On the Compound Finite State Channel with Feedback

Brooke Shrader University of Maryland Haim Permuter Stanford University

Information Theory Symposium (ISIT) June 25, 2007

The compound channel

- ► A *family* of channels
- Channel $\theta \in \Theta$ is in use over all transmissions
- Transmitter and receiver know Θ but not which θ is in use
- Example: a family of discrete memoryless channels

$$\{P(y|x,\theta), x \in \mathcal{X}, y \in \mathcal{Y}, \theta \in \Theta\}$$

The memoryless compound channel

Capacity given by (Blackwell, Breiman, Thomasian, 1959; Wolfowitz, 1959)

$$\max_{Q(x)} \inf_{\theta} \mathcal{I}(Q(x); P(y|x, \theta))$$

where

$$\mathcal{I}(Q(x); P(y|x, \theta)) = \sum_{x,y} Q(x) P(y|x, \theta) \log \frac{P(y|x, \theta)}{\sum_{x'} Q(x') P(y|x', \theta)}$$
$$= I(X; Y|\theta)$$

The memoryless compound channel

 If the transmitter knows the channel θ in use then capacity is (Wolfowitz, 1964)

$$\inf_{\theta} \max_{Q(x)} \mathcal{I}(Q(x); P(y|x, \theta)) = \inf_{\theta} C_{\theta}$$

where C_{θ} is the capacity of the memoryless channel indexed by θ .

- If Θ is a finite set, then by use of a training sequence and feedback, the transmitter can estimate θ.
- What about compound channels with memory?

The compound finite state channel

A family of finite state channels where

$$\mathsf{P}(y_i, s_i | x_i, s_{i-1}, \theta) = \mathsf{P}(y_i, s_i | x^i, s^{i-1}, y^{i-1}, \theta), \quad s_i \in \mathcal{S}$$

- Definition: rate R is achievable if for a given error P_e there exists a blocklength-n rate-R code with average probability of error less than P_e for all s₀ ∈ S and θ ∈ Θ.
- The capacity of the compound finite state channel is given by (Lapidoth & Telatar, 1998)

$$\lim_{n\to\infty}\max_{Q(x^n)}\inf_{s_0,\theta}\frac{1}{n}\mathcal{I}(Q(x^n);P(y^n|x^n,s_0,\theta))$$

The compound Gilbert-Elliot channel A compound finite state channel

PSfrag replacements

Used to model wireless fading channels

PSfrag replacements An example: compound Gilbert-Elliot channel Lapidoth, Telatar, 1998

 $\Theta = \{1,2,3,\ldots\}$

- Compound feedback capacity = 0: the channel θ = n will remain in the bad state with probability (1 − 2⁻ⁿ)ⁿ ≥ 1/2
- ▶ $C_{\theta} \ge 1 h_b(1/4)$: use interleaver to make the channel look like BSC(1/4)

Feedback capacity of compound FSC $\neq \inf_{\theta} C_{\theta}$

The finite state channel with feedback

For time-invariant, deterministic feedback $z_i = f(y_i)$ (Permuter, Weissman, Goldsmith, 2006)

$$\lim_{n\to\infty} \max_{Q(x^{n}||z^{n-1})} \min_{s_{0}} \frac{1}{n} \mathcal{I}(Q(x^{n}||z^{n-1}); P(y^{n}||x^{n}, s_{0})),$$

is achievable where

$$Q(x^{n}||z^{n-1}) \triangleq \prod_{i=1}^{n} Q(x_{i}|x^{i-1}, z^{i-1})$$
$$P(y^{n}||x^{n}, s_{0}) \triangleq \prod_{i=1}^{n} P(y_{i}|y^{i-1}, x^{i}, s_{0})$$

and the directed information is (Massey, 1990)

$$\mathcal{I}(Q(x^{n}||z^{n-1}); P(y^{n}||x^{n}, s_{0})) = I(X^{n} \to Y^{n}|s_{0})$$
$$= \sum_{i=1}^{n} I(Y_{i}; X^{i}|Y^{i-1}, s_{0})$$

Causal conditioning distribution

$$Q(x^{n}||z^{n-1}) \triangleq \prod_{i=1}^{n} Q(x_{i}|x^{i-1}, z^{i-1})$$

An example for binary feedback

Our problem: the compound finite state channel with feedback

- Fixed blocklength n
- Need error probability $< P_e$ for all $s_0 \in S$ and $\theta \in \Theta$.
- Includes: no feedback, quantized feedback, perfect feedback

Converse

Theorem

The feedback capacity of the compound finite state channel is upper bounded by

$$C \triangleq \lim_{n \to \infty} C_n$$

$$C_n = \max_{Q(x^n || z^{n-1})} \inf_{s_0, \theta} \frac{1}{n} \mathcal{I}(Q(x^n || z^{n-1}); P(y^n || x^n, s_0, \theta)).$$

- Existence of the limit: $C_n \log |\mathcal{S}|/n$ is super-additive
- Proof of theorem: Fano's inequality, properties of directed information
- ► For a memoryless channel, C reduces to Wolfowitz's result

Achievability

 For |Θ| < ∞, as a consequence of (Permuter, Weissman, Goldsmith, 2006)

$$\lim_{n\to\infty}\max_{Q(x^n||z^{n-1})}\min_{s_0,\theta}\frac{1}{n}\mathcal{I}(Q(x^n||z^{n-1});P(y^n||x^n,s_0,\theta))$$

is achievable.

- For |Θ| = ∞, need a universal decoder, follow approach of Feder & Lapidoth, 1998
 - approximate Θ by finitely-many channels
 - merge the ML decoders tuned to those channels

Feedback capacity vs. capacity without feedback

► For memoryless compound channel (Wolfowitz, 1964)

$$C = 0 \iff C_{FB} = 0$$

 Using our upper bound C, the same holds for a stationary, ergodic Markovian channel

$$P(y_i, s_i | x_i, s_{i-1}, \theta) = P(s_i | s_{i-1}, \theta) p(y_i | x_i, s_{i-1}, \theta)$$

Compound Gilbert-Elliot channel

- ► Equivalent to additive noise channel: Y_i = X_i + V_i, V_i ∈ {0,1}
- Feedback does not increase the capacity of the compound Gilbert-Elliot channel.
 - Maximizing input distribution: memoryless uniform Bernoulli process (for any s_i, θ)

Summary

- Capacity for compound channel with memory and feedback
 - Feedback capacity is positive iff capacity without feedback is positive
 - Feedback does not increase the capacity of the compound Gilbert-Elliot channel

Summary

- Capacity for compound channel with memory and feedback
 - Feedback capacity is positive iff capacity without feedback is positive
 - Feedback does not increase the capacity of the compound Gilbert-Elliot channel
- Thanks: A. Ephremides, T. Weissman, P. Narayan, A. Goldsmith