend only on the channel inputs and state at time i .

Finally, let Q be an RV independent of (Xn
1 , Xn

2 , Y n) and
uniformly distributed over the set {1, 2, 3, . . . , n}. We define
the RV W � (Q, WQ) and obtain the region given
in (113). �

Converse for the Causal Case: For the causal case we
repeat the same approach as for the strictly causal case, except
that in the final step we need to show the Markov chain
Ui − (Si , Ai , Wi , Vi ) − X1,i . We can see from the following
derivations that this Markov chain holds

p(x1,i |m12, xi−1
1 , ai , sn

i , yi−1, m2)

=
∑

m1∈M1

p(m1|m12, xi−1
1 , ai , sn

i , yi−1, m2)

· p(x1,i |m1, m12, xi−1
1 , ai , sn

i , yi−1, m2)
(a)=

∑

m1∈M1

p(m1|m12, xi−1
1 , ai , si )

· p(x1,i |m1, m12, xi−1
1 , ai , si )

= p(x1,i |m12, xi−1
1 , ai , si ), (296)

where (a) follows since m1 is independent of (sn
i+1, yi−1, m2)

given (m12, xi−1
1 , ai , si ) and since x1,i = f (m1). �

B. Achievability

Achievability for the Strictly Causal Case: Fix a joint distri-
bution P(w)P(v|w)P(a|w)P(s|a)P(x1 |v,w)P(u|s, w, v, a)
p(x2|w, a, v, u, s)P(y|x1, x2, s) where P(s|a) and
P(y|x1, x2, s) are given by the channel. In the following
achievability scheme, we use block Markov coding, rate
splitting, and Gelfand-Pinsker coding.

Coding Scheme: We consider B blocks, each consisting
of n symbols; thus, we transmit nB symbols. We transmit
B − 1 messages M1 in B blocks of information. Here,
M1 ∈ {1, . . . , 2nR1}; thus, asymptotically, for a large enough n,
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our transmission rate would be nR1(B−1)
nB

n→∞−→ R1. We also
split message M1 into (M ′

1, M ′′
1 ) such that (R′

1, R′′
1 ) =

(C12, R1 − C12).
Code Design: Generate 2nR′

1 codewords wn i.i.d. using
P(wn) = �n

i=1 P(wi ). For each wn , generate 2nR′′
1 codewords

vn i.i.d. using P(vn |wn) = �n
i=1 P(vi |wi ). For each wn ,

generate 2nR2 codewords an i.i.d. using P(an |wn) =
�n

i=1 P(ai |wi ). For each pair (wn, vn), generate 2nR′′
1

codewords xn
1 i.i.d. using P(xn

1 |vn, wn) = �n
i=1 P(x1,i |vi , wi ).

Additionally, for each triplet (wn, vn , an), generate
2n(R2+R̃) codewords un i.i.d. using P(un |an, vn , wn) =
�n

i=1 P(ui |ai , vi , wi ). Randomly bin all un codewords into

2nR2 bins where each bin contains 2nR̃ codewords.
Encoding: We denote the realizations of the messages

(M ′
1, M ′′

1 , M2) at block b as (m′
1,b, m′′

1,b, m2,b). Since we
use block Markov coding, we set m1,B = 1. In block
b ∈ {1, . . . , B}, send m′

1,b from Encoder 1 to Encoder 2
via the rate-limited cooperation link. Encode message m′

1,b
using wn(m′

1,b). Encode message m′′
1,b−1 conditioned on

m′
1,b using vn(m′′

1,b−1, w
n) and encode message m′′

1,b con-
ditioned on (m′′

1,b−1, m′
1,b) using xn

1 (m′′
1,b, v

n, wn). Given
(m′

1,b, m2,b), Encoder 2 chooses an action sequence an.
Given (sn , wn , vn , an), look in bin m2,b for a code-
word un(wn , vn , an , m2,b, l) that is jointly typical with
(wn(m′

1,b), v
n(m′′

1,b−1), sn, an(m2,b)), where l ∈ {1, . . . , 2nR̃}.
Send xn

1 (m′′
1,b, w

n, vn) and xn
2 according to p(x2|w, v, u, s)

i.i.d. over the channel.
Decoding at Encoder 2: At the end of block b, Encoder 2

tries to decode message m′′
1,b. Given m′

1,b and assuming that
message m′′

1,b−1 was decoded correctly at the end of block
b − 1, Encoder 2 looks for m̂′′

1,b s.t.

(wn(m′
1,b), v

n(m′′
1,b−1, w

n), xn
1 (m̂′′

1,b, w
n, vn))

∈ T (n)
ε (W, V , X1). (297)

If no such m̂′
1,b, or more than one such m̂′

1,b, is found,
an error is declared at block b and therefore, in the whole
super-block nB .

Decoding at the Receiver: At the end of block B , the
decoding is done backwards. At block b, assuming that m1,b

was decoded correctly in block b + 1, the decoder looks for
the triplet (m′

1,b, m′′
1,b−1, m̂2,b) s.t.

(wn(m̂′
1,b), v

n(m̂′′
1,b−1, w

n), xn
1 (m′′

1,b, w
n , vn),

an(m̂2,b, w
n), un(m̂2,b, w

n, vn , sn, an, l), yn)

∈ T (n)
ε (W, V , X1, A, U, Y ). (298)

If no such pair, or more than one such pair, is found, an error is
declared at block b and therefore, in the whole super-block nB .

Error Analysis: Without loss of generality, we assume
that (m′

1,b, m′′
1,b−1, m2,b) = (1, 1, 1). The probability

that xn
1 (1, wn, vn) = xn

1 (i, wn, vn) where i > 1 and
where (wn(1), vn(1, wn), xn

1 (1, wn, vn)) ∈ T (n)
ε (W, V , X1) is

bounded by 2−n(H(X1|V ,W )−δ(ε)), where δ(ε) goes to zero as
ε goes to zero. Hence, if

R1 − C12 < H (X1|V , W ), (299)

then the probability that an incorrect message m1,b was
decoded goes to zero for a large enough n. We define the

following event at block b:

Ei, j,k,l,b � (wn(i), vn( j, wn), xn
1 (m̂′′

1,b, v
n, wn),

an(k, wn), un(k, vn, sn , an, wn, l), yn)

∈ T (n)
ε (W, V , X1, A, U, Y ). (300)

We can bound the probability of error as follows:

P(n)
e,b ≤ Pr(Ec

1,1,1,1,b) +
∑

i=1, j=1
k>1,l>1

Pr(E1,1,k,l,b)

+
∑

i=1, j>1
k=1,l>1

Pr(E1, j,1,l,b) +
∑

i=1, j>1
k>1,l>1

Pr(E1, j,k,l,b)

+
∑

i>1, j>1
k>1,l>1

Pr(Ei, j,k,l,b). (301)

We now show that each term in (301) goes to zero for a large
enough n.

• Upper-bounding Pr(Ec
1,1,1,1,b): Since we assume that

Transmitters 1 and 2 encode the correct message triplet
(m′

1,b, m′′
1,b−1, m2,b) at block b and that the receiver

decoded the right (m′
1,b+1, m′′

1,b, m2,b+1) at block b + 1,
by the LLN, Pr(Ec

1,1,1,b) → 0.
• Upper-bounding

∑
i=1, j=1
k>1,l>1

Pr(E1,1,k,l,b): Assuming

that m′′
1,b was decoded correctly at block b + 1, the

probability for this event is bounded by
∑

i=1, j=1
k>1,l>1

Pr(E1,1,k,l,b) ≤ 2n(R2+R̃)2−n(I (U,A;Y |W,V ,X1)−δ(ε).

(302)

• Upper-bounding
∑

i=1, j>1
k=1,l>1

Pr(E1, j,1,l,b): Similar to (302)

we obtain
∑

i=1, j>1,k=1,l>1

Pr(E1, j,1,l,b) ≤ 2n(R1−C12+R̃)

· 2−n(I (V ,X1,U ;Y |W,A)−δ(ε).
(303)

• Upper-bounding
∑

i=1, j>1
k>1,l>1

Pr(E1, j,k,l,b): Similar to (302)

we obtain
∑

i=1, j>1,k>1,l>1

Pr(E1, j,k,l,b) ≤ 2n(R1−C12+R2+R̃)

· 2−n(I (U,A,V ,X1;Y |W )−δ(ε).
(304)

• Upper-bounding
∑

i>1, j>1
k>1,l>1

Pr(E1, j,k,l,b): Similar to (302)

we obtain
∑

i>1, j>1,k>1,l>1

Pr(E1, j,k,l,b) ≤ 2n(R1+R2+R̃)

· 2−n(I (U,A,W,V ,X1;Y )−δ(ε).
(305)

Finally, we analyze the probability of error for finding un at
Encoder 2. By the covering lemma, if

R̃ > I (U ; S|W, V , A) (306)

then with high probability, in block b we can find a code-
word un that is jointly typical with sn in bin number m2,b.
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The combination of (299), (302), (303), (304), (305), and (306)
yields the capacity region in (113), thus completing the
proof. �

Achievability for the Causal Case: The achievability part
follows similar to that of the strictly causal case, but now the
generation of Xn

2 is done i.i.d. according to the conditional
distribution of p(x2|w, v, u, s, x1) induced by (114). �
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