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Abstract—Consider the two-way rate-distortion problem in
which a helper sends a common limited-rate message to both
users based on side information at its disposal. We characterize
the region of achievable rates and distortions when the Markov
relation (Helper)-(User 1)–(User 2) holds. The main insight of the
result is that in order to achieve the optimal rate, the helper may
use a binning scheme, as in Wyner–Ziv, where the side information
at the decoder is the “further” user, namely, User 2. We derive
these regions explicitly for the Gaussian sources with square error
distortion, analyze a tradeoff between the rate from the helper
and the rate from the source, and examine a special case where
the helper has the freedom to send different messages, at different
rates, to the encoder and the decoder. The converse proofs use a
technique for verifying Markov relations via undirected graphs.

Index Terms—Rate-distortion, two-way rate distortion, undi-
rected graphs, verification of Markov relations, Wyner–Ziv source
coding.

I. INTRODUCTION

I N this paper, we consider the problem of two-way source
encoding with a fidelity criterion in a situation where both

users receive a common message from a helper. The problem
is presented in Fig. 1. Note that the case in which the helper is
absent was introduced and solved by Kaspi [1].

The encoding and decoding is done in blocks of length . The
communication protocol is that Helper Y first sends a common
message at rate to User X and to User Z, and then User Z
sends a message at rate to User X, and finally, User X sends
a message to User Z at rate . Note that user Z sends his mes-
sage after it received only one message, while Sender X sends
its message after it received two messages. We assume that the
sources and the helper sequences are i.i.d. and form the Markov
chain . User receives two messages (one from
the helper and one from User Z) and reconstructs the source

. We assume that the fidelity (or distortion) is of the form
and that this term should be less than a

threshold . User also receives two messages (one from the
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Fig. 1. Two-way rate distortion problem with a helper. First Helper Y
sends a common message to User X and to User Z, then User Z sends a
message to User X, and finally User X sends a message to User Z. The goal
is that User X will reconstruct the sequence � within a fidelity criterion
� � �� � �� �� � � , and User Z will reconstruct the source �

within a fidelity criterion � � �� � �� �� � � . We assume that the
side information � and the two sources ��� are i.i.d. and form the Markov
chain � � � � � .

helper and one from User X) and reconstructs the source .
The reconstruction must lie within a fidelity criterion of the
form .

A practical scenario where this setting may occur is in a
peer-to-peer network, where node (the helper) has a noisy ob-
servation of another node . Node and need to exchange
information and the helper can multicast to both nodes. In
particular, we discuss and obtain a closed-form characterization
for the quadratic Gaussian case, which is frequently used as a
simple model, where limited loss of information is allowed [2].

Our main result in this paper is that the achievable region for
this problem is given by , which is defined as the set
of all rate triples that satisfy

(1)

(2)

(3)

for some joint distribution of the form

(4)

where and are auxiliary random variables with
bounded cardinality. The reconstruction variable is a deter-
ministic function of the triple , and the reconstruction

is a deterministic function of the triple such that

(5)

The main insight gained from this region is that the helper
may use a code based on binning that is designed for a decoder
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with side information, as in [3]. User and User do not
have the same side information, but it is sufficient to design the
helper’s code assuming that the side information at the decoder
is the one that is “further” in the Markov chain, namely, . Since
a distribution of the form (4) implies that ,
a Wyner–Ziv code at rate would be decoded
successfully both by User Z and by User X. Once the helper’s
message has been decoded by both users, a two-way source
coding is performed where both users have additional side in-
formation .

Several papers on related problems have appeared in the past
in the literature. Wyner [4] studied a problem of network source
coding with compressed side information that is provided only
to the decoders. A special case of his model is the system in
Fig. 1 but without the memoryless side information and where
the stream carrying the helper’s message arrives only at the de-
coder (User Z). A full characterization of the achievable region
can be concluded from the results of [4] for the special case
where the source has to be reconstructed losslessly. This
problem was solved independently by Ahlswede and Körner in
[5], but the extension of these results to the case of lossy recon-
struction of remains open. Kaspi [6] and Kaspi and Berger
[7] derived an achievable region for a problem that contains the
helper problem with degenerate as a special case. However,
the converse part does not match. In [8], Vasudevan and Perron
described a general rate distortion problem with encoder break-
down and there they solved the case where in Fig. 1 one of the
sources is a constant.1

Reference [10] solved the multiterminal source coding
problem where one of the two sources needs to be reconstructed
perfectly and the other source needs to be reconstructed with
a fidelity criterion. Oohama solved the multiterminal source
coding case for the two [11] and [12] Gaussian sources,
in which only one source needs to be reconstructed with a mean
square error, that is, the other sources are helpers. More
recently, Wagner, Tavildar, and Viswanath characterized the
region where both sources [13] or sources [14] need to be
reconstructed at the decoder with a mean square error criterion.

In [1], Kaspi has introduced a multistage communication be-
tween two users, where each user may transmit up to mes-
sages to the other user that depends on the source and previous
received messages. In this paper, we also consider the multi-
stage source coding with a common helper. The case where a
helper is absent and the communication between the users is via
memoryless channels was recently solved by Maor and Merhav
[15] where they showed that a source channel separation the-
orem holds.

The remainder of the paper is organized as follows. In
Section II, we present a technique for verifying Markov rela-
tions between random variables based on undirected graphs.
The technique is used throughout the converse proofs. The
problem definition and the achievable region for two way
rate distortion problem with a common helper are presented
in Section III. Then we consider two special cases, first in
Section IV, we consider the case of and ,

1The case where one of the sources is constant was also considered indepen-
dently in [9].

and in Section V, we consider and . The
proofs of these two special cases provide the insight and the
tricks that are used in the proof of the general two-way rate
distortion problem with a helper. The proof of the achievable
region for the two-way rate distortion problem with a helper is
given in Section VI and it is extended to a multistage two way
rate distortion with a helper in Section VII. In Section VIII, we
consider the Gauissan instance of the problem and derive the
region explicitly. In Section IX, we return to the special case
where and and analyze the tradeoff between
the bits from the helper and bits from source and gain insight
for the case where the helper sends different messages to each
user, which is an open problem.

II. PRELIMINARY: A TECHNIQUE FOR CHECKING

MARKOV RELATIONS

Here we present a technique, based on undirected graphs, that
provides a sufficient condition for establishing a Markov chain
from a joint distribution. It’s similar in spirit to techniques in
[16, Ch 1.2], [17], [18, pp. 231] etc., but we present here a ver-
sion that is most suitable for our particular converse applica-
tions. We derive it from first principles for its simplicity and for
completeness.

Assume we have a set of random variables
, where is the size of the set.

Without loss of generality, we assume that the joint distribution
has the form

(6)

where , where is a subset of .
The following graphical technique provides a sufficient condi-
tion for the Markov relation , where

denote three disjoint subsets of .
The technique comprises two steps:

1) draw an undirected graph where all the random variables
are nodes in the graph and for all draw

edges between all the nodes ;
2) if all paths in the graph from a node in to a node in

pass through a node in , then the Markov chain
holds.

Example 1: Consider the joint distribution

(7)

Fig. 2 illustrates the above technique for verifying the Markov
relation . We conclude that since all the paths from

to pass through , the Markov chain
holds.

The proof of the technique is based on the observation that
if three random variables have a joint distribution of
the form , then the Markov chain

holds. The proof appears in Appendix A.
In the two way source coding without a helper [1],

Kaspi has used the result [1, Lemma 2] which states
that given a joint distribution of the form

, the Markov
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Fig. 2. The undirected graph that corresponds to the joint distribution given in
(7). The Markov form � � � � � holds since all paths from � to �
pass through � . The node with the open circle, i.e., �, is the middle term in
the Markov chain and all the other nodes are with solid circles, i.e., �.

relation holds.2 In the presence of
a helper, additional complicated Markov relations are needed
to be proved, and, therefore, we developed the graphical tech-
nique.

III. PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the two-way rate-distortion problem
with a helper and present a single-letter characterization of the
achievable region. We use the regular definitions of rate distor-
tion and we follow the notation of [19]. The source sequences

and
the side information sequence are
discrete random variables drawn from finite alphabets
and , respectively. The random variables are i.i.d.

. Let and be the reconstruction alphabets, and
be single letter

distortion measures. Distortion between sequences is defined in
the usual way

(8)

Let , denote a set of positive integers for
.

Definition 1: An code for two
sources and with helper consists of three encoders

(9)

and two decoders

(10)

2The proof of this Markov relation in [1] is based on the chain rule of mutual
information. One can also verify it using the undirected graph technique, pre-
sented here

such that

(11)

The rate triple of the
code is defined by

(12)

Definition 2: Given a distortion pair , a rate triple
is said to be achievable if, for any , and

sufficiently large , there exists an
code for the sources with side information .

Definition 3: The (operational) achievable region
of rate distortion with a helper known at the

encoder and decoder is the closure of the set of all achievable
rate pairs.

The next theorem is the main result of this work.

Theorem 1: In the tow-way rate distortion problem with a
helper, as depicted in Fig. 1, where

(13)

where the region is specified in (1)–(5).
Furthermore, the region satisfies the following

properties, which are proved in Appendix B.

Lemma 2:
1) The region is convex.
2) To exhaust , it is enough to restrict the alphabet

of , and to satisfy

(14)

Before proving the main result (Theorem 1), we would like to
consider two special cases, first where and and
second where and . The main techniques and
insight are gained through those special cases. Both cases are
depicted in Fig. 3 where in the first case we assume the Markov
form and in the second case we assume a Markov
form .

The proofs of these two cases are quite different. In the
achievability of the first case, we use a Wyner–Ziv code that is
designed only for the decoder, and in the achievability of the
second case we use a Wyner–Ziv code that is designed only for
the encoder. In the converse for the first case, the main idea is to
observe that the achievable region does not increase by letting
the encoder know , and in the converse of the second case the
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Fig. 3. Wyner–Ziv problem with a helper. We consider two cases; first the
source X, Helper Y and the side information Z form the Markov chain � �
� � � and in the second case they form the Markov chain � � � �� .

main idea is to use the chain rule in two opposite directions,
conditioning once on the past and once on the future.

IV. WYNER–ZIV WITH A HELPER WHEN Y-X-Z

In this section, we consider the rate distortion problem with
a helper and additional side information , known only to the
decoder, as shown in Fig. 3. We also assume that the source ,
the helper , and the side information , form the Markov chain

. This setting corresponds to the case where
and . Let us denote by the (operational)
achievable region .

We now present our main result of this section. Let
be the set of all rate pairs that sat-

isfy

(15)

(16)

for some joint distribution of the form

(17)

(18)

where and are auxiliary random variables, and the re-
construction variable is a deterministic function of the triple

. The next lemma states properties of .
It is the analog of Lemma 2 and the proof is omitted.

Lemma 3:
1) The region is convex.
2) To exhaust , it is enough to restrict the alpha-

bets of and to satisfy

(19)

Theorem 4: The achievable rate region for the setting il-
lustrated in Fig. 3, where are i.i.d. random variables
forming the Markov chain is

(20)

Fig. 4. Graphical proof of the Markov chain � � ����� � � . The
undirected graph corresponds to the joint distribution given in (22), i.e.,
����� 	� 
� �� �� 
� � ���� 	���
 � ����� � 	���
 ��� �� 	�. The Markov chain
holds since there is no path from � to � that does not pass through �����.

Let us define an additional region the same
as but the term in (17) is replaced by

, i.e.

(21)

In the proof of Theorem 4, we show that is
achievable and that is an outer bound, and we
conclude the proof by applying the following lemma, which
states that the two regions are equal.

Lemma 5: .

Proof: Trivially, we have .
Now we prove that . Let

, and

(22)

be a distribution that satisfies (15), (16), and (18). Now we show
that there exists a distribution of the form (17) such that (16),
(15), and (18) hold.

Let

(23)

where is induced by . We now
show that the terms and

are the same whether we evaluate
them by the joint distribution of (23), or
by ; hence . In order
to show that the terms above are the same it is enough to
show that the marginal distributions and
induced by are equal to the marginal distribu-
tions and induced by .
Clearly . In the rest of the proof we show

.
A distribution of the form as given in (22)

implies that the Markov chain holds as
shown in Fig. 4. Therefore . Now
consider , and since

and we con-
clude that .

Proof of Theorem 4: Achievability: The proof follows
classical arguments, and therefore the technical details will
be omitted. We describe only the coding structure and the
associated Markov conditions. Note that the condition (17)
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in the definition of , implies the Markov chain
. The helper (encoder of ) employs Wyner–Ziv

coding with decoder side information and external random
variable , as seen from (15). The Markov conditions required
for such coding, , are satisfied, hence the source
decoder, can recover the codewords constructed from . More-
over, since (17) implies , the encoder of
can also reconstruct (this is the point where the Markov
assumption is used). Therefore in the coding/de-
coding scheme of serves as side information available at
both sides. The source encoder now employs Wyner–Ziv
coding for , with decoder side information , coding random
variable , and available at both sides. The Markov con-
ditions needed for this scheme are , which
again are satisfied by (17). The rate needed for this coding is

, reflected in the bound on in (16). Once the
two codes (helper and source code) are decoded, the destination
can use all the available random variables, , and the side
information , to construct .

Converse: Assume that we have an
code as in Definition 4.

We will show the existence of a triple that satisfy
(15)–(18). Denote , and

. Then

(24)

where equality (a) is due to the Markov form
. Furthermore

(25)

Now, let and , where de-
notes the vector without the element, i.e., .
Then (24) and (25) become

(26)

Now we observe that the Markov chain
holds since we have .
Also the Markov chain holds since

. The recon-
struction at time , i.e., , is a deterministic function of

, and, in particular, it is a deterministic function
of . Finally, let be a random variable indepen-
dent of , and uniformly distributed over the set

. Define the random variables
, and ( is a short notation

for time sharing over the estimators). The Markov relations
and , the inequality

, the fact that is
a deterministic function of , and the inequalities

and (implied by
(26)), imply that , completing the
proof by Lemma 5.

V. WYNER–ZIV WITH A HELPER WHERE

Consider the rate-distortion problem with side information
and helper as illustrated in Fig. 3, where the random variables

form the Markov chain . This setting cor-
responds to the case where and exchanging between
and . Let us denote by the (operational) achiev-
able region.

Let be the set of all rate pairs that
satisfy

(27)

(28)

for some joint distribution of the form

(29)

(30)

where and are auxiliary random variables, and the recon-
struction variable is a deterministic function of the triple

. The next lemma states properties of .
It is the analog of Lemma 2 and, therefore, omitted.

Lemma 6:
1) The region is convex
2) To exhaust , it is enough to restrict the alpha-

bets of and to satisfy

(31)

Theorem 7: The achievable rate region for the setting illus-
trated in Fig. 3, where are i.i.d. triplets distributed
according to the random variables forming the Markov
chain is

(32)

Proof: Achievability: The proof follows classical argu-
ments, and therefore the technical details will be omitted. We de-
scribe only the coding structure and the associated Markov con-
ditions. The helper (encoder of ) employs Wyner–Ziv coding
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with decoder side information and external random variable
, as seen from (27). The Markov conditions required for such

coding, , are satisfied, hence the source encoder,
can recover the codewords constructed from . Moreover, since
(29) implies , the decoder, at the destination, can
also reconstruct . Therefore, in the coding/decoding scheme
of serves as side information available at both sides. The
source encoder now employs Wyner–Ziv coding for , with
decoder side information , coding random variable , and
available at both sides. The Markov conditions needed for this
scheme are , which again are satisfied by (29).
The rate needed for this coding is , reflected in the
bound on in (28). Once the two codes (helper and source code)
are decoded, the destination can use all the available random
variables, , and the side information , to construct .

Converse: Assume that we have a code for a source with
helper and side information at rate . We will show
the existence of a triple that satisfy (27)–(30). Denote

, and .
Then

(33)

where (a) and (b) follow from the Markov chain
(see Fig. 5 for the

proof), and (c) follows from the fact that conditioning reduces
entropy. Consider

(34)

Fig. 5. Graphical proof of the Markov chain � � �� � � �� �� � � �
�� �� �. The undirected graph corresponds to the joint distri-
bution ��� � � ���	 � � ���� � � ���	 � � ���� � � �
��	 � � ���
 � 	 �. The Markov chain holds since all paths from �

to � �� pass through �� � � �� ��� �. The nodes with the
open circle, i.e., �, constitute the middle term in the Markov chain, i.e.,
�� � � �� �� � � and all the other nodes are with solid circles, i.e., �. The
nodes � � � � � and � are connected due to the term ��
 � 	 �.

Fig. 6. Graphical proof of the Markov chain� ��� � � �� �� � ��
�� � � �, which implies � � �� �� � � �� � � �. The undirected graph
corresponds to the joint distribution ��� � � ���	 � � ���� � � �
��	 � � ���� � � ���	 � � ���
 � 	 �. The Markov chain holds
since all paths from � to �� � � � pass through �� � � �� ��� �.

where (a) is due to the Markov chain
(this can be seen from Fig. 5 since all paths from

to goes through ), and (b) is due to the fact
that conditioning reduces entropy. Now let us denote

, and . The
Markov chains and
hold (see Fig. 6 for the proof of the last Markov relation).

Next, we need to show that there exists a sequence of function
such that

(35)

By assumption we know that there exists a sequence of functions
such that

, and trivially this implies that there exists a sequence of
functions such that

(36)

Note that the Markov chain
holds (see Fig. 7 for the proof), hence there exists a func-
tion deterministic function and a random variable ,
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Fig. 7. Graphical proof of the Markov chain� ��� �� �� � � ��� .
The undirected graph corresponds to the joint distribution
��� � � ���� � � ���� � � ���� � � ���� � � ���� � � �
��	 � � ���	 �� � 	 �. The Markov chain holds since all paths from � to
� pass through �� �� � � � � �.

which is independent of such that
. Therefore

(37)

and since the RHS of (37) includes only the random variables
we conclude that there exists a sequence of

functions for which (35) holds.
Finally, let be a random variable independent of

, and uniformly distributed over the set
. Define the random variables
, and ( is a short notation for

time sharing over the estimators). Then (33)–(35) implies that
(27)–(30) hold.

VI. PROOF OF THEOREM 1

In this section we prove Theorem 1, which states that
the (operational) achievable region of the
two-way source coding with helper problem as in Fig. 1 equals

. In the converse proof, we use the ideas used in
proving the converses of Theorems 4 and 7. Namely, we will
use the chain rule based on the past and future, and will show
that , where is defined
as in (1)–(5) but with one difference: the term

in (4) should be replaced by , i.e.

(38)

The following lemma states that the two regions and
are equal.

Lemma 8: .

Fig. 8. Graphical proof of the Markov chain 
 � ����� � � � � . The
undirected graph corresponds to the joint distribution given in (39), i.e.,
����� �� �� 
� �� �� � ���� ����� � ����
 � ����� �
� ������ �
� �� �� ��. The
Markov chain holds since there is no path from � to 
 that does not pass
through ����� � �.

Proof: Trivially, we have . Now
we prove that . Let

, and

(39)

be a distribution that satisfies (1)–(3) and (5). Next we show that
there exists a distribution of the form of (4) (which is explicitly
given in (39)) such that (1)–(3) and (5) hold. Let

(40)

where is induced by . We show
that all the terms in (1)–(3) and (5) i.e.,

,
and are the same whether we evaluate
them by the joint distribution of (40), or by

of (39); hence .
In order to show that the terms above are the same it is
enough to show that the marginal distributions
and induced by are
equal to the marginal distributions and

induced by . Clearly
. In the rest of the proof

we show .
A distribution of the form as given in (39)

implies that the Markov chain holds (see
Fig. 8 for the proof). Therefore .
Since , and since

and
we conclude that .

Proof of Theorem 1: Achievability: The achievability
scheme is based on the fact that for the two special cases con-
sidered above, namely and , the coding scheme
for the helper was based on a Wyner–Ziv scheme, where the
side information at the decoder is the random variable that is
“further” in the Markov chain , namely . The helper
(encoder of ) employs Wyner–Ziv coding with decoder side
information and external random variable , as seen from
(1), i.e., . The Markov conditions required
for such coding, , are satisfied, hence the source
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decoder, at the destination, can recover the codewords con-
structed from . Moreover, since (29) implies ,
the encoder of can also reconstruct . Therefore, in the
coding/decoding scheme of serves as side information
available at both sides. The source encoder now employs
Wyner–Ziv coding for , with decoder side information ,
coding random variable , and available at both sides. The
Markov conditions needed for this scheme are ,
which again are satisfied by (4). The rate needed for this
coding is , reflected in the bound on in
(2). Finally, the source encoder now employs Wyner–Ziv
coding for , with decoder side information , coding random
variable , and available at both sides. The Markov
conditions needed for this scheme are ,
which again are satisfied by (4). The rate needed for this coding
is , reflected in the bound on in (3). Once
the codes are decoded, the destination can use all the available
random variables, at User X, and, at User
Z, to construct and , respectively.

Converse: Assume that we have a
code. We now show the existence of a triple
that satisfy (1)–(5). Denote ,
and . Then using the same arguments as in
(33) and (34) (just exchanging between and ), we obtain

(41)

(42)

respectively. For upper-bounding , consider

(43)

where equality (a) is due to the Markov chain
(see Fig. 9). Now let us de-

Fig. 9. Graphical proof of the Markov chain � �
�� �� � � � � � � � . The undirected graph corre-
sponds to the joint distribution ��� � � � ��� � � �
��� � � � ��� � � � ��� � � � ��� � � � ��	 � � � ��	 � � � 	 �.
The Markov chain holds since all paths from � to � pass through
�� �� � � � � �.

note and , and we
obtain from (41)–(43)

(44)

Now, we verify that the joint distribution of
is of the form (38), i.e.,

and
, hold. The Markov chain

trivially holds, and the
Markov chains

(45)

(46)

are proven in is proven in Figs. 10 and 11, respectively.
Next, we show that there exist sequences of functions

, and such that

(47)

The only difficulty here is that the terms in do
not include and the terms do not include

. However, this is solved by the same argument as
for the Wyner–Ziv with helper at the end of Section V, by
showing the Markov forms and

for which the proofs are given in
Figs. 12 and 13, respectively.

Finally, let be a random variable independent of
, and uniformly distributed over the set

. Define the random variables
, and . Then

(44)–(47) imply that the equations that define i.e.,
(1)–(5), hold.
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Fig. 10. Graphical proof of the Markov chain � �
�� �� ��� �� � � �� �� �. The undirected graph corre-
sponds to the joint distribution ��� � � � ��	 � � �
��� � � � ��	 �� � ��� � � � ��	 �� � ��
 �	 �� The Markov chain
holds since all paths from � to �� �� � pass through �� �� � � �.

Fig. 11. Graphical proof of the Markov chain � �
�� �� �� � �� � � �� � � � � � � � � . The undirected graph
corresponds to the joint distribution ��� � 	 ���� � 	 �
��� � 	 � ��� � 	 � ��� � 	 � ��� � 	 � ��
 � 	 � ��
 � � � 
 �.
The Markov chain holds since all paths from � to � pass through
�� �� �� � �� � � �� � � � � � �.

VII. TWO-WAY MULTI STAGE

Here we consider the two-way multistage rate-distortion
problem with a helper. First, the helper sends a common mes-
sage to both users, and then users and send to each other
a total rate and , respectively, in rounds. We use the
definition of two-way source coding as given in [1], where
each user may transmit up to messages to the other user that
depends on the source and previous received messages.

Let denote a set of positive integers and let
the collection of sets .

Definition 4: An code for two
sources and with helper consists of the encoders

(48)

and two decoders

(49)

such that

(50)

Fig. 12. Graphical proof of the Markov chain � � �� �
 �� ��� �

The undirected graph corresponds to the joint distribution
��� � � ���	 � � ���� � � ���	 � � ���� � � �
��	 � � � ��
 � 	 ���
 �� � 
 �. The Markov chain holds since all
paths from � to � pass through �� �� �� � �� �� �� � � � �.

Fig. 13. Graphical proof of the Markov chain � �
�� �� �� � �� �� ��� � � � � � . The undirected graph
corresponds to the joint distribution ��� � � ���	 � � ���� � � �
��	 �� � ��� � � � ��	 �� � ��
 � 	 � ��
 � � � 
 �. The Markov
chain holds since all paths from � to � pass through
�� �� �� � �� �� ��� � � �.

The rate triple of the code is defined by

(51)

Let us denote by the (operational) achievable
region of the multistage rate distortion with a helper, i.e., the
closure of the set of all triple rate that are achiev-
able with a distortion pair . Let be the
set of all triple rates that satisfy

(52)

(53)

(54)

for some auxiliary random variables that satisfy

(55)

(56)

(57)

(58)



2914 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

Fig. 14. Two-way multistage with a helper. First Helper Y sends a common
message to User X and to User Z at rate� , and then we have� rounds where
in each round � � ��� � � � � �� User Z sends a message to User X at rate� ,
and User X sends a message to User� at rate� . The limitation is on rate�
and on the sum rates � � � and � � � . We assume
that the side information � and the two sources ��� are i.i.d. and form the
Markov chain � �� � � .

The Markov chain and the Markov chains
given in (55)–(57) imply that the joint distribution of

is of the form
. Furthermore,

(53) and (54) can be written as

(59)

(60)

due to the Markov chains and
.

Lemma 9:
1) The region is convex.
2) To exhaust , it is enough to restrict the al-

phabet of , and to satisfy

(61)

The proof of the lemma is analogous to the proof of Lemma 2
and, therefore, omitted.

Theorem 10: In the two-way problem with stages of com-
munication and a helper, as depicted in Fig. 14, where

(62)

Theorem 10 is a generalization of Theorem 1 [(52)–(58)
where are equivalent to (1)–(5)] and its proof is a
straightforward extension. Here we explain only the extensions.

Sketch of achievability: In the achievability proof of
Theorem 1, we generated the sequences
that are jointly typical with . Using the same
idea of Wyner–Ziv coding we continue and generate at any
stage , the sequence that is jointly typ-
ical with the other sequences by transmitting a message
at rate from User Z to User
X, and similarly the sequence that is jointly typical
with the other sequences by transmitting a message at rate

from User X to User Z. In the
final stage, User X uses the sequences
to construct and, similarly, User Z uses the sequences

to construct .
Sketch of Converse: Assume that we have an

code and we will show the
existence of a vector that satisfy
(52)–(58). Denote ,
and . Then the same arguments as
in (41) we obtain

(63)

Then we have

(64)

(65)

Applying the same arguments as in (42) and (43) on the terms
in (64) and (65), respectively, we obtain that

(66)

We define the auxiliary random variables as
and , where

is distributed uniformly on the integers (indepen-
dent of all else).

VIII. GAUSSIAN CASE

In this section we consider the Gaussian instance of the two
way setting with a helper as defined in Section III and explicitly
express the region for a mean square error distortion.

Since form the Markov chain , we assume,
without loss of generality, that and ,
where the random variables are zero-mean Gaussian
and independent of each other, where

and .

Corollary 11: The achievable rate region of the problem il-
lustrated in Fig. 15 is

(67)

(68)
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Fig. 15. Gaussian two-way with a helper. The side information � and the two
sources��� are i.i.d., jointly Gaussian and form the Markov chain � ���� .
The distortion is the square error, i.e., � �� � �� � � �� �

�� �

and � �� � �� � � �� �

�� � .

Fig. 16. Gaussian case: the zero-mean Gaussian random variables���� � are
i.i.d. and independent of each other. Their variances are� � � and � , respec-
tively. The source� and the helper� satisfy� � ��� and � � �����.
The distortion is the square error, i.e., ��� � �� � � �� �

�� � .

and the multi stage option as presented in Section VII does not
increase the rate region for quadratic Gaussian case.

Proof: The converse and achievability of (67) follows from
the Gaussian Wyner–Ziv coding [20] result, which states that the
achievable rate for the Gaussian Wyner–Ziv setting is the same
as the case where the side information is known to the encoder
and decoder. Namely, even if is known to User , the rate
won’t change; this also implies that a multi stage setting wont
influence the total rate that is achievable and hence the whole
achievable region. Furthermore, because of the Markov chain

, the rate does not have any influence on ,
since this rate is the achievable rate even if is known to both
users. The achievability and the converse for is given in the
following corollary.

Corollary 12: The achievable rate region of the problem il-
lustrated in Fig. 16 is

(69)

It is interesting to note that the rate region does not depend
on . Furthermore, we show in the proof that for the Gaussian
case the rate region is the same as when is known to the source

and the helper .

Proof of Corollary 12: Converse: Assume that both en-
coders observe . Without loss of generality, the encoders can
subtract from and ; hence the problem is equivalent to

new rate distortion problem with a helper, where the source is
and the helper is . Now using the result for the Gaussian
case from [8], adapted to our notation, we obtain (69).

Achievability: Before proving the direct-part of Corollary
12, we establish the following lemma which is proved in
Appendix C.

Lemma 13: (Gaussian Wyner–Ziv rate-distortion problem
with additional side information known to the encoder and
decoder). Let be jointly Gaussian. Consider the
Wyner–Ziv rate distortion problem where the source is to be
compressed with quadratic distortion measure, is available
at the encoder and decoder, and is available only at the
decoder. The rate-distortion region for this problem is given by

(70)

where , i.e., the minimum
square error of estimating from .

Let , where and is
independent of . Clearly, we have .
Now, let us generate at the source-encoder and at the decoder
using the achievability scheme of Wyner [20]. Since

a rate would suffice, and it
may be expressed as follows:

(71)

and this implies that

(72)

Now, we invoke Lemma 13, where is the side information
known both to the encoder and decoder; hence, a rate that satis-
fies the following inequality achieves a distortion

(73)

Finally, by replacing with the identity in (72) we obtain
(69).

IX. FURTHER RESULTS ON WYNER–ZIV WITH A HELPER

WHERE

In this section we investigate two properties of the rate-region
of the Wyner–Ziv setting (Fig. 17) with a Markov form

. First, we investigate the tradeoff between the rate sent by the
helper and the rate sent by the source and roughly speaking we
conclude that a bit from the source is more “valuable” than a bit
from the helper. Second, we examine the case where the helper
has the freedom to send different messages, at different rates, to
the encoder and the decoder. We show that “more help” to the
encoder than to the decoder does not yield any performance gain
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Fig. 17. Wyner–Ziv problem with a helper where the Markov chain � ����
holds.

and that in such cases the freedom to send different messages to
the encoder and the decoder yields no gain over the case of a
common message. Further, in this setting of different messages,
the rate to the encoder can be strictly less than that to the decoder
with no performance loss.

A. Bit From the Source-Encoder versus a Bit From the Helper

Assume that we have a sequence of codes that
achieves a distortion , such that the triple is on
the border of the region [recall the definition of

in (15)–(17)]. Now, suppose that the helper is
allowed to increase the rate by an amount to ;
to what rate can the source-encoder reduce its rate and
achieve the same distortion ?

Despite the fact that the additional rate is transmitted both
to the decoder and encoder, we show that always . Let
us denote by the boundary of the region
for a fixed . We formally show that by proving that
the slope of the curve is always less than 1. The proof
uses similar technique as in [21].

Lemma 14: For any , and , the subgradients
of the curve are less than 1.

Proof: Since is a convex set, is a
convex function. Furthermore, is nonincreasing in .
Now, let us define as

(74)

where is the set of distributions satisfying

. The line
is a support line of , and therefore,

is a subgradient. The value is the intersection between
the support line with slope and the axis , as shown in
Fig. 18. Because of the convexity and the monotonicity of

is upper-bounded by , i.e.

(75)

where is the set of distributions that satisfies

.

Fig. 18. Support line of��� � with a slope��. � � ��� is the intersection of
the support line with the � axis.

Fig. 19. Rate distortion problem with decoder side information, and indepen-
dent helper rates. We assume the Markov relation � �� � � .

In addition, we observe that

(76)

where step (a) is due to the Markov chains and
. Combining (75) and (76), we conclude

that for any subgradient . Since is
increasing in , we conclude that .

An alternative and equivalent proof would be to claim that,
since is a convex and non increasing function,

, and then to claim that the largest slope at is
when , which is 1. For the Gaussian case, the derivative
may be calculated explicitly from (69), in particular for ,
and we obtain

(77)

B. Case of Independent Rates

Here, we treat the rate distortion scenario where side infor-
mation from the helper is encoded using two different messages,
possibly at different rates, one to the encoder and one to the de-
coder, as shown in Fig. 19. The complete characterization of
achievable rates for this scenario is still an open problem. How-
ever, the solution that is given in previous sections, where there
is one message known both to the encoder and decoder, provides
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us insight that allows us to solve several cases of the problem
shown here. We start with the definition of the general case.

Definition 5: An code for source with
side information and different helper messages to the encoder
and decoder, consists of three encoders

(78)

and a decoder

(79)

such that

(80)

To avoid cumbersome statements, we will not repeat in the
sequel the words“ different helper messages to the encoder
and decoder,” as this is the topic of this section, and should
be clear from the context. The rate pair of the

code is

(81)

Definition 6: Given a distortion , a rate triple
is said to be achievable if for any , and sufficiently large

, there exists an code
for the source with side information .

Definition 7: The (operational) achievable region of
rate distortion with a helper known at the encoder and decoder
is the closure of the set of all achievable rate triples at distortion

.
Denote by the section of at helper

rates . That is

(82)

and similarly, denote by the section of the region
, defined in (15)–(18) at helper rate . Recall

that, according to Theorem 4, consists of all achiev-
able source coding rates when the helper sends common mes-
sages to the source encoder and destination at rate . The main
result of this section is the following.

Theorem 15: For any

(83)

Theorem 15 has interesting implications on the coding strategy
taken by the helper. It says that no gain in performance can
be achieved if the source encoder gets “more help” than the

decoder (i.e., if ), and thus we may restrict to be
no higher than . Moreover, in those cases where ,
optimal performance is achieved when the helper sends to the
encoder and decoder exactly the same message. The proof of
this statement uses operational arguments.

Proof of Theorem 15: Clearly, the claim is proved once we
show the statement for . In this situation, we can
equally well assume that the encoder has full access to . Thus,
fix a general scheme like in Definition 5 with .
The encoder is a function of the form . Define

. The Markov chain implies that
also forms a Markov chain. This implies, in

turn that there exists a function and a random variable ,
uniformly distributed in and independent of ,
such that

(84)

Thus the source encoder operation can be written as

(85)

implying, in turn, that the distortion of this scheme can be ex-
pressed as

(86)

where (a) holds since is independent of , and
(b) by defining

(87)

Note that for a given , the function is of the form of
encoding functions where the helper sends one message to the
encoder and decoder. Therefore, we conclude that anything
achievable with a scheme from Definition 5, is achievable by
time-sharing where the helper sends one message to the encoder
and decoder.

The statement of Theorem 15 can be extended to rates
slightly lower than . This extension is based on the simple
observation that the source encoder knows , which can serve
as side information in decoding the message sent by the helper.
Therefore, any message sent to the source decoder can un-
dergo a stage of binning with respect to . As an extreme ex-
ample, consider the case where . The source
encoder can fully recover , hence, there is no advantage in
transmitting to the encoder at rates higher than ; the
decoder, on the other hand, can benefit from rates in the region

. This rate interval is not empty
due to the Markov chain . These observations are
summarized in the next theorem.
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Theorem 16:
1) Let achieve a point in , i.e.,

(88)

(89)

(90)

Then for every satisfying

(91)

2) Let be an outer point of . That is

(92)

Then is an outer point of for any ,
i.e.,

(93)

The proof of Part 1 is based on binning, as described above.
In particular, observe that given in (91) is lower than of
(88) due to the Markov chain . Part 2 is a
partial converse, and is a direct consequence of Theorem 15.
The details, being straightforward, are omitted.

APPENDIX A
PROOF OF THE TECHNIQUE FOR VERIFYING

MARKOV RELATIONS

Proof: First let us prove that three random variables
, with a joint distribution of the form

(94)

satisfy the Markov chain . Consider

(95)

and since the expression does not include the argument we
conclude that .

For the more general case, we first extend the sets .
We start by defining and , and then we add
to and to all their neighbors that are not in (a
neighbor to a group is a node that is connected by one edge to
the an element in the group). We repeat this procedure till there
are no more nodes to add to or . Note that since there
are no paths from to that do not pass through ,
then a node can not be added to both sets and . The set
of nodes that are not in is denoted as .

The sets and and are connected only to
and not to each other, hence the joint distribution of

is of the following form:

(96)

By marginalizing over and using the claim introduced in
the first sentence of the proof we obtain the Markov chain

, whcih implies .

APPENDIX B
PROOF OF LEMMA 2

Proof: To prove Part 1, let be a time sharing random
variable, independent of the source triple . Note that

where , and in step (a) we used the fact that is
independent of . This proves the convexity.

To prove Part 2, we invoke the support lemma [22, p. 310]
three times, each time for one of the auxiliary random variables

. The external random variable must have
letters to preserve plus five more to preserve the expres-
sions and the
distortions . Note
that the joint is preserved because of the Markov
form , and the structure of the joint distri-
bution given in (4) does not change. We fix , which now
has a bounded cardinality, and we apply the support lemma
for bounding . The external random variable must have

letters to preserve plus four more to preserve
the expressions and the
distortions . Note
that because of the Markov structure the
joint distribution does not change. Finally, we fix

which now have a bounded cardinality and we apply the
support lemma for bounding . The external random variable

must have letters to preserve plus
two more to preserve the expressions and
the distortions . Note that because of the
Markov structure the joint distribution

does not change.

APPENDIX C
PROOF OF LEMMA 13

Since are jointly Gaussian, we have
, for some scalars . Furthermore, we have

(97)

where is a Gaussian random variable independent of
with zero mean and variance . Since is known to
the encoder and decoder we can subtract from , and then
using Wyner–Ziv coding for the Gaussian case [20] we obtain

(98)

Obviously, one can not achieve a rate smaller than this even if
is known both to the encoder and decoder, and therefore this

is the achievable region.
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