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Tighter Bounds on the Capacity of Finite-State
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Abstract—The theory of Markov set-chains is applied to derive
upper and lower bounds on the capacity of finite-state channels
that are tighter than the classic bounds by Gallager. The new
bounds coincide and yield single-letter capacity characterizations
for a class of channels with the state process known at the receiver,
including channels whose long-term marginal state distribution
is independent of the input process. Analogous results are estab-
lished for finite-state multiple access channels.

Index Terms—Channel capacity, finite-state channel, Markov
set-chains, multiple access channels.

1. INTRODUCTION

ONSIDER a finite-state channel with transition proba-

bility Py, s,|x,s,_,,» where X; € X, Y; € V,and S; € §
are respectively the channel input, the channel output, and the
channel state at time ¢t. We assume that the channel is time-in-
variant, i.e., the transition probability Py, 5, x,s, , does not de-
pend on t. Moreover, |X|, ||, |S| are assumed to be finite,
where |A| denotes the cardinality of A for any set .A.

The capacity analysis of this channel model has received
considerable attention due to its theoretical significance and
practical implications [1]-[11]. A nice review of prior work
on this subject, particularly regarding the simulation-based
methods and related analytical results, can be found in [10] (see
also [11]). In this work, we shall develop a new technique, based
on the theory of Markov set-chains, to tackle this long-standing
problem.

Denote the channel capacity as C'. The capacity of finite-state
channels can be characterized using the information spectrum
method [12]; however, the resulting capacity formula is in gen-
eral not computable. Moreover, the exact value of C may depend
on the specific assumptions adopted in the definition of channel
capacity, which include the realization of the initial state as well
as the transmitter and receiver’s knowledge of the initial state.
To circumvent these subtle technical issues, we shall focus on
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the computable capacity bounds that are robust to such small
variations in the definition of channel capacity. Define

— 1
C = lim maxmax —1 (Xf;YﬂSO = 30)
k—oo Xf so k

1
C = lim max min EI (Xf;Y1k|SO = 50) -

k—oo Xf S0

It was shown in [3] that

c<C<C M
and the inequalities in (1) become equalities for indecomposable
channels. It is worth noting that (1) is valid for any initial state
So; moreover, (1) is also valid whether or not the transmitter and
the receiver know the initial state. Define

— 1 1
Ch = maxmax -1 (XT:YF|S0 = s0) + - log IS| (@)
xk so
1 k.yk 1
C}), = maxmin EI (XT3 Y|S0 = s0) — Elog IS|. 3
50

xt
It was shown in [3] that

kh—>n;o Ci = ugf C

C =
C= lim C;, =supd,,.
k—o0 k

Therefore, we have

C,<C<C<C<C )

for all £ > 1. Note that (4) provides computable finite-letter
upper and lower bounds on the channel capacity, and for in-
decomposable channels, the bounds are asymptotically tight as
k — oo. However, the complexity of computing C and C,,
increases rapidly as k gets larger. Therefore, it is desirable if
the bounds given by C, and C), are tight enough even for small
k (ideally, k = 1). Unfortunately, C', and C,, often give loose
bounds for small k. First of all, the gap between Crand C  isat
least 2 log |S|, which is not negligible for small & (particularly if
the state space S is large). Furthermore, C', and C';, do not coin-
cide even when the second terms in (2) and (3) (i.e., i% log |S])
are removed. Indeed, since the behavior of the channel can be
dramatically different in different states, the difference between
the first terms in (2) and (3) can be as large as log|X| when
k=1

To see a possible direction for improving the upper and lower
bounds, it is instructive to write (2) and (3) in a slightly different
form. Let P(A) denote the set of probability distributions on
A for any finite set .A. Moreover, for any finite sets .A and B,
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let P(A) x P(B) = {Pasn
P(B) such that Pap(a,b)
A,b € B}. It s easy to verify that

: there exist P4 € P(A), Pg €
Ps(a)Pp(b) for alla €

— 1
Cr = max max —I(XF;YFS0)

Py
Xt p, ‘Xkeg( Pyt P(S)

+ r}r%x kH(S(]) 5)
1
C, = max min =1 (X1 Y1]S0)

PX“' ,
U Py xk€Q( Py P(S)

1
— max —H(Sy) (6)

50 K

2

and Q'(Py:, P(S)) = {psole : Pyrg, € P(X%) 73(5)}.
Note that any probability distribution on X* x S can be
thought of as a convex combination of probability distri-
butions that are degenerate on (i.e., assign probability one
to) a certain element of X* x S; each of these degen-
erate distributions is trivially in P(X*) x P(S). There-
fore, we have P(X* x §) conv(P(X*) x P(S)),
where conv(P(X*) x P(S)) denotes the convex hull of
P(X*) x P(S). We shall redefine Q(lek,’P(S)) as
{Psole : Pxrg, € conv(P(X*) x 73(8))} to make its de-

pendency on P(S) explicit. More generally, for any nonempty
compact set B C P(S), we define

where Q(Py,P(S)) = {Psole : Pyrs, € P(X* x 3)}

(N
t Pxrs, € P(x*) x conv(B)} .

®

Q' (Py;B) = { Psyx

A simple application of Carathéodory’s theorem shows that
each point in conv(B) can be represented as a convex com-
bination of no more than |S| points in B, and each point in
conv(P(X*) x B) can be represented as a convex combination
of no more than |X|¥|S| points in P(X*) x B. Moreover,
since for any P\ks € P(X*) x conv(B), there exist m € N,

€ [0,1], andP €B,i=1,...,m,suchthaty ;" p; =1
and

Pxrs, (371 30 PXk 5171 ZMPO

Z PXA :I?l P()(So)
kEXk, So €S

we have Pyig, € conv(P(X k) x B), which further implies
conv(P(X*) x B) = conv(P(X*) x conv(B)).

Although writing CrandC & in the form of (5) and (6) is more
cumbersome, once interpreted correctly, it offers an interesting
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new perspective and suggests possible directions for further im-
provement. Note that Sy in (2) and (3) can be naturally inter-
preted as the channel state at time ¢ = 0, and the basic intuition
is that upper and lower bounds on the channel capacity can be
derived by choosing the best and the worst initial states. On the
other hand, Sy in (5) and (6) is better interpreted as the channel
state at time ¢ with £ — oo (due to a time-shifting argument
which will be clear later). Now to derive upper and lower bounds
on the channel capacity, one has to optimize over all possible
distributions of the channel state as ¢ — oo. However, since the
state process can be affected by the channel input, the limiting
marginal distribution of the state process is hard to determine.
To circumvent this difficulty, one may simply allow Ps, to be
any probability distribution from P(S). This is exactly the intu-
ition underlying (5) and (6). It will be seen that, to derive tighter
capacity bounds, one crucial idea is to find an effective estimate
of P So -

Note that X¥ and S are allowed to have an arbitrary joint
distribution in (5) while they are assumed to be independent in
(6). This difference may seem artificial since C'y, is unaffected if
in (5) we replace Q (PX{- , P(S)) with @’ (PXf , 73(8)). The
purpose of choosing the current form is to motivate the fact that
the set of admissible probability distributions PXf s, for C), is
exactly the convex hull of that for C.. Indeed, this relation will
be preserved in the tightened upper and lower bounds with P(S)
replaced by smaller compact sets.

The main contribution of this paper is a set of new finite-letter
upper and lower bounds on the channel capacity. Specifically,
we derive new upper and lower bounds C,(cj and CkL, satisfying

C,<CE<c<0c<C<Cl<C

where

CY = maxmax
xk s

max

1 4
EI (X7 Y7]S0)
PSO\X{"GQ(PX

k 7-’45)

1

1
k

CkL = max min
P, s
Xl

H(So) ©)

min

1 .
EI(Xf§Y1k|SO)
SOWAGQ ( Xk VA )

~ La(sy)

2 (10)

and the sets A; (s € S), to be specified later, are used to capture
the limiting marginal distribution of the state process. Similar
to (5) and (6), Sy in (9) and (10) should be interpreted as the
channel state at time ¢ with ¢ — oo rather than the channel state
at time ¢ = 0.

Due to the channel memory, the channel capacity is inti-
mately related to the long-term behavior of the state process.
For the special case in which the state process is unaffected by
the channel input, i.e., Ps,|x,s, , (5¢|¢, s:—1) does not depend
on z; for all z; € X and all s;_1, s; € S, the state process is a
homogeneous Markov chain, and its long-term behavior is well
understood. However, for the general case, the state process
depends on the channel input, which makes the problem more
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intricate. Fortunately, the theory of Markov set-chains allows us
to obtain useful information! regarding the long-term behavior
of the state process without knowing the channel input. The
new capacity bounds are derived by effectively exploiting this
information. In contrast, such information is not used in C'y, and
C.- By comparing (5) with (9) [as well as (6) with (10)], one
can see two improvements. The first improvement, a relative
minor one, results from the fact that the two terms in (5) [as
well as in (6)] are decoupled while the two terms in (9) [as well
as in (10)] are coupled. The second improvement is achieved by
replacing P(S) with A;. Indeed, the key conceptual difference
between the new bounds and the old bounds is succinctly
manifested in this second improvement.

The rest of this paper is organized as follows. In Section II,
we review some basic definitions and results from the theory of
Markov set-chains. Along the way, we also derive a few new
results, which will be useful for the later development. New fi-
nite-letter upper and lower bounds on the channel capacity are
derived in Section III. The capacity bounds are further tightened
for the case where the state process is known at the receiver.
It is shown that these bounds coincide for a class of channels,
yielding a single-letter capacity formula. Analogous results are
derived for finite-state multiple access channels in Section IV.
Several illustrative examples are given in Section V. We con-
clude the paper in Section VI. Throughout this paper, the loga-
rithm function is to the base two.

We summarize below a few basic definitions that are used
frequently in this paper. For two nonempty sets A, B C R™ and
a scalar ¢ € R, define

A+B={A+B:Ac A BecB}
cA={cA: Ae A}

Let By, Bs, . .. be a sequence of nonempty sets in R™. Define
the equation shown at the bottom of the page, where || - || is
the L' norm. If hm sup B = hm 1nf B, = B, we shall write

lnn Br = B, and [ refer to lnn Bk as the sequential limiting

k—
set ofBl,Bz
D5 in R™, let

.. For any two nonempty compact sets D; and

Dy, Dy) = D
§(D1, D) = max min [|Dy —

d(Dl,Dg) = max(&(Dl,Dg), 5(@2@1))

Dyl

The function d(-,-) is called the Hausdorff metric. Note that
6(D1,D2) = 0 whenever Dy C D5, so while d(Dy, Ds) small

IThis information is contained in .A,.
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implies similarity between the sets Dy and Da, §(D1, D) small
does not.

II. MARKOV SET-CHAINS

A finite square matrix is called row-stochastic if all its entries
are non-negative and the sum of each row is 1. Without loss of
generality, we assume S = {1,2,...,|S|}. Foreach z € X,
we shall view Ps,|x, s,_, (-|2, ) as an |S| x |S| row-stochastic
matrix, the (4, j)-entry of which is equal to Ps,|x, s,_, (j], 1),
i,j € S.LetT = {Ps,x, 5, ,(-|,")}sex. Define 7' = T,
T2 = {Tsz . T17T2 € T}, T3 {T1T2T3 : T17T2,T3 €
7}, andsoon. Let G, = {G : G is the sth row of T,T €
T*} for s € S and k € N. Define A, = limsupgsk and

Al = hrn 1nf Gs,k for s € S. The properties of A and A’ are

summarlzed in the following lemma. The proof is straightfor-
ward and thus omitted.

Lemma 2.1:

D A, C A

2) A, is a nonempty compact set;

3) klirn 8(Gs .k, As) = 0;

4) Fgroo any nonempty compact set
hrn 6(Gs.x, B) = 0, we have A, C B;

5) A TC.AS,whereA T={AT:Ac A, TeT}

6) If A/ is a nonempty compact set, then khm O(AL, Gs k) =
0; o

7) For any nonempty compact set
lim 6(B',Gs k) = 0, we have B’ C A.

k—o0
Collecting all these properties, we obtain the following theorem.

B satisfying

B’ satisfying

Theorem 2.2:
1) A; = A, if and only if there exists a nonempty compact
set B such that khm d(Gs,k, B) = 0;

2) BT C A, forany B C A,.
Remark: Part 1) of Theorem 2.2 is a special case of [13, The-
orem 1].

Additional constraints on 7 are necessary in order to obtain
a finer characterization of A;. First of all, we need to introduce
a few definitions. A square row-stochastic matrix B = (B;;) is
regularif lim B™ exists and has rank one, in which case all its

n— 00

rows are the same. Define

AB)=1- nil,ijanin(Bik, Bji).

lim sup By, = {B : there exists a subsequence By, , By,, . ..

k—oo

such that lim ||Bg, — B|| =0}
likm inf By, ={B’

: there exists a sequence By, Bo, ...

with By, € By, and k, — o0 as n — o0

with By, € By, such that klim |Br — B'|| =0}
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It can be shown [15] that

1

MNB) = 5 H}%XZ |Bir, — Bj| = max ||vB]| (11)
’ k

where the maximization is taken over row vectors satisfying
lvll = 1and >, = 0. We call B a scrambling matrix
if A(B) < 1. It is known [14] that scrambling matrices are
regular, but not all regular matrices are scrambling; moreover,
if one or more matrices in a product of square row-stochastic
matrices is scrambling, so is the product. Let By, Bs, ... be a
sequence of square row-stochastic matrices. Define P("™") =
BBt ... Byn. We say that the sequence B1, Bo, ... is
weakly ergodic if
Tim P — P = 0

for all m, i, j, k. We say the set-chain 71,72, ... is uniformly
weakly ergodic if for any € > 0 there is an N such that any
P™ =1y .. T, withn > Nand Ty, ..., T, € T satisfies

R R

ax
i3,k
Theorem 2.3: The following conditions are equivalent:

1) All finite products of matrices from 7 are regular;

2) There exists a finite NV such that for all n» > N all products
of n matrices from 7 are scrambling;

3) Every sequence of matrices from 7 is weakly ergodic;

4) There exists a finite N such that for all n > N all prod-
ucts of n matrices from 7 have a column with all entries
nonzero;

5) The set-chain 71,72, ... is uniformly weakly ergodic.
Proof: The equivalence of the first four conditions is

known [16]. Wolfowitz [17] proved that Condition 1) implies
Condition 5). It is clear that Condition 5) implies Condition 3).
Therefore, all these five conditions are equivalent. [ |

Remark: Condition 4) is equivalent to Gallager’s definition
of indecomposable channels [3]. Thomasian [18] proposed an
algorithm that can determine, in finite number of steps, whether
Condition 1) is satisfied.

For any square row-stochastic matrix 7" with a stationary dis-
tribution 7, let II7 be a square matrix with rows equal to 7.

Theorem 2.4 1f all finite products of matrices from 7 are reg-
ular, then 71,72, ... converges to 72° in the Hausdorff metric,
where 75° = cl({llp : T € T™,m > 1}) (i.e., the closure of
{p : T eT™ m>1}).

Remark: This theorem is a special case of [13, Theorem 2].

The following corollary is a direct consequence of Theorem
2.2 and Theorem 2.4.

Corollary 2.5: If all finite products of matrices from 7 are
regular, then

Ay = AL = {the sthrow of T : T € T°}
and A, does not depend on s.

Theorem 2.6: 1If all finite products of matrices from 7 are
regular, then:
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1) A, is the unique nonempty compact subset of P(S) satis-
fying A, = A, T;
2) BT™ converges to A, in the Hausdorff metric with a geo-
metric rate independent of B for any nonempty compact
set B C P(S).
Remark: This result is a special case of [19, Theorem 1]. Part 1)
of Theorem 2.6 is particularly useful for obtaining an explicit
characterization of A, if there exists a natural candidate for A,
since one just needs to verify whether it is invariant under trans-
formation 7. However, in general A4 does not possess a simple
characterization; in this case one may use Part 2) of Theorem
2.6 to compute 4, numerically.
The following result, which is a direct consequence of The-
orem 2.6, provides a way to find inner and outer bounds on .A;.

Corollary 2.7: If all finite products of matrices from 7 are
regular, then:

1) A, C BT if A, C B:

2) A, C B for any nonempty compact set B C P(S) satis-
fying BT C B;

3) B C A, for any compact set B C P(S) satisfying B C
BT.
Proof: See Appendix A. ]

Remark: Let By = {7y : T € 7} and By = P(S). If all fi-
nite products of matrices from 7 are regular, then by Corollary
2.7 we have By7™ C A; C By7™ for any non-negative integer
n, where B;T° £ By, BoT° £ By. Moreover, it follows from
Part 2) of Theorem 2.6 that 317 ™ and B>7 ™ provide asymptot-
ically tight inner and outer bounds on .A; as n goes to infinity.

We have a complete characterization of A, for the following
special case.

Corollary 2.8: Let w be a probability distribution in P(S).
We have A, = {r} forall s € S if and only if all finite products
of matrices from 7 are regular, and 77 = « forall T' € 7.

Proof: In view of the fact that {w}7 = {x}, the “if” part
follows directly from Theorem 2.6.
Now we proceed to prove the “only if” part. Let

T = TT...T,, be an arbitrary finite product of matrices
from 7. Since A; = {n} forall s € S, it follows that lim 7™

exists and all its rows are equal to 7. The proof is complete. H

Intuitively, if the stationary distributions 7 (T° € 7)) are
close to each other, then A, should be small. This intuition is
formalized in the following corollary.

Corollary 2.9: Assume maxrer A(T) A < 1. Let
{r(T)}rer be a set of non-negative numbers satisfying
r(T") > ||lrr — wp|| + r(T)X(T) for all T,T7’ € T. Then
we have A; C B, where B = {B € P(S) : ||B — 77| <
r(T) forall T € T}.

Proof: Forany B € Band T,T' € T

|BT — 7pr|| < ||mp — 7o || + | BT — |
=lmg — 7 || + | BT — 7o T ||
<l|lmwr — 7w + | B = wr||A(T)
<l|lmr — 7| 4+ #(T)N(T)
<r(T")
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where the second inequality follows from (11). Therefore, we
have BT € B, which further implies B7 C B. Now the desired
result follows from Corollary 2.7. [ |

Remark: Specifically, we can choose r(T) = 7 = {2 for all
T € 7, where A = maxp et |70 — 7r ||

It will be clear that for the purpose of this paper, it suffices
to characterize conv(A;) (i.e., the convex hull of A;). This
problem turns out to be simpler.

Theorem 2.10: If all finite products of matrices from 7 are
regular, then conv(.A;) is the unique nonempty compact convex
set B C P(S) satisfying B = conv(BT).

Proof: This result can be proved by leveraging Theorem
2.6 and some basic properties of convex sets. The details can be
found in Appendix B. [ |

Remark: Note that for |S| = 2, any nonempty compact
convex set must be a line segment. In this case, one can charac-
terize A explicitly by solving a set of necessary and sufficient
algebraic conditions implied by Theorem 2.10. A concrete
example is given in Section V (see Example 5.1).

III. CAPACITY BOUNDS

Now we proceed to derive new finite-letter bounds on the
capacity of finite-state channels. For the ease of reference we
reproduce (9) and (10) below

CY = maxmax
xk 5
1 PSO\Xi"EQ Px{cyAs

max

1 R
EI (XT;YFS0)

1
+ EH(SO)

L . .
Ck = Imaximin min

1
Lr (kv )

1 ) Pso\z\'feg/(Pxf=AS)
1

— —H(Sp),

LH(S)),

where Q (PX;- , AS) and Q' (PX{c , AS) are defined in (7) and

(8), respectively. It is easy to verify that CY < C}, and CL >
Cy forall k > 1.

Theorem 3.1: C,(cj > C forall k > 1.
Proof: See Appendix C.

Corollary 3.2: C = inf cY = [Jim cy.

_Proof: This result follows directly from the fact that C =
iI;fC’k:klim Ch andC’kZC,g > Cforall k > 1. [ ]

Lemma 3.3: For any positive integers ki, ko, and
k= ki + kg, if Pxrg, € conv (P(X*) x A,) for
some s € S, then Pyr, g € conv (P(x*1) x A;) and
Pxr s, € conv (P(X]k?) X Aj), where Sy, is the channel

kl +1 . . . .. .
state at time k7 induced by the initial state Sy and channel input

Xk
i
Proof: See Appendix D. [ |
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Theorem 3.4: kC{ < kiCf + kyCf. for any positive inte-
gers ki, ko, and k = k1 + ko.
Proof: See Appendix E. ]
Remark: Theorem 3.4 implies that klim cY = irzf cy,
which is consistent with Corollary 3.2.
Now we proceed to derive lower bounds on the channel ca-
pacity.

Theorem 3.5: C,f < (Cforall k > 1.
Proof: See Appendix F. ]

Corollary 3.6: C = supCF =

k
Proof: This result follows directly from the fact that C' =
suka:klim Cpand C) < CF < Cforallk > 1. ]
k —00

lim CkL.
k—oo

Lemma 3.7: For any positive integer k, if Py g, € P(XF) x
conv(Ay) for some s € S, then Ps, € conv(A;), where Sy, is
the channel state at time & induced by the initial state S, and
channel input X¥.

Proof: See Appendix G. ]

Theorem 3.8: kCF > kyCF + kyCE, for any positive inte-
gers k1, ko, and k = k1 + ko.
Proof: See Appendix H. |

It is obvious that we can get other upper and lower capacity
bounds by replacing A; (s € S) with larger compact sets. This
fact is summarized in the following corollary.

Corollary 3.9: For any collection of nonempty compact sets
{B}ses satisfying A, C B, C P(S), s € S, see the equa-
tion shown at the bottom of the next page, where B = | Bs.

We have C,[c] < Cg({BS}SGS) < CE(B) < C} and C,f >
CE({Bs}ses) > CE(B) > C), forall k > 1.

The capacity bounds take a particularly simple form in the
following case.

Corollary 3.10: 1If there exists a probability distribution 7 €
P(S) such that A; = {r} forall s € S, then

1 E <k 1
oY = III’I)?;(E Z’/T(S())I (X1;Y1"[So = s0) + EH(’/T)
El)
1 . 1
O]f = maxE ZTI’(S())I (Xf,Y1k|S(] = So) — ZH(TF)

Prb B2

for all k > 1, where H(m) = — 3" _7(s) log 7(s). Specifically,

this condition is satisfied if and only if all finite products of

matrices from 7 are regular, and 7 = 7 forall T € 7.
Remark: In this case C — CF = 2H(7) < 2log S| for all

k > 1. Moreover, we have

1 .
O = Jim a3 wlso) T (X4 Y150 = s0)
1 S0
To demonstrate the usefulness of the new capacity bounds,
two illustrative examples are given in Section V (see Examples
5.2 and 5.3).
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Now we proceed to study the case where the state process
{S:}22, is known at the receiver. Although C{ and C¥ are
directly applicable here with Y}* replaced by (Ylk', S f) , it turns
out that one can derive better upper and lower bounds for this
scenario. Let C'° denote the channel capacity in this setting.
Define

_s . 1
C” = lim — maxmax]/ (Xf;Ylk,SﬂSo = 50)
k—oo PX{“ S0
1
C° = lim — maxminl (Xf;Y1k75f|50 = 50)
k—oo Xf S0
_s 1 k.vk ok
C}) = maxmax —J (Xl;Yl ,ST1S0 = 50)
Xf S0 k
1 ) .
Qf = maxmin —7J (Xf;Ylk,SﬂSo = 80)
Xf S0 ]C
1
C,f’U = rgaxmax max EI (Xf§Y1k>Sf|SO)
xp PSO‘X{CGQ(PA,{C,ASO)
1
C’,f’L — max min min -1 (Xf;Ylk,SﬂSo) :
PX{" So k

Psqixf €< (Pxi"ASO)

. . —S
In view of (1), it is clear that C° < C5 < C°, where the
inequalities become equalities for indecomposable channels.

The_osrem 3.11: s
1 C, > Cé’U > C" forall k >
2) Cy <Ot < C¥forallk > 1

Proof: See Appendix 1. [ |

Remark: For the case where the state process is not available
at the receiver, we have an additional term 3 H(Sy) in the ca-
pacity bounds. This term can be interpreted as the information
regarding { Sy, }5°_, that the genie provides to the receiver. For
the case where the state process is known at the receiver, the
role of genie becomes superfluous, and consequently the term
$H(So) can be dropped.

The results collected in the following theorem are easy to
verify. The proof is omitted.
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Theorem 3.12:

) kCyY < kiCPY + kO kCPT > ki O + ko C",
KOy, < 1Oy, + kaOy,, kCE > ki CF + kaC3, for any
positive integers k1, ko, and k = k1 + ko;
=5 . SU . ¢ A5 1 S U _ 1. =5

2) C = Hlifok = H/ifc’“ = khm oy = khm Chs

3) C° = sup C’,f’L = supr = klim C,f’L = klim Qf.

k k — 00 — 00
The new bounds yield a single-letter capacity formula for the
following case.

Theorem 3.13: 1f there exists a probability distribution 7 €
P(S) such that A; = {r} forall s € S, then

C}f,U — C];S.,L — CS
for all £ > 1.

Corollary 3.14: 1f all finite products of matrices from 7 are
regular, and 7 = 7 for all T' € 7, then

Ccs = I}Jlgj(ZW(so)I(Xl;Yl,SﬂSo =s0). (12

Proof: 1t is a direct consequence of Theorem 3.13 and
Corollary 2.8. ]

Remark: An illustrative example is given in Section V (see
Example 5.4).

Note that the condition in Theorem 3.13 (as well as Corollary
3.14) is fulfilled if the state process is a regular homogeneous
Markov chain independent of the channel input. In this case, we
have

CS = maXx W(So)I(Xl;Y1|Sl,SO = 80). (13)

S0

since T(X1; S1|S0 = so) = 0 for all 59 € S. However, the re-
verse is not true, i.e., A; = {m} forall s € S does not imply
that the state process is independent of the channel input. In-
deed, it is easy to construct finite-state channels for which the
channel input can affect the transition probability matrix of the
state process but not its limiting marginal distribution. For such
kind of channels, one cannot reduce (12) to (13) in general since
the state process can carry some information from the channel
input.

1 1
C,?({BS}SGS) = maxmax max EI (Xf;Y1k|SO) + EH(SO)
Xy PSO‘Xf.eQ(lek ,BS)
1 1
CE({B.}ses) = Ilrjlaxmin min EI (X{“;Ylk|5’0) — EH(SO)
X1 ) Pso\x{"eg/ (lek 768)
1 1
cY(B) = max max o1 (XF; Y |So) + H(So)
xk PSO‘Xi.eQ(PXf ,B)
1 . 1
CE(B) = max min o1 (XT;YY(S0) — 7 H(S0)
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IV. FINITE-STATE MULTIPLE ACCESS CHANNELS

Results analogous to those in the previous section can be es-
tablished for finite-state multiple access channels. Although the
derivations are conceptually similar, a few new technical issues
arise in the context of finite-state multiple access channels. Fur-
thermore, it is instructive to re-examine the concepts developed
for finite-state channels in a more general setting. A close com-
parison with the results in the previous section will be made, and
the subtle differences will be pointed out when they appear.

To simplify the notations, we shall only consider finite-state
multiple access channels with two transmitters and one re-
ceiver. All the results can be extended in a straightforward
manner to the case with an arbitrary number of transmit-
ters. Let Py,s,|x,,x,,s,., be a finite-state multiple ac-
cess channel, where X;;, € &; (i = 1,2),Y; € Y, and
S; € S are, respectively, the channel input from transmitter
1 (¢ = 1,2), the channel output, and the channel state at
time ¢. We assume that the channel is time-invariant, i.e.,
that the transition probability Py,s,|x,,x,,s,., does not
depend on t. Moreover, |X;|, |X2|, |Y|, |S| are assumed to
be finite; in particular, we let S = {1,2,...,|S|}. We shall
reuse the notations 7, G, 5, and A,. It should be noted that
T = {PSthl.iXQ.tSi—l ('|$17$27 ')}11€X1,$2€X2 in the current
setting. The capacity region of finite-state multiple access
channel Py, s, x, ,x,,s, , i denoted as R.

For any nonempty compact set B C P(S), see the equa-
tion shown at the bottom of the page. Moreover, given any
Pxr x5, €P (Xf) x P (X7), define

V(Pxp xt,B) = {Psux xt, : Pt s 0 € Ze(B) |
V' (PX{c,lXéc,l’B) = {PSOle.ngl : PX{c,lXéc,lSO € E;C(B)} ’
Lemma 4.1:
1) For any Pxr xr 5, € Ex(B), we have Py xr €
P (XF) x P (XF).
2) Eu(P(S)) = { Pxt xt,5, € P (X x X} xS)
: Pyi xi € P (XF) x p(;@k)}.
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3) There is no loss of generality to assume m; = meo and
max(mq,ms) < |X1|¥|X>|¥|S| in the definition of Z(B).

4) Ex(B) = Zg(conv(B)).

5) For any positive integers ki, ko, and &k = Ky + ko, if
R\Vlijlk,zSO € Ek (As>’ then PXf}lX;llSo € Ek1 (As> and
PXf_lirlef.k S € Ek, (As), where S, is the channel
state at time )fl induced by the initial state Sy and channel
inputs X f’l and X 571.

6) For any positive integer k. if Pyt xi g, € =5 (Ay), then
Ps, € conv(Ay), where Sy, is the channel state at time &
induced by the initial state Sy and channel inputs X fyl and
X3,

Proof: See Appendix J. [ ]

Remark: It is easy to show that Z(B) is compact (for any
nonempty compact set B C P(S)) by leveraging Part 3) of
Lemma 4.1. It is worth noting that for Pxr i 5, € Ex(B),
although X {“71 and Xé",l are independent, X {“71 and X% given
S are not independent in general. A detailed discussion of this
point will be given later in this section.

See the first equation at the bottom of the next page, where

S should be
interpreted as Pxf1 XE | 1So=s0" See the second equation at

the bottom of the next page. It is easy to verify that for any
Pxi xp, € P(Xf) x P (XF)

ﬂ Rk (PX:\',IX;,]SO)

!
PSO‘Xf.lxéc.l eV (Pxf X'l”P(S))

k
,1772,

PX{'lXé“l in the definition of Ry (PX{VIX;»I,SO

= NRe (Pxg x,050)
50

Therefore, we can write R alternatively as the third equation
at the bottom of the next page. It follows from [20, Lemmas
26 and 27] that the limits in the definition of R and R exist;
furthermore [20, Theorems 9 and 11] imply that

RCRCR. (14)

=4 (B) = {pXk vk s, : there exist my,ms € N, PY) € P (X)), PY) eP(x5),P{" eB
1,1°42,1 1,1 2,1

m1
Wi, f2,j € [0,1],4=1,...,m1,5 =1,...,me, such that Zulﬂ;

mo
=D pag=1
j=1

i=1
my Mmeo
k k _ o p() k (4) k (4,9)
and PX{“’_IX;',ISO (5171,17372,1730) = E E Nl,z/@.,gpxlg1 (351,1) ngﬁl (5’72,1) Ps0 (s0)
i=1 j=1

for xfl € Xﬁx;l € Xy, s € S}

EL(B) =P (Xf) x P (XF) x conv(B)
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Note that (14) is valid for any initial state sg; it is also valid
whether or not the transmitters and the receiver know the ini-
tial state. Moreover, for indecomposable finite-state multiple ac-
cess channels, we have R = R = R [20, Theorem 12]. See
the fourth equation at the bottom of the page, where [t]T 2
max(t, 0). See the first equation shown at the bottom of the next
page. It is known [20] that

MR

k

(v=)

ﬁ = lim ﬁk

k— oo

R = klim Ry
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Therefore, we have
Ry CRCRCRCRy
for all £ > 1.
Define?
R = limsupﬁk (15)

k— oo

2Under certain definitions of capacity region (see, €.g., [20]), one can replace
lim sup in (15) by limn inf and the resulting R is still an outer bound on R. We
choose this more conservative definition of R so that R C 'R holds regardless
how R is defined. Moreover, it can be shown that R is a compact set under the
current definition.

) Ry < % (Xf1§Y1k|X§,17SO)

Ri (PXf_lxg_lso) = ¢ (R1,Ry) €R% : Ry < 11 (X5,;VFIXE,,S0)
Rl + Ry < %I (Xf1;X§,1§Y1k|So)
1< %I (X{C,1§Y1k|X§,1>SO = 80)
Rk (PXf.lekJ’sO) = (RI’RZ) € R?l- : 2 II (Xg,l;Y1k|Xf,1750 = 50)

R+ R2 <+ (XF, X5 YF|So = so)

R = lim conv U U Ri (| Pxr
k—o0 k 1\{”,11\5,150
P r EP XE\xP rX"k
SRS ( 1) ( 2)PSleic.l’\'5.1ev P‘\'f.lxé.l’,p(s)
R = lim conv U ﬂ R (PXI\' Xk g )
o —00 1,142,120
P_i. 1 EP XEYxP(x.
Mt (¥t)P (2 PSoIYleélev (Pxflxgl’P(S))

R = lim conv

c— 00

R (Pxt,xz, )

XF)xP(ak) so

Ry < +1(XT 1 YF|X5 1, 80) + ¢ log S|
Ry (PX?JXS._ISO) — { (R, Ry) €R2 : Ry < 1T (XK VFIXE,, Sp) + Llog S|
S Ri+ Ry < £1 (XF1, X5 1:YF|So) + ¢ log S|
Ry < [H1(XF 3 YEIXE L, So) — Flog S]]
Ry (PX{"_IX;_ISO) = (R, R2) € Rﬁ- "Ry < [%I (Xz Y |X1 1 ) - l10»5—’§|‘S.|]-|—
Ri+Ry < [1 I(XFq,X5;YFSo) — 10g|5|]+
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where See the second equation shown at the bottom of the page.
~ Define the third equation shown at the bottom of the page.
R = U URk (PXle;l?SO) ' Theorem 4.2:
Pxp xg, €P(X)xP(¥5) =0 1) Ry D RO D Rforallk > 1
] Z)EkgRiggforallkZL
It was shown in [20] that Proof: See Appendix K. m
R C R CR. (16) Theorem 4.3:
_ 1) kRkQ - lcl’R‘k)1 + kgR% for any positive integers k1, ko,
Note that R is in general not computable. However, we shall and k = kq + ko;
show that it can be leveraged to derive computable outer bounds 2) kR£ D klRil + kgRL for any positive integers k1, ks,
on the capacity region. and k = k1 + ko. i

R} =conv U U Ri (PXf_1X§.150)

R, =conv U ﬂ Ry, (PXleZk,lso)

Ry < % (X{Cl7Yk|X2l7 )+%H(SO)
Ry (PXf_lxg_lso) = q (Ri,Ro) € RE ¢ Ry < 11 (X5 YFIXT L, S0) + £ H(So)
Ri+ Ry < 31 (X1,1>X2,1’Y1 S0) + % H(50)
1 < [H (XS VFIXE,, 80) — (o))
Ri (Ry;lxgglso) = (B, Ry) € Ri PRy < [ (Xfl;Y1k|Xfl So) — +H(So)] "
Ri+ Ro < [L1(XFy, X5 YE(So) — £H(So)]
RO = conv U RO (PXfIXQk_l)

RI =conv U RI(Por i
k k Xf,lxé,l

P . r €EP(XF)xP(Xk

Xilxé,l ( 1) ( 2)

Where
RY (Pxr )= RO (Pyr xr
k ‘\f 1< \é 1 k Xf,lxé,lso
S
SO"\{Vl’\&lev( 1 >

So\Y’” xk GVI(PX xk > )
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Proof: See Appendix L. ]

In view of Theorems 4.2 and 4.3, the following corollary is a
direct consequence of [20, Lemmas 5 and 6].

Corollary 4.4: _
HRD klim R =NRY 2 R;
—oo k

2) lim RE = c1(URg) = R.

A few comparisonsk with the results in the previous section
are now in place. To emphasize their analogous roles, we can
form the following pairs: (C,R), (C},R;), and (CL, RE).
In contrast, the situation for the outer bounds is more com-
plicated. It might be tempting to form the following pairs:
(C,R), (Ck,Ry), and (CY,RY). However, such pairings
are natural but not exact. A close look reveals that although
C = kli_I)I;O Cp = kli_l)lgo C,g, it is unclear whether the second
klim R =
Actually it is also reasonable to relate R with C. Moreover, to
complement R, one would naturally expect a finite-letter outer
bound on R in a form analogous to C1, in (2). However, a direct
generalization of C'y, in the form of (2) does not seem to yield a
valid outer bound. In contrast, C'x, in the form of (5) does have a
counterpart in the setting of multiple access channels, which is
R.. This leads to a puzzling phenomenon: C', in the form of (2)
does not permit a direct generalization while its equivalent form
in (5) does. The reason is somewhat subtle. In order to obtain an

equality in R =

lim RY holds in general.
k—oo ’
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outer bound on R in a form analogous to Ci, in (2), one needs
the following assumption: the inputs of the two transmitters
from time ¢ + 1 on are independent conditioned on .S;. Although
this assumption holds when ¢ = 0, it is in general not true. The
crucial idea underlying the derivation of R, and R is to go
beyond conditional independence. Indeed, it can be verified
from the definition of R and Rg that the inputs of the two
transmitters from time ¢ + 1 on are not necessarily independent
conditioned on S; although they are mutually independent. In
contrast, the requirement of conditional independence is void
in the point-to-point case since there is only one transmitter. In
this sense, C, in the form of (2) is less fundamental than its
equivalent form in (5) since the latter one is extendable to more
general scenarios.

Now consider the case where the state process is available at
the receiver. Let R° denote the capacity region in this setting.
See the first equation shown at the bottom of the page, where
PX{C.1 Xk, in the definition of Ry (PXf1 Xk so) should be in-
terpreted as PXf1 XE | 1So=s0" See the second equation shown at
the bottom of the page. In view of (14) and (16), it is clear
that R® C RS C RS C R’ moreover, for indecomposable
finite-state multiple access channels, we have R° = R®
RS = R°.

See the equation shown at the bottom of the next page. The
following theorem is easy to verify. The proof is omitted.

R <
Ry <

Rf (PXf,lX%',lSO) = (R, Ry) € R?l- :

%I (Xf,1?Y1kan|X§,1750)
21

(X212 Y1, STIXT 1 So)

I+ Ry < %I (X{C,leéc,ﬁYfaSﬂSO)
Rl S %I (X{C,I;Ylk‘,SﬂXéc,leO = 80)

Rf (PXf,lxg,l’so) = (R1;R2> S Ri :

Ry < %I (X§,1§Y1k~,sf|Xf17SO = 30)

Ry + Ry < $1(XF,, X5, YF, SFISo = s0)

|

lim conv

— 00

R° = lim conv

k k k
P o €P(XF)xP(xk
Xf.1xé.1 ( 1) ( 2)PSO\X
RS = limsup | l
k— oo

Pxp xk €P(X)xP(¥5)

U

s
Ry (P XF, XE S )

PSU ‘Xf.lxg.l €V (Pxf.lxéc.l "P(S))

A

E xk €V Pyr
1,1%2,1 X

Ry (Pvalxg_lso)
7))

k
X2

URE (Pxs, xz, )
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The_ogem 4.5: s
1) Ry DRY? DR, Ry CRYT C R forall k > 1;
2) kRO C iRy O +kaRpC kR 2 iRy + ko Ry,
KRy C Ry, + kR, kRS 2 kRS, + kaRS, for any
positive integers k1, ko, and k = ky + ko;
3) RS € lim RYO = ARY € lim R, = OR,
— 00 k ¢ — 00 k

R’
4 lim RYT = lim RY = cl(URfJ) - cl(UEf) -
RS,

The finite-letter inner and outer bounds coincide for the fol-
lowing case, yielding a single-letter characterization of the ca-
pacity region.

Theorem 4.6: 1If there exists a probability distribution 7 €
P(S) such that A, = {r} forall s € S, then

Rf,o — R.kS:',I — RS
for all £ > 1. Specifically, the condition is satisfied if and only
if all finite products of matrices from 7 are regular, and 7 = 7
forall T € 7.

Remark: An illustrative example is given in Section V (see

Example 5.5).

V. EXAMPLES

Example 5.1: Let T = {11,T>}, where

w5 ) (13

It is easy to verify that all finite products of matrices from 7 are
regular if and only if 0 < min(a, b, ¢, d) < max(a,b,c,d) <1,

1—c
d

1—a

b

a
1-b

c
1-d
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0<a+b<2and0 < c+d < 2. We assume these conditions
are satisfied.

Assume conv(A;) is a line segment joining (1 — e, e) and
(1 — f, f) with e > f. Note that conv(.A5)T is a line segment
with two endpoints (1 — a, 1) and (1 — as, as), where

a; =a(l —e)+ (1 —be
—a(l= )+ (1-b)].

Similarly, conv(As,)T5 is a line segment with two endpoints
(1 — f1,01) and (1 — B9, B2), where

B1=c(l—e)+(1—-de
fa=c(l1=f)+ (A -d)f.
We have the following 8 cases.

1) (1 - 6,6) = (1 - 0(1,041) and (1 - f, f) = (1 — ,32,[)’2).
This implies
a c
a4 b’ /= c+d
Moreover, we must have ¢ > max(ag,(1) >

min(as, f1) > f,ie.,
> max{ad—i—(l—b)c.a(l—d)—i—bc

|

a+b c+d a+b
¢« min ad—f—(l—b)c.a(l—d)—f—bc .
c+d — c+d a+b

Note that if we further have (3; > ao, then A,
conv(A;). For example, the above inequalities are satis-
fied whena = 0.38,b=0.1,¢c=0.1,d = 0.2.

2) (1 - 6,6) = (1 - ﬁl;ﬂl) and (1 - f,f) = (1 — 052,012).
This follows from Case 1) by exchanging a with ¢ and b
with d.

=S
R, =conv

R} =conv

RS (P)ﬁk Xk SO

1,1°72,1

)

)

Pk yk GP( )XP(Xk)
X X !
koxk smxilxz‘lev PX",IXQ,I’P(S)
S,0 __ 0
Ry" =conv U U U Ry (PXf,lek,lSO)
Py oy eP(rE)p(ar)
xk x 1 P P ok o As
1,1 So\/\{”1'\§1€v \{‘,1‘\3,1
S, I __ %
Ry =conv U m ﬂ Ry (PX}C X ~150)
P, 1 EP(XF)xP(XEF) S
X% ( 1) ( 2) PSO‘X{CJXQJ eV Pxf,lxé A



CHEN et al.: TIGHTER BOUNDS ON THE CAPACITY OF FINITE-STATE CHANNELS

3) (1—e,e) =
This implies

(1 — OéQ,OéQ) and (1 — f,f) = (1 — ,Bl,ﬁl).

a+c—ac—be
a+b+c+d—ac—ad—bc—bd
a+c—ac—ad

a+b+c+d—ac—ad—bec—bd

e =

f:

>

Moreover, we must have e > max(aq,/[s)
min(ay, f2) > f, ie., see the first equation shown at
the bottom of the page. Note that if we further have
B2 > ay, then A; = conv(Ag). For example, the above
inequalities are satisfied when ¢ = 0.89, b 0.89,
c=0.74,d = 0.8.

4) (1 — 6,6) = (1 — ,82,/82) and (1 — f,f) = (1 — Oll,()él).
This follows from Case 3) by exchanging a with ¢ and b
with d.

5 (1—e,e) =
This implies

(1 — Oél,Oél) and (1 — f,f) = (1 — ,Bl,ﬁl).

a = a(l —d) + be
Ca+b’ N a+b ’
Moreover, we must have e > max(ag,(2) >

min(ae, f2) > f, ie., see the second equation shown
at the bottom of the page. Note that if we further have
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B2 > o, then A, conv(Ag). For example, the
above inequalities are satisfied when ¢ = 0.55, b = 0.1,
c=0.89,d = 0.8.

6) (1 - 6,6) = (1 - ,81,[31) and (1 - f, f) = (1 - 011,()51).
This follows from Case 5) by exchanging a with ¢ and b
with d.

7 (1—e.e) = (1— az, ) and (1 1, ) = (1= B, fo).
This implies
_ad+ (1 -b)c o«
“="xa  ITora

Moreover, we must have ¢ > max(ay,(1) >
min(ay, 1) > f, ie., see the third equation shown
at the bottom of the page. Note that if we further have
f1 > aq, then A; = conv(Ay). For example, the above
inequalities are satisfied when a 0.89, b 0.89,
c=0.26,d = 0.4.

8) (1 — 6,6) = (1 — ,82,/82) and (1 — f, f) = (1 — OlQ,Oéz).
This follows from Case 7) by exchanging a with ¢ and b
with d.

It is worth noting that A, itself might not be a line seg-
ment. For example, assume a # b and ¢ d = 1 LIt is
easy to verify that A; = {(% % T1 ,0<m < oo} where
(5,578 2 (3,3) and (3,3) T7° ). Clearly,
As is not a line segment.

- ( a-+b’ a+b

a-+c—ac—be

a+b+c+d—ac—ad—bc—bd

(I-b)(a+c—ac—be)

>max{a(b—|—d—ad—bd)—|—

- a+b+c+d—ac—ad—bc—bd
a+c—ac—ad

a+b+c+d—ac—ad—bc—bd

(1-b)(a+c—ac—be)

c(b+d—bc—0bd)+ (1 —d)(a+c—ac— ad)
a+b+c+d—ac—ad—bc—bd

< a(b+d— ad — bd) +
= a+b+c+d—ac—ad—bc—bd

cb+d—bec—bd)+ (1 —d)(a+c—ad—ad)
a+b+c+d—ac—ad—bc—bd

?

a_ {a[ad+b(1—c)]+(1—b)[a(1—d)+bc] c[ad+b(1—c)]+(1—d)[a(1—d)+bc]}
atb = a+b ' a+b
a(l —d) + be < min{a[ad+b(l —o)]+ (L =0o)fa(l —d) +bc] clad +b(1 —¢)]+ (1 —d)[a(l —d) + bc]}
a+b - a+b ' a+b
ad+(1_b)c>max{ [(1—a)d+bc]+(1—b)[ad—l—(l—b)c] c[(1 —a)d+be]+ (1 - )[ad—}—(l—b)c]}
c+d - c+d ct+d
c_ . .{[(1—a)d+bc]+(1—b)[ad+(1—b)c] c[(l—a)d—l—bc]—l—(1—d)[ad—|—(1—b)c]}
c—l—d_mln c+d c+d
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Example 52: Let X = )Y = S = {1,2}. Denote
the transition probability matrices Ps,|x,s,_,(:|1,-) and
Ps,|x,s,_,(+12,) by Ty and T, respectively, where

1—a a 1-c¢ c
Tl_( b 1—b>’ T2_< d 1—d>'

We assume 0 < min(a,b,c,d) < max(a,b,c,d) < 1,0 <
a+b<2,0<c+d<2, and

a

b

Note that we allow v = 0 or v = oco. By Corollary 2.8, we have
As = {r} forall s € S, where

(1)

= 1.

ISH e

1

= ,Y + 1 .
Now it follows from Corollary 3.10 that

OV = max

i W(So)I(Xl;Y1|SOZSO)+H(7T)

CIL = I})l}?f(Z’fr(So)I(Xl;YﬂSO = 80) — H(ﬂ')

Note that the gap between C{ and C¥ is 2H (), which con-
verges to O asy — 0 ory — oo.

Consider the following two cases:

1) The channel transition probability is of the form

Py, s,1x,5. (Yt: 5¢|2¢, 5¢1)

= Py, x,5,_, (Wtlve, 5021) Ps,|x,5,_, (St]wt, 5¢-1)

for any x; € X,y € ), and s;_1,5+ € S; more-
over, Py,x,s,_,(-|,1) is a BSC(q1) (i.e, a binary
symmetric channel with crossover probability ¢;) while
Pyiix.s, . (- 2) is a BSC(g2).

For this channel, it is clear that the maximizer is given by
Py, with Px, (1) = Py, (2) = &. Therefore, we have

1 ¥ 1
OV =1 —Hy(q1) — ——Hy(go) + H <—)
1 poa| b(q1) o b(q2) + Hy po

1 ¥ 1
— Hy(q1) — ——Hy(qp) — Hy [ ——
b(q1) o b(q2) — Hy <7+ 1)

ck=1-
v+1
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where Hj(-) is the binary entropy function. In contrast, we
have

C1 = max(2 — Hy(q1),2 — Hy(q2)) > 1
C) = min(—Hy(q1), —Hp(q2)) <0

yielding trivial capacity bounds for this channel.
2) The channel transition probability is of the form

Py, s,1x.5i_1 (Yt: 5¢|T4, 86 -1)

= Py, |x,s,(Yt|7e, 8¢) Ps, x5, (St|T¢, 8¢-1)

for any x; € X,y € ), and s;_1,s; € S; moreover,
PYthtSt('|'7 1) is a BSC((]l) while PYt|XtSt('|'7 2) is a
BSC(q2). Note that Y; — (X4, S¢—1) — S¢ form a Markov
chain in Case 1) while Y; — (X3, S¢) — S;—1 form a Markov
chain in Case 2).

Let Px, (2) = p. The conditional probability distribution
Px,v, 5,5, 18 given by

7,9,5 | Px,visiso(T,9:8[1) | Px,vi5,5 (7,9, 5(2)
LL1 | (1-p)(A-q)1l—-a)| (1-p)(1—-q)b
L2 (A-p)(I—ga | (1-p)(1—-g)1-0)
12,11 (1-p)a(l—a) (1 =p)aib
1,2,2 (1-p)ga (1-p)g2(1 =b)
2,1,1 pq1(1—c) pqrd

2,1,2 pgac pg2(1 — d)
22,1 p(l—q)(1-c¢) p(1—q)d
2,2,2 (1 —q2)c p(1—gq2)(1 —d)

Therefore, we have the equation shown at the bottom of the
page. Now it can be computed that

I(Xl;Y1|SO = 1) :H(Xl) — H(X1|Y17SO = 1)

:¢(p7q17q271 - CL,l - C)
I(X1;Y1]S0 = 2) = H(X1) — H(X1|Y1, 80 = 2)

:¢(P»f11a‘hab7d)

PY1|50(1|1)

=1-p)(1-qg)1-a)+ (1 -p)(1—-qg)a+pn(l—c)+pgpc

Py, 15,(112) = (1 = p)(1 = q)b+ (1 = p)(1 — g2)(1 = b) + pq1d + pga(1 — d)

PX1|Y1 50(1|17 1) =

1-pI-—g)d—a)+ (1 -p)(—g2a

PX1|)’150(1|172) =

(1=p)(1=q)(1 =a)+ (1 =p)(1 = g2)a+ pq: (1 = ¢) + pgac
(1-p)(1=g)b+(1-=p)(1-g2)(1-0)

PXl [Y1S0 (1|27 1) =

(1-p)A=q)b+ (1 =p)(1 —q2)(1 =)+ pg1d + pga(1 — d)
(1-pa(l—a)+ (1 -p)ga

(1-pa(l—a)+ (1 -p)ga+p(l—q)1—c)+p(l—qg)c
(1=p)gib+ (1 —p)g2(1 = b)

PX1|YlSO(1|27 2) -

(1 =p)gib+ (1 = p)g2(1 = b) + p(1 — q1)d + p(1 — g2)(1 — d)
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where [see (17), shown at the bottom of the page]. There-
fore, we have

CYV = max —— ,q1,q2, 1 —a,1 —¢

1 pel01] 7 + 1¢(P 41,42 )
+ g bd)—I—H< ! )
1_}_7 b, q1,92,0, b ’Y—}—l

ClL_ ¢(p7q17q271_aa1_6)

= max ———
pef0,1] v+ 1

Y
+ — ’ ’ 7b7d _H
1+7¢5(p q1,q2,b,d) — Hy

(1)
y+1)°

If g1 = q2 = q, then Y; — Xy — (S¢, St—1) form a Markov
chain, which is subsumed by Case 1). So the maximizer p
is equal to % and consequently

1
CcV =1— Hy(q) + H, (—)
1 b(fJ) b P

1

CE=1-Hy(q)-H, [ — ).
1o - i ()

Example 5.3: Let X Yy S = {1,2}. Denote
the transition probability matrices Ps, x,s, ,(-|1,) and

Ps,|x,s,_,(-2,-) by T1 and T, respectively, where

l1—a a 1—c c

ne(5 ) me ()

We assume 0 < min(a,b,¢,d) < max(a,b,c,d) < 1,0 <
a+b< 2 and 0 < ¢+ d < 2. The condition in Theorem 2.10
holds under this assumption, which implies that conv(.Ay) is a
line segment joining (1 —e, e¢) and (1 — f, f) with e > f, where
the expressions of e and f can be found in Example 5.1. Denote
PXlSo (17 1)’ leso (17 2)’ PX150 (27 1>’ and PX150 (27 2) by f11,
012, 021, and 022, respectively. It can be verified that Px, s, €
conv(P(X) x A,) if and only if (611, 012, 021,022) € O, where
© = {(011, 015, 05,,03) : b1y > (1 — )by, f01,< (1 —
f)b1a, (1 —e)(1 — 01y — 01) < 05, < (1= f)(L =01 —
12): 011 + 015 + b5) + b5y = 1} (see Fig. 1).
Consider the following two cases:
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012

Fig. 1. Plot of conv(P(X) x A, ). Note that 625 = 1 — 613 — 015 — 621.

1) The channel transition probability is of the form

Py,s,1x,5:_1 (Yt: 5¢|Ts, 86-1)

= Py, x5, Welwe,50-1)Ps,x,5, 1 (5¢]Te,5¢1)

for any x; € X,y € V, and s;_1,s; € S; moreover,
PYt|XtSt—1 (|, 1) is a BSC(ql) while PYt|XiSt—1('|" 2) is
a BSC(QQ)

Let Ps,(2) = 7. It can be computed that

max
Px, sy €conv(P(X)X.A,)

max (1 —7)(1 — Hp(q1))
T€[f.e]

+7(1 = Hy(g2)) + Hy(7)

cy I(X1;Y1S0) + H(So) (18)

where the second equality follows from the fact that the

maximization in (18) is achieved when X is independent

of Sp and Py, (1) = Px,(2) = 3. Therefore, we have the

second equation shown at the bottom of the page, where
9H,(q1)—Hu(q2)

2Hi(q1)—Hp(g2) 4 1°

Tmax =

¢(p, q1,q2, 0, 3) = Hy(p) = [(1 = p)(1 = q1)a + (1 = p)(1 — q2)(1 — &) + pq18 + pg2(1 — )]
(1-pA-qgla+(1-p)(1-g)1-0a)

XMy <(1 —p)(1—q)a+(1-p)(1—-q)1—a)+puf+pg(l - ﬁ))
—[(I=-p)aa+(1-p)g(l—a)+p(l—q)8+p(l—g)(1l—-0)
(1=p)gra+ (1 —p)g(l — a)

XMy ((1 “Paat (- pa(—a) +p(l—)B+ (1 — )1 - ﬁ)) a7

1-— Hb(Ql) + G(Hb((h) - Hb(q2)) + Hb(e)>
1 — Hy(q1) + Twax(Hp(q1) — Hp(q2)) + Hp(Twmax),
1 — Hy(q1) + f(Hy(q1) — Ho(q2)) + Hy (f),

cy =

€ < Tmax
€ Z Tmax Z f
f > Tmax
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Cf

To compute CF, the joint probability distribution Py, s, is
restricted in P(X) x conv(A,), and we have

I(X1;Y11S0)

max min — H(Sp)
Px, €P(X) Ps, €conv(Ay)

71611[}1716](1 —7)(1 = Hy(q1)) + 7(1 — Hy(q2)) —

Hy(7)
which yields the first equation shown at the bottom of the
page, where

1
QHy(q1)—Hy(g2) 4+ 1°

Tmin —

2) The channel transition probability is of the form

PYiSi|XiSt4 (Yt stlwe, 5.-1)

= Py, x,s,(Yt|we, 5¢) Ps,|x,5,_, (5¢|T¢, 5t-1)

for any z; € X, y; € ), and s;_1,s; € S; moreover,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

x,Y, 8 Px.,vys, (2,9, 8)

1,1,1 | 011(1 = q1)(1 —a) + 611(1 — g2)a
1,1,2 | 612(1 — q1)b+ 612(1 — g2)(1 = b)
1,2,1 01191 (1 — a) 4+ 011 ¢2a
1,2,2 012q1b + 012g2(1 — b)
2,11 02191 (1 — ¢) + O2192¢
2,1,2 O220q1d + O22¢2(1 — d)
2,2,1 | 021(1 —q1)(1 —¢) +021(1 — q2)c
2,2,2 | O22(1 — q1)d + O22(1 — q2)(1 — d)

Therefore, we have the second equation shown at the
bottom of the page.

To compute C'L, the joint probability distribution Py, s,
is restricted in P(X) X conv(Ay). Let Px, (2) = p and
Ps, (1) = 7. We have

Py, x,s, (-, 1) is a BSC(g1) while Py,|x,s,(|-,2) is a CF = max min (1 —7)¢(p,q1,q2,1 —a,1 —c)
BSC(gz). We shall first compute C{'. Note that the joint PE[0,1] TE€[f ]
probability distribution Px,y, s, is given by +7¢(p, q1,q2,b,d) — Hy(T)
1 — Hy(q1) + e(Hy(q1) — Hy(q2)) — Hp(e), e < Tmin
ClL = 1-— Hb(t]l) + Tmin(Hb(ql) - Hb(q2 ) - Hb(Tmin)v € Z Tmin Z f
L — Hy(q1) + f(Hp(q1) — Hp(q2)) — Ho(f), I > Tmin
cv = max I(X1:Y1|So) + H(S
! Px, 5o €conv(P(X)XA,) ( ! 1| O) ( O)
= max H(Xl,SQ) —H(X1|Y1,So)
Px, s, €conv(P(X)xAs)

max
(611,012,021,022)€0

—0111ogf11 — O12log O12 — 021 log a1 — 022 log 022

—[611(1 = ¢1)(1 — a) + 011(1 — g2)a + 021¢1(1 — ¢) + b21¢2¢]

f11(1 —q1)(1 —a) +611(1 — g2)a

< (eua ~ o

L—a)+011(1—qla+b21q:(1 —c)+ 921Q20

)

— [612(1 — g1)b+ B12(1 — g2)(1 — b) + b22g1d + O22g2(1 —

612(1 — g1)b+ 012(1 — g2)(1 = b)

x H,
b (912(1 -q)

b+ 012(1 — q2)(1 = b) + ba2q1d + 022¢2(1 —
—[611q1(1 — a) 4+ b11g2a + 021(1 — ¢1)(1 — ¢) + 021(1 — g2)(]
0111(1 — a) + O11q2a

x H,
b (911Q1(1 —a)

+ 6011q2a + 021 (1 — q1)(1 — ¢) + 021 ( 1 - Q2
— [012q1b + b12q2(1 — b) + O22(1 — q1)d + O22(1 — ¢2)(1 —
012q1b + H12g2(1 — b)

x Hy
<912Q1b + 01262(

1—=0) 4 022(1 — q1)d + O22(1 — g2)(

)
7)
=)
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0.543

0.5428,

0.5426

0.5424

0.5422

0.542

0.5418

0 0.1 0.2 0.3 0.4 0.5 0.8 0.9 1

9

0.6 0.7

Fig. 2. Plots of CY and C'F with @ = 0.0001,b = 0.1, ¢ = 0.00005, d = 0.1,

where ¢(-) is defined in (17). Note that (see the equation
shown at the bottom of the page), where
. 1
T = 2¢(p.q1,42,,d) = d(p,q1,92,1—a,1—¢c) 4 1~

Therefore, we have

CIL = max 77(7'*7]’»(117(]270717737 d)
p€[0,1]

See Fig. 2 for plots of CV and CF.

Example 5.4: The setting is the same as that of Example 5.2
with the only difference that the state process is assumed to be
known at the receiver. Again, we shall consider the following
two cases:

1) The channel transition probability is of the form

Py,s,1x,5:_1 (Yt: 5¢|Ts, 86 -1)
= Py, x5, Welwe,50-1) Ps, x5, 1 (5¢]7¢,5¢1)

for any x;y € X,y € ), and s;_1,s; € S; moreover,
Py, x,s,, (|- 1) is aBSC(q1) while Py, x,s, (-] 2) is
a BSC((]Q)

Let Px,(2) = p. The conditional probability distribution

0.5202

0.52)
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0.5198!
0.5196

e
0.5194
0.5192!
0.519
0'51880 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9,

e = aib,f = chLd’ql =0.1,and ¢» € [0,1].
29,8 | Pxivisis,(@,9,5]1) | Px,vis,s,(2,9,52)
LL1T | (1=p)(1—q)(1—a) (1—=p)(1—g2)b
1,1,2 (1=p)(1—-aqi)a (1=p)(1—=g2)(1-0)
17271 (1 _p)ql(l _a‘) (1 _p)qu
1,2,2 (1-p)qa (1 =p)g2(1 =)
2,1,1 pq1(1—c) pgad
2,1,2 pqic pq2(1 — d)
2,2,1 p(1—q)(1—=¢) p(1 — q2)d
2,2,2 p(I—q)e p(1 - g2)(1 - d)

and the induced condition probability distributions
Py, s,|s, and Px |y, s, 5, are given by the tables shown at
the bottom of the next page. Now it can be computed that

I(X1;Y1, 81|80 = 1) = H(X1) — H(X1]Y1, 51,8 = 1)
:(p(pv(JMI_aﬂl_c)
I(Xl;YvhSﬂSO = 2) :H(Xl) — H(X1|Y17517SO = 2)

Px v, 5,15, 1s given by =¢(p,q2,b,d)
ren[}n](l - T)(b(pa q1,42; 1- a, 1- C) + T([S(p, q1, 42, b7 d) - Hb(T)
(1 - 6)4’(?»(]17‘127 1- a, 1- C) + e¢(p7qlaq27bad) - Hb(e)7 e< 1"

1>

n(T*ap7 Q1aQQ>aab;C> d)7

(1 - T*)¢(p7 q1, 92, 1- a, 1- C) + T*¢(p7Q17Q27b7d) - Hb(T*)7
(1 - f)¢(p7q17q27 1- a, 1- C) + f¢(p7q17q27b7d) - Hb(f)7

e>1" > f
f>7"
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o(p,q,a,B) =

C° = max

CS

1 1
CS: 5(‘0 <—
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where

Hy(p) = [(1 = p)(1 — @) + pgp]
(1-p)(1 -
< <<1 (- q)a+pqﬂ>
—[(1=p)(1 = ¢)(1 — @) +pq(1 - B)]
><H;,< (1-p)(1—q)(1-0a)
(1=p)(L=q)(1 - ) +pg(l-pB)
—[(1 =p)ga+p(1 = q)F]

)

(1 —p)ga
XMy <(1 —p)ga+p(l— q)ﬂ)
= [(1=p)g(1 =) +p(1 —q)(1 - 3)]
o (1-p)q(1 —a)
h ((1 —p)a(l— ) +p(1 — q)(1 - ﬁ))'

19)

Therefore, by Corollary 3.14, we have

(p7 q1, 1- a, 1- C) + L,Y@(pa q27b7d)'

pe[01w+1 1+

Ify=1anda+ c =1, then

(20)

1
ava) + —(,D(p,(JQ,CL, 1- a)'

1
max = (paqlvl_ 2

p€[0,1] 2
Note that ¢(p,q,«,3) is a concave function of p.
Moreover, it is easy to verify that ¢(p,q,a,f)

(1 — p,qap)if a + 0 1. Therefore, the max-
imum in (20) is achieved at p = % which yields

a,a) < 7q27a71—a>.

It is interesting to further specialize to the case ¢1 = q2 =
q. Now C* is given by

27q171_

05(g,a) =1 [(1 - 9)(1 — a) + ga]
y (1—¢q)(1 —a)
th ((1 “ (1 —a) + qa

—[(1=q)a +(q(1 —)a)]
1—-9q)a
<t <(1 —q)a+q(1 - a)) '

The following is easy to verify by direct evaluation of the
expression in (21):

a) C° (q, %) = 1— Hy(q). When a = %, no informa-
tion can be conveyed via the state transitions, and the
channel is simply a BSC(q).

C% (3,a) = 1 — Hy(a). When ¢ = £, no informa-
tion can be conveyed via the relat1onsh1p between the
channel input and the channel output. The only infor-
mation that can be conveyed is via the state transi-
tions, for which the effective channel is a BSC(a).
More generally, we have the symmetry relation

C%(u,v) = C%(v, p).

Indeed, by simple operations at the receiver, one can
convert a channel with parameters (¢ = p,a = v) to
one with parameters (¢ = v, a = u). To see this, we
define Zt =1 lfSt = St—l and Zt =2if St 7é St—l’
t =1,2....Itis easy to verify that in this special case,
the finite-state channel Py, s,|x,s,_, is equivalent to
the memoryless channel Py, 7, |y, with the form

= Py,|x,(y|z) Pz, x,(2|7)
2

forany z € X,y € YV,and z € Z {1,2},

where Py, |x, is a BSC(q) and Pz,|x, is a BSC(a).

Moreover, the symmetry relation (22) follows from

the symmetric roles of Y; and Z; in the memoryless

channel Py, 7, x, . Fig. 3 presents a plot of C*(q, a).
2) The channel transition probability is of the form

1)

b)

)
(22)

Py, z,x,(y, z|7)

PYSt|XtSt 1(yt75t|$t St— 1)

= PY,,L\,,S,, (yt|$ta St)PSf|Xf5f,1 (3t|$t7 St—l)

for any z; € X,y € Y, and s;_1,s; € S; moreover,

PYt|XtSi(.|.71) is a BSC(ql) while PYt|XiSt(.|.72) is a

Y, s Py, 5,15, (y, 5[1) Py, 5,15, (1, 512)
L1 (1=p)(A=aq)(l—a)+pa(l—c) (1=p)(1 — q2)b + pgad
1,2 (1-=p)(1 = q)a+pgc (1=p)(1 = q2)(1 =b) +pg2(1 - d)
2,1 (1-p)a(l —a)+p(l-q)(1-c) (1=p)g2b+p(1 = q2)d
2,2 (1=p)qa+p(l —q)c (1=p)g2(1 = b) +p(1 — g2)(1 — d)
x,Y, 8 Px,|v,s,5,(|y,5,1) Px,|v,s,5,(|y,5,2)
1.1.1 (1-p)(1=q1)(1=a) (1-p)(1—g2)b
7 (1=p)(A—=g1)(A=a)+pgi(1=c) (1—p)(A—g2)b+pgod
1.1.2 (1-p)(1—q1)a (1=p)(1—g2)(1=b)
o (1-p)(A—=q1)a+pgqic (1=p)(1—g2)(1=b)+pg2(1—d)
1.2.1 (1=p)g:(1=a) _ (-pab
' (1-p)gi(1—a)+p(l—q1)(1—c) (1—p)g2b+p(1—q2)d
1.2.2 (1-p)qia (1-p)g2(1-0)
7 (I-p)gra+p(l—qi)c (1=p)g2(1=0)+p(1—q2)(1—d)
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BSC(q2). Let Px,(2) = p. The conditional probability
distribution Py vy, 5,5, i computed in Example 5.2. The
induced conditional probability distributions Py, s, |s, and
Px v, 5,5, are given by the tables at the bottom of the
page.

Now it can be computed that

I(X1;Y1, 81180 = 1) = H(X1) — H(X41|Y1, 51,50 = 1)
=9, q1,q2,1 —a,1 —c)

=H(X1) — H(X1|Y1, 51,50 = 2)
=(p,q1,q2,b,d)

where [see (23), shown at the bottom of the page]. There-
fore, by Corollary 3.14, we have

I(Xl;Yl,Sl|SO == 2)

C° = max

1 _
pef0,1] v + 1 a1 -c)

l/}(p/ q1,92, 1-

+

d)(pa q1, 492, b d) (24)

1 +
The maximization in (24) is easy to perform nu-
merically. In general, it is hard to find the maxi-
mizing p explicitly. Even for v+ = 1, the maximizing

value of p is, in general, not L For example, when

2
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(¢1,q2,a,¢,7) = (0.1,0.5,0.1,0.5,1), the maximizing
value of p is approximately 0.49218365 (and the associ-
ated capacity is approximately 0.36663024).
a) If g1 = g2 = ¢, then Y; — X} — (S, St—1) form a
Markov chain, which is subsumed by Case 1).
b) Consider the special case wherey = 1 anda = 1—c.
We have

a, CL) + %l/}(p/ q1,492,a, 1- (1).

(25)
Note that ¥(p, q1, g2, @, 3) is a concave function of p.
Moreover, it is easy to verify that ¢)(1 — p, q1,¢2,1 —
a,a) + 1/}(1 - P,q1,492,a, 1- a): 1/1(107 q1,42, 1-
a,a)+v(p,q1,q2, a, 1 —a). Therefore, the maximum

1
CS = Inax —7/1(P7Q17Q27 1-
p€[0,1] 2

in (25) is achieved at p = %, which yields
1 1
- _1/)< ;415 QZ71_G70) + §¢ <§7QI>(12aa>1_a> .
Example 5.5: Let X; = Xy = Y = § = {1,2}. Define

Wt = 1if Xl,t = Xg’t, and Wt = 2if Xl,t ;é X27t. Sllp-
pose the finite-state multiple access channel has the property
that (Y, Si) — (Wy, Si—1) — (X1, X2.+) form a Markov chain.

Y, s Py, 5,15, (y, s[1) Py, 5,15, (v, 512)
L1 (1=p)(1=q)(l—a)+pa(l—c) (1=p)(1 = q)b+pad
1,2 (1 =p)(1 — g2)a + pgac (1-p)(1 = q2)(1 =b) +pg2(1 - d)
2,1 (1=pai(l —a)+p(l—q)(1-c) (1—p)grb+p(1 —q1)d
2,2 (1 =p)gza+p(1 — g2)c (1-=p)g2(1 = b) +p(1 = g2)(1 = d)
T, Y, S Px,|v,8.5,(2]y,5,1) Px,|vis.5, (Y, 5,2)
1.1.1 (1-p)(1=g1)(1=a) (1-p)(1—q1)b
2 (I=p)(A=q1)(I1—a)+pgi(1—c) (1—-p)(A—q1)b+pg:d
1.1.2 (1-p)(1—g2)a (1-p)(1—g2)(1-b)
7 (A1—p)(A—g2)atpgac (1=p)(A—g2)(1=b)+pg>(1-d)
1.2.1 (1-p)gi(1—a) (A=p)g:b
' (1-p)g1(1—a)+p(1—q1)(1—c) (1—p)arb+p(1—q1)d
1.2.92 (1—p)g2a (1-p)g=2(1-b)
7 (I1—p)g2a+p(l—ga)c (I1=p)g2(1=b)+p(1—g2)(1—d)

’l/}(p7 q17q27a7ﬂ) =

[ = p)(1 = g2)(1 — @) + paa(1 — BYH, (
[ = pga+ p(L— q) 1, (

—[(1=p)g2(1 — @) + p(1 — g2)(1 —

Hy(p) — [(1 —p)(1 — q1) + pq1 B Hy <(1 _(;)—( p)(1—q)a >

L —q)a+paf
(1-p)(1—-g)(1-a)
(1=p)(1 = q2)(1 — @) + pga(1

=)

(I-p)qo )

(1=p)ga+p(l—q)s

(1-p)g2(1 — ) ) 23)

Py ((1 “ Do —a) + o — @)~ D)
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Fig. 3. Plots of C'®(q, a), for the 3 values ¢ = 0.1, 0.2, 0.5 (corresponding to the curves from top to bottom) and 0 < @ < 1. Note, for the upper two curves, that
the capacity is positive even when ¢ = 0.5, since information is communicated through the state transitions. By (22), the curves shown also plot C'° (¢, a), for the
3 values ¢« = 0.1, 0.2, 0.5, and 0 < ¢ < 1. Note that the bottom curve coincides with that of the capacity of the BSC (as a function of the crossover probability).
Remark: strictly speaking, Corollary 2.8 is not applicable if @ = 0 or @ = 1; however, since in this extreme case the channel inputs can be reconstructed from the

state process, the capacity is clearly 1.

We denote the transition probability matrices Ps, w,s,_, (|1, )
and Ps,w,s, ,(-2,-) by T1 and Ty, respectively, where

1—-a a 1-c c
Tl_( b 1—b>’ T2_< d 1—d>'
Assume 0 < min(a, b, ¢,d) < max(a,b,c,d) < 1,0 < a+b <
2,0<c+d< 2, and
pTa=
Due to the special structure of this multiple access channel, the
results derived in Example 5.4 are directly applicable. We shall

consider the following two cases:
1) The channel transition probability is of the form

Py, s,jwis,_, (Y, 8¢|we, 51-1)

= Py, jw,s,_, (Welwe, st-1) Ps,w,s,_, (stlwe, st-1)

for any w, € W = {0,1}, y+ € Y, and s;_1,8; € S;
moreover, Py, jw,s,_,(-|,1) is a BSC(q) while
PYi|WtSi—1(.|" 2) isa BSC(QQ) We have

R% =S (R1,R2) €RY : Ry + Ry

< max

Y
~ pelo 1]’7—|—1 +_90(p7q27b7d)

1—a,l1-
@(pvqh a, C) 1_}_7

where @(-) is defined in (19).

2) The channel transition probability is of the form

PYtSi|VVtS¢71(yt75t|wt75t—1) =

Py, \w, s, (yelwe, 8t) Ps,\w,s,_, (st|we, s1-1)

for any w, € W, y; € Y, and s;_1,s¢ € S; moreover,
PYtIWtSi(.|.7 1) is a BSC(ql) while Pyt‘v[/tst('|',2) is a
BSC(q2). We have

R% =S (R1,R») € R :

R1 +R2 S max

h(p,q1,92,1 —a,1 —c
Jmax 11/(17 q1, g2 )

2

+
1+~

d)(pv q1,92, b7 d)

where 1)(+) is defined in (23).

VI. CONCLUSION

We have used the theory of Markov set-chains to derive new
finite-letter upper and lower bounds on the capacity of finite-
state channels. Compared with the existing capacity bounds,
the new bounds can more effectively capture the long term be-
havior of the state process. In particular, these bounds coincide
and yield single-letter capacity characterizations for a class of
channels with the state process known at the receiver, including
channels whose long-term marginal state distribution is inde-
pendent of the input process. Analogous results are derived for
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finite-state multiple access channels. A natural future direction
is to see whether the approach of the present work can be ap-
plied also to obtain bounds on the capacity of finite-state chan-
nels with feedback that would improve on those of [22].

APPENDIX A
PROOF OF COROLLARY 2.7

1) It is clear that A, 7 C BT if A, C B. By Theorem 2.6,
if all finite products of matrices from 7 are regular, then
AsT = Ag, which yields the desired result.

2) If BT C B, then B7" C B for all n. By Theorem 2.6,
BT™ converges to A, in the Hausdorff metric as n goes to
infinity. Therefore, we must have A, C B.

3) If B C BT, then B C BT™" for all n. It follows from
Theorem 2.6 that B7™ converges to A, in the Hausdorff
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metric as n goes to infinity. Therefore, we must have B C

As.

APPENDIX B
PROOF OF THEOREM 2.10

Firstly, we shall show that conv(As) = conv(conv(A;)T).
Since A, = A7, it follows that conv(A,) = conv(A,7) C
conv(conv(As)7). Now we proceed to show the other direc-
tion. Let £ be the set of extreme points of conv(.A;), i.e., the
set of points in conv(.As) which do not lie in any open line
segment joining two distinct points of conv(.A;). Clearly, we
have £ C A, and €7 C A,7 = A,. Furthermore, let £ be
the set of extreme points of conv(conv(.As)7 ). Note that £’ C
conv(As)7 = conv(E)T. By the definition of £, it is easy to

I(X7* Y Sy = s0)

< I (XPRYPF, {Smk 4150 = s0)
= H (Y7, {Smir} |s0 =s0) — H (Y, {Smr b |XTF, So = s0)
=Y |H (Yv(i'k_l)k+17S(i—l)k|Y1<i_1)k7{Smk w1, S0 = So)

=1

_H(}/(Z;:]C_1)k+1 ERITAD G CAmi O 1750:80)]

i—1)k
H (1/(7 1)k+1|Y {S’mk}m 1750 - 30)

(Y(q 1 k+1|Xnk YT (S }int Sy = 30)

+ H (S opl V%, {82y S0 = s0) = H (S el Xi5, Y ,{Smk}:‘;jl,sozw)]

IA

i—1)k
(5/(1 1)k+1|Y ) {Smk}m 1750 = S0

n
i=1

NE

i—1)k
H(Y(z 1)k+1|Y ) {Smk}m 1:50 = S0

1

=,

H (Sii—1)k]S0 = 80)]

Il

@
Il
—

+ H (S(i—1)k|So = 30)]

NE

ﬂ.
—

I
NE

-
Il
-

)-
)-
+H(5(1 1 k|Y(l DE ASmr Y21, So —So)]
)-

[I (Xg,g—l)k+1;Y(Z;ik—l)k+1|5(i*1)k’SO = 30) + H (S(i-1klSo = 50)1

n 1—1)k
H(Y(L e [ X7 YR (S it 1750:80)

H (Y(L 1 k+1|Xﬂk Y(l DF ASmr Y21, S0 = so)

i—1)k 7 i
H (Y(z 1)k+1|Y1 Y A Smk b1, So = 50) - H (Y(ik—1)k+1|X(zk—1)k+17S(i—1)k,50 = 80)

(26)

H (Y(?ik—l)k+1|S(7?—1)’C7 So = 30) - H (}/v(?ilil)k+1|ng—1)k+17 S(i—1)k, S0 = s0) + H(S(i—l)k|5[) = 30)]

27)
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see that &’ C E7. Therefore, we have conv(conv(A,)7) =
conv(€') C conv(ET) C conv(A,).

Let B be any nonempty compact convex set satisfying B =
conv(BT). Let £” be the set of extreme points of B. Since £” is
also the set of extreme points of conv(B7), it follows that £ C
E"T, which further implies £” C £”T™ for all n. Therefore,
we have B = conv(&”) C conv(E”"T™) C conv(BT™) for
all n. On the other hand, it is easy to see that conv(B7T™) C
conv(...conv(conv(B7)7T)...T) = B. Therefore, we have
B = conv(BT™) for all n. Since BT ™ converges to A in the
Hausdorff metric, it implies that B = conv(.Ay). The proof is
complete.

APPENDIX C
PROOF OF THEOREM 3.1

We shall compute an upper bound on the channel capacity by
considering a genie-aided system in which the state information
{Smi 50—, is provided to the receiver. Specifically, we have
(26)—(27), shown at the bottom of the previous page, where (26)
follows from the property of finite-state channels.

Note that for any $f§_1)k+1 € X*, and sg,s_1r € S,
see the equation shown at the bottom of the page, where
the last equality follows from the fact that X{¥ )., —

(Xl(i_l)k750) — S(i—1)x form a Markov chain. It is clear

that PXM S (|x(L Dk so) € P(x*) and
PS(i—l)kL\'il_l)kSO (-|m§i_1)k,so) € Gy, (i—1)k- Therefore, we
have

Pty Scolso (4710) € conv(PX®) X Gog i) -
(28)
In view of (27), (28), and the fact that lim 6(Gs, (i—1)k, As,) =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

APPENDIX D
PROOF OF LEMMA 3.3

Since Pyrg, € conv (P(X*) x A,), there exist m € N,
€ 0,1, P§) e P(a%), P{) € A i=1,...,
1
> = land

m, such that

(%) PS) (s0)

DI

a:leX7

PX’”SO 351750

so €S.

Note that for any a:’,gl_H € X*2 and 55, € S, see (29) shown at
the bottom of the next page, where (29) follows from the fact

that Sy, — ( X[, So) — X}, form a Markov chain. See (30),
shown at the bottom of the next page. In light of the fact that

that P € A, and A, T C A,, we have P Jzkr) e
50 Skl |X1 1 1

A, TH C A, for any fixed ;1:’1“. Furthermore, it is easy to see
that P(7) <|x’1‘1) € P(&x*2) for any fixed %', There-
XY

’C1+

fore, we have PXA- s, € conv (P(X’W) X AS).
ky+1°k1

€ Xfrandsy €S

k
,30) = E PXASO 7, so)
k1+1

Z ZuzP“ (%) P (s0)

1=1
k1+1

_ Z up)@ (3;1;) PO (s0).
=1

Therefore, we have PXfl s, € conv (’P( Xk x _AS) . The proof
is complete.

k1
For any z;

APPENDIX E
PROOF OF THEOREM 3.4

Note that [see (31)—-(32), shown at the bottom of the next

0, the proof is complete. page], where (31) follows from the fact that Ylk1 — (X f‘ , SO) -
1k
PXZ{”‘A)A,HS(,,UA.ISO (wfi—1)k+1a S(i—l)k|50)
ik
= Z R\V;A‘S(i—l)klso (3:11 7s(i—1)k|80)
(i—l)k
— (i-Dk )
- (an P\”A 1)A+1‘X )'S(ifl)kSO ( Tii- 1)k|$ »Si=1)k 50
i—1)k i—1)k
X PS(i 1)A|X£771)k50 (S(ifl)k|37§ ) ,so) P XG=Dk| 5, (:pg ) |80)
_ _ (i—1)k _ ‘ (i—1)k _ (i—1)k
© S P (0 P (o) Py, (57 1)

JRCEEL
1
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X ,’jl 41 form a Markov chain, and (32) follows from the prop- APPENDIX F
erty of finite-state channels. Therefore, see (33), shown at the PROOF OF THEOREM 3.5

bottom of the next page, where (33) follows from Lemma 3.3. We shall compute a lower bound on the channel capacity

by coupling the problem with a genie-aided system in which
the state information {S,,x}55_, is provided to the receiver.

Let {X fol) 1 be a stationary and memoryless vector
i=1

PXk +1S’v1 (xlkcl-i—h Skl)

_ k
= E Pxfsklso ($173k1»30)

k1
" ,80

= Z PSL,1|X{“SO (5k1 |1Ulf780) PX{»‘SO (‘T]fvso)

k
1QO

_ k
= S)\llXAISO sk1|w1 , S0 )PXkSO (xl,so) (29)

$1 »S0

(
= SkllX (sk1|x1 , 8 )i_”: P(Z)( 0)
= Sk1|X"150 (5k1|5’31 )8 )Zmp(lh ( )P( )1+1‘Xk1 (-’Ek1+1|$1 )Ps(,i)(so)

- ZZ [,hpuh ()] [P e (ohsatet?)]

Z Sk, 1 X150 (5k1|37’f1750) P:E"?(SO)]

Pé:)l |Xfl (sk1 |$]1C1) = Z Pskl IXfl So <8k1 |113]f1 ’ SO) Péz)(so)v xllcl € Xkl? Sk, € S (30)

S0

I (X§:Y]50)
< I (X154, Sk, 150)
= H (Y}, Sk, 150) — H (Y1, Sk, | XT, So)
(Y 150) (1 S 0) — (X8 85) — 1 (050, )
= 1 (Y["150) + H (S, 80 ) + H (Vi v, Sy, 50) = H (VI IXE, So) = H (S, [V, XF, o)
- H (chk1+1|ylk1 ’ Xf? Skn SO)

< H (V{1S0) + H(Sk,) + H (VE 1|Sk) = H (VI IXE, So) = H (Vi 0 V] XE, Sk, S0)

= H (Y{"1S0) + H(Sk,) + H (VE118) = H (VX1 80) = H (Ve XE, 50,80 (31)
- H (Yfl |So) + H(Sk)+H (YE 1 |Sk) - H (Y’“ |X’“1 ) —H(YE L IXE k) (32)
— 1 (Xfl;Ylkl |So) +T(XE s Y Sk) + H(Sk,)
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process independent of the initial state Sy. We have (34)—(36),
shown at the bottom of the page, where (34) is because

Y: i—1)k i—
Vit epr = (S—nye: So) — (Y( W (S }ir?
Markov chain (which is further due to the fact that X* (im1)k+1

is independent of (Yl(l Dk, {Smk}mzo)), and (35) follows
from the property of finite-state channels.

) form a
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Note that for any 2 _;), ., € X", and so,5(;_1)% € S

PX(lffl)kleS(i*l)k [So (I(i_l)k'i'l’ 5(7,—1)kI30)
— ) ik .
= PX(li"_l)k+1 (‘T(i—l)k+l) Ps. 1150 (5(1—1)k|50)

ik
= R\'(’;[l)k“ ($(i71)k+1)

ECY = max max
s PX{" S0 Econv(P(XFk)x.As)

I(X$;Y{So) + H(So)

< I(XM vk Sy) + H(So) + T (XE ;Y 4|8 H(S
_msaxprs[]emgxll?%(xk)xAs) ( Y 0)+ (So) + ( k15 Yy 41l k1)+ (Sk,)
< max max 1 (Xfl;Y1k1|S’0) + H(So)
5 PYkls GConV('P(Xkl)X.A5>
xk1s,
+ max max I (X§1+1§Ykk1+1|5k1) + H(Sk,) (33)
PY;’flJrlsk Gconv(P(X""Z)XAS)
=k1Cf + ksCf
I (X% Y71 = s0)
> 1 (X5 Y { S}y 1So = s0) — H ({Sm}ia1150)
1—1
:Z (Yv(z 1)k+17S(L 1)k|Y( " 7{Smk m= 17‘50 _80)
1=1
—H (Vi S Xk yimOk (g So=so) — H (Si Sk} 2 Sy =
(i—1)k+1> (i— l)kl { mk = 17 0 S0 ( (’L—l)k|{ mk}m=17 0 30)
- i—1)k i—1)k
= Z (Y(z 1)k+1|Y ) {Smk}m 1,50 = 30) +H (S(L 1)k|Y( {S }m 1:50 = 50)
i=1
-H (Y(L 1 k+1|Xnk Y(Z D ASmr}ote, S0 = 80) (S(z el X1 *{Smr}i 2, S0 = 80)
— H (S—1yrl{Smr}n 21, S0 = 80)]
- i—1)k n 1—1)k
>3 H(Y(z et [V TE Sty So 280) (Y(L et [ XTE VTR (8002 So 280)
i=1
— H (S¢i—1)klSo = 80)]
- ) n 1—1)k
- Z H (Y(ik—l)k+l|5(i—1)k750 = 50) —H (Y(z g X7 YT LS Yk So = 30)
=1
— H(S@i—1)x|So = 50)] G4

Il

@
Il
—

[
NE

o
Il
-

[I (X(if_l)kﬂsYé’il)k+1|5(i—1)k,50 = So) — H(S@i—1)x|So = So)}

[H (Y(iik_l)k+1|5(i—1)k750 = 80) -H (Yv(iik_l)k+1lX(if_1)k+1aS(i—l)kaSO = 80) — H (S¢i—1)k|So = 80)} (35)

(36)
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X S¢; :E(ifl)k|s
Z St sy (Se-emr s
(i—1)k

i —1
P‘\V(qfq)kﬂ (w(f—l)k-l,-l) Z P (i—1)k ( (i-1)k )

(i—1)k

x P Dee | Se |x Uk g
S(i—l)k|X£17) SO (Z*l)k 1 500

which, together with the fact that
PS(l XS, ( |:1:(Z Lk so) € G (i—nk for any
fixed a:(‘ Dk e XDk implies

PXsz 1)k+1 7—1)A»|50(" '|80) € P(Xk) X Conv(gsm(i—l)k)'

(37)
In view of (36), (37), and the fact that lim 6(G, (i—1)k, Asy) =
0, the proof is complete.

APPENDIX G
PROOF OF LEMMA 3.7
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= ZZNLPX’” :1?1

11Tk

ZPS;CIX{'SO (sr]z¥, s0) Péi)(so)]

S0

=3 o (2] [P

zlx’\

(slet)

(i)
where PS | X

any fixed z¥, we have Ps, € conv(A,).

. is defined in (30). Since Pg)l Xt

e A, for

(1)

APPENDIX H
PROOF OF THEOREM 3.8

Let i € P(X*) and P, € P(X*2) be the two input
distributions that achieve C and C}-, respectively. Let X{"
and X ,’jl 41 be two independent random vectors with Pr, =

1

Py and Py o= P,. Assume both X} and X,’jH_l are in-
°1
dependent of Sy. By this construction, if P, € conv(A;),

Since Ps, € conv(A,), there exist m € N, p; € [0,1], then P hig, € P(X*1) x conv(A,); moreover, it follows
and Pé’;) € Ay, i = L....m,such that 377, p; = 1 and  from Lemma 3.7 that Pyt s, € P(X*2) x conv(A,). Note
Ps,(so) = Ej;l Mipé?(so), so € S.Forany s, € S that [see (38), shown at tfle bottom of the page], where (38)

is because V¥ . — S, — (Y S(]) form a Markov chain
— ; k ki+1 k1 1
Ps, (s) = kz: Pxts.so (23, 5k, 50) (which is further due to the fact that X _, is independent of
7,80 ( E
Y, Sk ,S(])). Therefore, we have
= Z Ps, x5, (sk[2,50) Pxis, (21, 50) '
=% 50 kCE > min min(A )I (XT:YF|So) — H(So)
s 5o €conv(As
k k
- Z PSkIXfSO (Sk|x1’80) PXf (xl) Py (s0) > min min 1 (Xkl'Yk1|So> — H(So)
z¥ so T 8 Pgy€conv(As) tor
= Y Psixts, (sel2h, s0) Pyr, () tmin omin T (X513 Y2 411 Sk,) = H(Swy)
mk 180 k1 °
=k Cf + ko Cf,.
DWTHE
The proof is complete.
L(XT; Y |S0) = H (Yi']So) = H (YFXT, So)
=1 (V}1S0) + H (Yh Vi, S0 ) = H (VFXE, S0)
> H (Y[[S0) + H (YA 1[I, Sk, 50) = H (v XE, S0)
= H (Y{[S0) + H (YE 411Sk) = H (v} XE, So) (38)
=H (YV1S0) + H (Ve 41l8%,) = H (YF1XE,S0) = H (Vi IXE Y, o)
>H (Yl]€1 |SO) +H ( k1+1|5k1) (Ylk1 |X{ﬁ SO) -H (Ykk1+17 Sk, |X{CvY1k1 ’ 50)
>1 (‘X{ﬂ;yrlk1 |S ) +H Ykk1+l|Sk1) -H (leck1+l|)({cayvlk1 ’ SkmSO) - H(Sk1)
=1 (Xflayvlkl|50) +H Ykk1+1|Sk1) -H (Ykk;+1|XI§1+175k1) - H(Skl)
:I(Xflaykl|50) + Xk1+17Yk1+1|Sk1) (Skl)
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APPENDIX |
PROOF OF THEOREM 3.11

1) It is easy to verify that Uf > C’,f’U. Therefore, we only
need to prove C3U > C°.

Note that [see (39), shown at the bottom of the page],
where (39) follows from the property of finite-state chan-
nels. The rest of the proof is similar to that of Theorem 3.1,
and thus is omitted.

It is easy to see that Qf <

to prove CS’L < C”.

yes)
Let { (L Dk +1} be a stationary and memoryless

2) C,f’L. Therefore, we only need

vector process 1ndependent of the initial state Sy. Note
that [see (40)—(41), shown at the bottom of the page],
where (40) is because Y( Skl T (S(i=1)ks S0) —
(Y(L 1)k S(z k-1

form a Markov chain (which is
further due to the fact that X* (i1t
(Yl(l Dk ,SéL 1)k)), and (41) follows from the property

1 is independent of
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1)

2)

of finite-state channels. The rest of the proof is similar to
that of Theorem 3.5, and thus is omitted.

APPENDIX J
PROOF OF LEMMA 4.1

For any PX{CIX;».ISO € Eg(B), there exist mq,mg € N,

(4 5 (vk (@) k (4,9)
Py € P (Xf), Py € P(xy). Ps’’ € B,
Wity € [0,1],4 = 1,...,m1,j = 1,...,ma, such
that E/?;ll M1 = E;’n:zl Mo = 1, and
R\'ij;JSO (xlf,17$,2€,1750)
mL me ..
=3 manei P (ef0) PYL (eh) PG (s0)
=1 j=1

forall zf | € XF, x5, € XF, so € S. Therefore, we have
the equation shown at the bottom of the next page, which
implies Py: xr € P (XF) x P (XF).

By Part 1) of Lemma 4.1, it suffices
{PXKIXQISO €P(XF x Xk x S):

to show

I(XT* Y, 81180 = s0)

= H (", 87%1So = s0) — H (Y7"*, ST*IXT*, S = s0)

M:

q
Il
-

R

i
I

7 ik n 1—1)k 1—1)k
[ (Y(ik—l)kH?S(f—l)k+1|5(i—1)k750 = 50) -1 (Y(z Dkt Si-nran X7 YR ST S = 50)}
[ (Yé’inkﬂv S{i_1yk411S-1)k So = 80) - H (Yék_nkﬂv S(i— k41 X (= 1yet1s Si-1yks So = 50)}

1 (Xéf—1)k+1§y(iik—1)k+17 Séf—l)k+1|5(i—1)kv So = 50)

i ik 1—1)k i—1)k n i—1)k 1—1
(Y(ik—l)kJrle(f—l)kJerf 8RS, :50) _H(Y(z D1 SG- e 1 X1 Ly mDE gl 50:50)}

(39)

I(XT* Y, S8 = s9)

= H (V7™ 57|y = s0) — H (Y], SP*XT*, 8o = s0)

- i-Dk o(i—1)k n i—1k o(i-1)k
= Z [ <Y(1 1)k+175(1 1 k+1|Y( ) S§ ) S0 = 30) - H (Y(L 1)k+175(7 1)k+1|X t ( ) S£ ) 50 = 50)}
i=1

i [H (Y(i,;k_l)k_i_p Séf_l)k+1|5(i71)ka So = 30)
i=1
>

1=1

[H (Y(iikfl)kJrl?S/(iffl)k+1|5(i*1)k’so = 30)

-

1

2

n ik o(i-1)k
(Y(L 1)k+175(1 1 k+1|X g Y( ) S£ ) » 50 :30)}
(Y(z 1)k+1° S/(iffl)k+1|X/(iff1)k+1v S(i-1)k» S0 = 50)}

I (Xéfq)kﬂéy(i’inkﬂ: Séi1)k+1|3(i—l)k7 So = 50)

(40)

(41)
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Pyr xx €P (Xlk) x P (X2)}g Zx(P(S)). For any for all x’f,l € xF, ;1:’2“,1 € XF, s0€S.
T . Define
P+ sk with Py & X - ~(i . ~
X11X2,150 XX ( ) ( ) Zk (B,u17i,f))((1‘)cl,z = 1,”,,m1): { ;élengo €
Py x5, (xlf,1a$§,1:30 = Z Py, (21 1) Py (;1;’2C 1) P (X x XF xS) : there exist Py €
z1 113”21 'P(./sz) P(l) S B,i =
b~ ko ok _
Xl];,f ) (x’f’l) ﬂ;é. ) (52,1) PSoIX{" Xk (so|x’1€’17 xg,l) 1,...,m, SuCh that P?léf_lXé"_lSo (a:l,l, T3, 30)_
, , e i~ = () k
Z ', P ok ) Pyr (251) Pg(so) for all 2% | €
where I, () and b, (-) are the indicator functions. =t N (k 2 “( 1) P, ’
3 o~ XFE, ak € AXi,sg € Syp. Since Pyr xi €
Note that ’;k ( ) ( )PSOIX{»',IX;I(‘|$I{:1,xéyl) € v ~ ° ff](l) . " Xf,lXé,lso
P(Xl)xP (X2) X P( ) for any fixed 5’1“,1 € Xk, conv (:k (B’/“JWPXf_l7ZZ 1,...,m1)), by
w51 € X} Therefore, we have Py 1 s, € Zx(P(S8)). Carathéodory’s theorem, there exist P)((]? e P(xf),
3) For any Pxr xr g € Zi(B), there exist mq,ma € N, —(irj) _ 2!
(4) L1 2.1k 0 (4) k (17]) o € B, ma S |X1|k|‘)(2|k|5|’ 12,5 € [07 1]’
PX{‘J € 7)(““(1)’ PX§,1 € 7D(X2)’ Py € B, j =1,...,ms9, such that
P1ispe; € 10,14 =1,...,my,j = 1,...,mg, such et
that S°0 g, = S 02 =1, and
it bi = 2 b Per xi s (251,08 1,50) = S0 i ifio i P Xk ()
mi mo =1 j=1
PXk Xk So (x,flva 1,80 ZZNI iz, P Xk (xlfl) ngj,z (1715 1) F(Si;j)(sﬁ)
i=1 j=1 2 ,
XP)(gg] (wgl) Péi’j)(so) forall #§ , € XF, 25, € XF, s € S. Assuming m; <
’ Mo, WE can write
for all x’fJ € AF, w’il € X¥ s0€S. mz mo
Define Zk (B, 2,5, P)(g,? jg=1,.. m2): Pxf"lxg‘]so (:vlf 15 5172 1780 ZZM zﬂz,j XA ( k )
=1 j=1
Pl € P(XFxXFxS —(ij
{Pit, v P X S) <P () P )
there exist PXk e P (Xlk) ,Péf)) e B,j = Kaa
1,...,ms, such that P)'(k \XE | So ($’f,1a$§,1750): where fi1; = 0, and P)(;z , Pg’]) can be arbitrary

Z] 1 Mz,JPXk (3?1 1) P(]) ( 2,1) Iséi)(so) for all a:’f,l € probablhty distributions from P(XF) and B, i =
) . my + 1,...,ms. Therefore, there is no loss of generality
Al ahy < 550 < S}' It is to assume m; = my and max(my,ma) < |X1|*|Xo|¥|S|

casy ~to see that - Pyp xps, € in the definition of Z,(B).
conv (Ek (37 /1,21]/P(32 j=1,. m2)) Therefore, 4) For any PXlk- xk.s, € Ek(COHV(B)), there exist
by Carathéodory’s theorem, there exist 1’5(\12 € P(xf), my,mz,m3 € N, P(Z) P(Xf), P € P(&5),
e . 1 i,
Pé?]) S B, 7%1 S |X1|k|X2 k s /Nl/l,i S [0 1], P( &b € B M1, .U2,37/1'3l € [0 1] 1 = 17...,777,1,
i =1,...,m1, such that J T—nl m2,7i_— 1,...,msg, such that Y37 g ; =
N Do M2 =Dl M = 1 and
my Mo my; mz m3
PxfrlXQISO (xlf 1»382 19 80 = Z Zul 2,5 X’~ ( k ) PX{crngk:lSO (x’f 1,x2 15 so Z Z Z“l P2 13,1
=1 75=1 =1 j=11=1
N . . . i
xPY) (a51) P& (s0) xPY) (ah1) PYL (a51) PG (s0)

k k (7 k
PX’“_I (5’31,1) Z PX Xk S (551 175172 1 30 ZMI Py $1,1)

)11

k k (J) k
ng_ 5521 E PX 150 (5’31 171172 1730 E szp 932,1)
Z1,1150

ma

Pxp xt, (51,25 1) ZPXU S0 (211,75 1,50) = (ZleP(l (#51) ) ZNz,yP(J) (251)

=1
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forall 2}, € XF, 2%, € Xf, 50 € S.Forj=1,....,my, pY ( |z ) € P (Xé”) for any fixed z%",
L=1,...,mg,letj" =mg(j — 1) +1, iz jr = pi2,ji31, ‘\ ATLII : have P _ A,
P = PY) and P = P, We have @y} Therefore, we have Py, xp, 5., € Zha(As).

. For any :1:1,1 e X andsy e S

mi momsg

k k Z Z (7) k )
PX}‘ X2150 (:E11/£1721,80 K, LI"LQ*]/ Xy, ( 11) P k1X§1150 (x’ﬁl,x’;h,é}o)

=1 j'=1 1,1
P(] : (‘T 1) P(L’] )(30) = Z PX{”'le;lSo (xllcal’wlzc:l’so)
2 ! x’{,k1+1’$§,k1+1
for all ¥, € AF, 2%, € XF, 5o € S, which implies e
; , k

Px; xt,5 € Zk(B). = X XX mamsPy ()
5) Note that for any z* g1 € Xk € A% and g 0Py I

sk, € S, see (42), shown at the bottom of the page where x P)((Jz («’17151) PS,J’)<80>

- ’ 0
(42) follows from the fact that Sy, — (X 11 2 Y 5’0) - e
(®) k @ (.k )
(Xﬁkﬁl,X;“’le) form a Markov chain. For any 1", € = 2; Zl H z/~‘2,JP (xlll) PX;11 (x211) Pg,"(50)-
=13

Xf ahy € Xy and o5 € XJ, s, € S, define

plid) | ke Therefore, we have PXleI\IS € Z, (As).
Siy XL X5 Sk11T1,1:%21 6) Since Pso € conv(A, ) there existm € N, p; € [0,1],
(4)
ki ki i,J and Py’ € As,i=1,...,m, such that Z i; = 1 and
Z Sk |\'k1 Xkl So (Skl |w1717$2717 50) Péoj)(SQ). So - ( ) -1
' Ps,(s0) = >oimy piPg; (s ( 0), $0 € S.Forany s, € S

. i\j P,
In view of the fact that that Pé:]” ) € A, and s (1) ..
AT C A, we have P | (~|;1:’1"11 x’gll) € = Z Pxr xk 5,5, ($1,17$2,173k,80)
S’»1|X1117X 4 TS zf 2k s ’ ’
AT*  C A, for any fixed z5', 5. It is also —

= E Pg  xr xh slah ah s

: Sk| Xk XE S k[T1,1,%21,50

easy to see that 29 (-[:p’fll e P (Xlkz), = BT o )
Y" Tokg41 |X ’ ’1‘11‘1 ,m;yl,SO

Py . z¥ ,ak ]
X{”.k1+1X§.k1+15k1( L4102,k 410 kl)

— ko k
= E PX{”'IX;ISMSO ($1,1»$2,175k1>50)

ky k1
T1,1:T21,50

_ k k ko k
= E P5k1|X L Xk S (5k1|371,1>$2,1750) Pxflxglso («’171,1:372,1750)

m1 1112 Y550

- Z Psk1|X LXI S,

g
T1,10T2,1:50

( )
- Z P5k1|4’( VXA So (5k1 |$1 1,$2 1 50)
( )2

koo k
sk |70, 5, 80 Pyr xx s, (211,731, 50) (42)

MMZ,JP“ (k) PY) (2h,) PSP (s0)

21

11’2170

= P .
Z Sky |XTL XA S0

11’2170

D () () P

2,1

- zzzz [ul 1P< ()] frean (e5)| [P (shaiety)

=1 ’~1]1

Skq |5171 13 5’72 1,50

||M3 INgE
||M§ ||M§

(4) ( ki) pl) k ky
1i/~52,'P s\ T10 T gy 1|71
J X1.11 Xk kit ’

’C1+1|X

) k ki k1 (4.9)
|:PX1c | J‘1 Lo k1+1|x2 1 E : Sk, \X}“l X’“l So Sky |x1,17x2,1730 PSO (80)
ky411”
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X Py xr s, (271,75 1, 50) where we have defined the first equation shown at the
_— bottom of the page. Since pY (‘|lak 2k ) e A

k k k k 1,721 s

= D Pouxt,xt,s (skl2ta,a54,50) SN2 X ’
13)1\',1’9”’2“,1750
k k

x Pyr (21 1) Py (z5.1) Ps,(s0) , APPE’;\IDIX K s

ROOF OF 1THEOREM 4.

1) Since Ry, D Rg is obvious, it suffices to show Rg D) R.
For « € [0, 1], define the supporting lines

for any fixed #f ; and 25 |, we have Psk € conv(Ay).

ko k
E PS;C|X{‘V1X§,ISO (3k|$1,17$2,1750)

ko
Ty 1,3 1550

X PX{“_ (‘Tl 1 PXk «172 1 Zlh 50 50 g(a) = max ~(1 - Oé)Rl + aRRy
(R1,R2)ER
= k k Crla) = max 1—a)Ri +aR
= Z Z /LiP)({\"l (:1:1,1) IDX;"J (CEQ,l) k(@) (Rl,RQ)e%k( i ’
i=1 gk gk
Ty 10T C]?(a) = max (1 — a)R1 + aRs.

(R1,R2)ER?

P o silzk ok s0) PO (s
; SklXE X5, S0 (sxl27.1: 25,1, 50) P, (s0) It is clear that

m

=Y X [mP, (k) Py, (s8] o) =Hpzpae). aclhd

1=1 gk
Ty

Itcan be shown that forany Pyr xr € P (Af)xP (&7)

(@) ko k }
X |:PS)\‘X"‘ X%, (5k|=’171,1;1172,1) and s € S, Ry (PX{«IX‘%,SO) is a polymatroid (see

(@) k (%) k E_k k
P5A|X X (5k|371 1»3321 E Psk\\k X5, S, (3k|x1 173?21’30) Ps, (s0)s ri1 €AY, w3, €EXY, s €S

I (X{C,1§Y1k|X§,1750 = 50) + %I (X§,1§Y1k|50 = 50)

~ 1-«
Ck(a) = max max
Py g €P(H)xP(at)

11—«
¢2(a) = max max
S0 Px{“‘lx;lso €Ek(Asg) k

a 1
I (Xf,1§Y1k|X§,1750) + EI (X§,1§Y1k|50) + EH(SO)

~ 1—
Cr(a) = max max
0 Py €P(XF)xP(xf) k

-«
¢9(a) = max max 2
S0 Pp vk o EEr(As
Xf,1X§,150 £(Aso)

a a
I(Xf,1§Y1k|SO = 50) + EI (X§,1§Y1k|Xf1»SO = s0)

) « 1
I (Xf,1§Y1k|50) + EI (X§,1§Y1k|Xf,1750) + EH(SO)

n

T(XPR: Y™ IX5h, S0 = s0) < [I (X?,C(i—l)k-i—l;Yv(zjik—l)k-i-1|Xéf€(i—1)k+17S(i—l)kv So = 80) + H(S(i-1)x|So = 50)}

=1

Mz

I(XT5, X35 Y|S0 = s0) < [I (Xil,c(i—l)k+1>Xél,c(i—l)k-kl;Y(lr‘ik—l)k+1|s(i71)k: So = 80) + H (Si—1)k]So = 80)]

i=1
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[21] for the definition of polymatroid); moreover, for By similar steps as in the proof of Theorem 3.1, one can
any Pyr yx ss € Zk (Asy)s Rko Py xr 50) is also easily verify that [see the fourth equation, shown at the
a polymatroid. In view of the polymatroid structure of bottom of the previous page]. .
Ry (PX{c XE 50) and RY (PX{“ XE 150)’ we have, for Note that if PXnA Xnk|50( ,|s0) € P (X F) x P (xpF),
o € [0, %] , see the second equatioh, shown at the bottom thedn for any xl (i—1)k+1 86 Xt fﬁ (Pﬁ)kg-l € tXQ ’
of the previous page, and for « € (3,1], see the third and 50, 5(i-1)k € » see the first - equation,
shown at the bottom of the page, where

tion, sh t the bott f th i . .
equation, shown at the botiom ol the previots page the last equality follows from the fact that

_ , ik ik ,
PXi’,\.(z'fl)kJrlXél,v(i71)k+15(i71)k‘ S0 (xlv(ifl)k*l’ L2,(i—1)k+12 5(i=1)k ISO)

= o ik ik
o Z PX{fClX%’_"lS(i—l)k\So (xLl"TZ,l’S(l—l)kISU)
:I:(l'lylfl)k’zg'lylfl)k
_ ik ik ik
= E PX”“ X3k 1So (‘Tl 1»352 1|50) PS(, Dk X3k X3 So (S(i—l)k|$1,1»$2,1> 50)
2l
_ ik ik
= E PX“ |So (5171 1|30) PX“» |So (x2 1|30) Ps(q,l)kp( ik X3k So (S(i—l)k|371,17$2,17 80)
(i—=1)k _(i—1)k
Ty Lo 1
_ (i—1)k (i—1)k (i—1k
= Z PXffl)k\So (251,1 [s0 PXéi;I)kISO Ty, [s0 PXzA XU :vl (Zfl)k+1|a:1 , 50
(i—1)k _(i—1)k ’ ’ 1,(i—1)k+
Ty Lo 1
ik (i—-1)k ik ik
X PX ( 1)k+1|X z—l)k ($2,(i71)k+1|x2,1 , S0 Ps(i—l)k‘X;{‘iX;l;}SO (8(i,1)k|x1117$271’ 80)

= (i (i-1)k (i— 1Dk

= Z PXY‘I—I)I\-‘SO (:E1 1 |80 PXéi;I)kISO Ty, [s0 Psz( e X0 (i-Dkg :vl (171)k+1|a:1 , S0
(i—1)k _(i—1)k ! ’ i—

Ty Lo 1

ik (i-Dk ) (i—1k  (i—1)k
x P i Th T .s0 ) P is1)k Sti—DelT , T s
Xik i 1)k+1|X 1)k 0( 2,(1—1)k+1| 2,1 " 580 ) Fg l)k‘X 1)kX§,1”‘So (i 1)k| 11 51 150

E(a) = limsup Enk(a)

n—oo

. 1-—
= lim sup max max A 7 (X1 1,Y1”k|X2 i, S0 =s0) + kI (X2 kYRS = 50)

— So p nk vk P Xvnlc P (Y,nk n n

n—oo Xl,lixz,lie ( 1 )X ( 2 )

: 1 -2« nk nk
:hmsupn}sax max . TI(X1 LY XS 1,50—80)+nkI(X1 1, X3 M YRS = s0)

oo %0 Pynk o eP(apk)xP(xpt)
< lim sup max max

i—oo S0 Py ik (5150) EER (Fsg . (i—1)k)

L (i 1) k12, (i— 1) k41 S(i—1)k150

1 -2« i i
5 [I <X1 k15 Yt X5 1)1 Sa—1)ks S0 = 80) + H(S(i-1)x|So = 50)}

o i i ik
+ % [I (Xll,c(i—l)kﬂvX2I,€(i—1)k+1§Y(ik—l)k+1|5(i—1)k750 = 30) + H(S(z‘—l)k|50 = 50)}

< limsup max max
1 so Pk ik (+,5+150)EER (G (im1)k)
im0 X;,(i—l)k+l)‘2,(i—1)k+1S(i_l)""SO e sg,(i—1)

1-

(Xl (171)k+17Y(L7 k+1|X2 (i—1) k+1/5(1—1)k750 = 30)

+ kI( 2 (1—1)k+17Y(7 1)k+1|S(171)k750 = 30) + H(S(z—l)k|50 = 80)

<P (o)
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ik ik (i—-1)k z 1k
SX J(i— 1)k+17X2 (i— 1)k+1)_(X X 50
(L 1r form a Markov chain. It is clear that for any
371(z Dkt1 € Xl,:cz( k1 € X2,and so € S, we
have

(i-L)k k
P‘\ik(z 1)k+1|X TS ( |$ '30) €P (Xl)
P

k k
P, g, (ST s0) €P (X
‘\zk(z 1)k+1|X Vs | ( 2)
(i—1)k (i— 1)k
Ps(q;l)k-\XY?l)kSo ( |LI: 21 0) € Goo,(i-1)k-

Therefore, PX% e X S 1)“50(.’.’.|50) €

Ek(Gsy,(i—1)k)- In view of the fact that
lim 6(Gs, (i—1)k:Asy) = 0, we have, for o € [0, 3],
égeoothe second equation, shown at the bottom of the
previous page. By symmetry, ((«) < ¢9 () also holds
for o € (%, 1] . Therefore, we have R C Rko.

2)

1y

3689

It is easy to verify that R, C Ri. So we only need to
show R € R. Let {(X{%, 14 s Xifiyyp ) 120 be
a stationary and memoryless vector process independent
of the initial state Sy. It can be verified that [see the first
equation shown at the bottom of the page]. The rest of the
proof is similar to that of Theorem 3.5, and thus is omitted.

APPENDIX L
PROOF OF THEOREM 4.3

Since both k1R{) and koR§, are convex, it follows that
k1RY + kaR§, is also convex. Moreover, for a € [0, 1],
we have

max (1—a)Ri+aRs = k() (a)+ka(f ().

(Ri,R2)€kiRY +koRE

I (X{L,§§Y1nk|Xg,]i750 =50) >

M+ 10>

I (X§,§§Y1nk|X{l,]i750 =50) >
i=1
n

\%

[I (Xiil,c(i—l)k+1; Y e XS ks Sti—1yks So = So) — H(S@i—1)x|So = so)}

[I (Xél,c('i—l)k+1; Y e X1 Sy So = 50) — H (S(i—1)elSo = 30)]

1 (X{Llf X3 MY S = s0) > Z [I (Xil,c(i—l)k-kl»Xél,c(i—l)k-kl;Y(lr‘ik—l)k+1|s(i71)k: So = 80) — H (Sq—1)klSo = 80)]

i=1

I(Xf,1§Y1k|X§,17SO) <I (Xf,11§y1k1|X§,11750) +1

I(Xf,17X§,1§Y1k|SO) <I (Xf,117X§,115Y1k1|50) +1

(X{C,k1+1;ykﬁ+1|X§,k1+17Skl) + H(Sk,)

(X{C,k1+17X§,k1+1; Ykkl+1|sk1) + H(Skl)

k¢ (o) = max max (1— o) (X{1:YFIX5 . S0) + o (X51:YF(S0) + H(So)

° PXf 1X§ 150 €=k (A)

= max max (1= 2a)1 (X{1;YF1X5 . S0) + o (XT1,X51:YF(S0) + H(So)

s PXf1X§1SOGEk(A5)

< max max (1-2a) [I (Xfll,Yk1|X2 1,50) +1 (Xf,kl-i-l;Ykkl+1|X§,k1+17Sk1):|

s PX{\,IXQISOGE;‘.(.AS)

o [T (X0, X Y180 ) 1 (X 4y XE g0 VE 1 1Sk,)] + H(S0) + H(Sy,)

< max max (1 - 2a)I (Xfll, Y Xk SO) +al (Xfll, Xk yh |SO) + H(S)
s ka'l xk1 g, €Ek, (As) ’ ’
+ mSaXP . maX (4 )(1 —20) 1 (X7 gy 413 Vil 1 1 X5 11 S

xk
X k417 Xy k1+15’\'1

+al (X1,k1+17Xz,k1+1§ykﬁ+1|5k1) + H(Sk,)

= k1§k01 (@) + k2<1?2 (@)

(43)
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It can be verified that (cf. the proof of Theorem 3.4) (see
the second equation shown at the bottom of the previous
page). Therefore, for a € [0, %] , see (43), shown at the
bottom of the previous page, where (43) follows from Part
5) of Lemma 4.1. By symmetry, k(f(a) < ki(Q (@) +
k2Cf (a) also holds for o € (3,1]. Therefore, we have
k’RU C k1RY + kQRO

2) Let P € P (2(1’“1) x P () and P, € P (/) x
P (XQkQ) be the two arbitrary input distributions. Con-

. ki yki o yk
struct independent random vectors X1y, Xy, Xi 4 1,

and Xk with P = P; and P ; =
2,k1+1 XLy 1 \kk1+1ka1+1

P». Assume X1 1 X;ll, X1 Ky 410 and X2 k,+1 are inde-
pendent of Sy. By this construction, if Ps, € conv(A,),

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

(=]
Part 6) of Lemma 4.1 that Pka1 XE Sk € B (Ay).
It suffices to show

KRI (PXfIX;.J) Dk RE (P1) + kaRE ()

which boils down to the following three inequalities (see
the first equation shown at the bottom of the page) where

= P, P iy —k, = P», and Y1 ,Y1 are
< 1.1X2.1

induced by ()?{“}1)?;}1, So) and (X1,1X2’1, So), respec-
tively. It can be verified that (cf. the proof of Theorem 3.8)

P~ k1 ¥k
X1aXon

I(Xl 17Y1 |X2 1750) > I(Xfll7YkI|X2 1 )

+1 (Xl,k1+1;Yk1+1|X2,k1+17Skl) — H(Sk,)-

then P = (As t foll fi .
en X[ L X4 S0 < kl( ); moreover, it follows from Therefore, we have the second equation shown at the
bottom of the page, which, together with the fact that
(see the third equation shown at the bottom of the page),
. . +
min min [I (Xf’l;Y1k|X§,1,So) — H(So)]

s Psy€conv(As)

> min min
s P~ €conv(As)
So

— H(So)] "

min min

s Psy€conv(As) [I (Xg,l;yik|Xf,17 SO)

>min  min [I (Xgll; Y Xk
s Pf; €conv(As) ’ ’
0

— H(Sy)]"

min min
s Ps, €conv(Ay)

[I (Xf,h X§,13 Y1k|50)

> min min
s P’; €conv(As)
o

[ (Xt Vi K83, 80) — H(S)] 4 min
50) - H(go)} i + msin

I j(v'kl )?kl.i;h Q a7 .
[ ( 1,10 210 11 |SO)—H(SO)} —i—msln

. k2 7R R & =17
min [I(X11§Y1 |X21750)—H(50)}
P§0 Econv(A;) ’ ’
. k2 ke 7k & =17
min [I(X2,1§Y1 | X711, 50) — H(SO)}

P§0 €conv(A;)

min

<ks ke ke o _ o+
pe cnin [ (R0 T 00) = GG

— H(So)

min _ min I(XFYFIXE L So)
s Ps,€conv(As) ’ ’

> min min
s Ps, Econv (A,

> min min

Yk . vk vk
I (X v s
s P; €conv(As)
o

k1 k1 .
)I (Xl 17Y |X2 19 ) +I(X{C,k1+17Ykk1+1|X§,k1+17Skl) -

§0) — H(§0) + I’HSiIl

H(Sy,) — H(So)

min

—ky —ky —ky — _
I (X Y xh g ) — H(S
P eAL) 1.1:Y1 [ X571, 50 (So)

min min

I(XkYEIXE S
s Pgoeconv(.As) ( L1 1| 2,1 0)

— H(So)

min min
s P~ €conv(As)
So

> max

I (f(f}l; f/lkl |)~(§,117 §0)

— H(Sp), min

min

~k2 k2 k2 & =
I (X Y xh 5 ) — H(S
i 1.1:Y7 [ X571, 50 (So)



CHEN et al.: TIGHTER BOUNDS ON THE CAPACITY OF FINITE-STATE CHANNELS

[I (Xf,1§Y1k|X§,1:SO) - H(So)]+

min min
s Ps,€conv(As)

> min min
s P~ e€conv(A,
So

[ (Rt £ 8) - 0]

3691

ko —ko —ky — _ +
4fmin_ min [I (X’l”l; Y IXE SO) - H(SO)}
s P§0 €conv(A;) ’ ’

implies (see the equation at the top of the page). The
other two inequalities can be verified in a similar way. The
details are omitted.
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