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Abstract. Let (Ω,F ,P) be a probability space, and let {µk}
∞
k=1 be a se-

quence of centered independent finite complex valued transition measures
on Ω × B(Rd), i.e., (i) for every ω ∈ Ω, {µk(ω, ·)} is a sequence of finite
complex valued measures on B(Rd); (ii) for every n 6= m and for every
two Borel measurable simple functions φ and ψ on R

d, the random vari-
ables

∫
Rd φ(u)µn(ω, du) and

∫
Rd ψ(u)µm(ω, du) are independent, and for every

k ≥ 1,
∫

Rd φ(u)µk(ω, du) is centered. Put Vk(ω) = |µk|(ω,R
d) for the total

variation norm and assume that {Vk} ⊂ L∞(P). Let {Lk} be a sequence with

Lk ≥ 1 and put Ln,m =
∑m

k=n+1 L
2
k . If

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2

< ∞, then

there exists absolute constants ε > 0 and C > 0, independent of {µk}, such
that (with 0/0 interpreted as 1),

∥∥∥ sup
m>n

sup
T≥2

exp
{
ε ·

max
t∈[0,T ]d |

∑m
k=n+1

∫
[−Lk,Lk ]d

ei〈t,u〉µk(ω, du)|2

log[(Ln,m)d/2+2T d+2]
∑m

k=n+1 ‖Vk‖2∞

}∥∥∥
1

does not exceed C. This result extends and unifies results of Weber and Cohen-
Cuny. New applications are also given. For example, if {Xk} ⊂ L2(Ω,P) is
a sequence of centered independent complex valued random variables such

that
∑∞

n=1

(
∑

k≥n k2d‖Xk‖2
2)1/2

n
√

log n
converges, then P-a.s. the random series

∑∞
n=1Xn Πd

j=1
sin(ntj )

tj
converges uniformly in (t1, . . . , td) ∈ [0, T ]d, for ev-

ery T > 0.

1. Introduction

In several recent works, like Assani [A], Boukhari and Weber [BW], Cohen
and Lin [CL], Cohen and Cuny [CC2, CC3] (see also the references therein),
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convergence of power series of contractions (or measure preserving transformations)
with random coefficients (usually realization of independent random variables) was
considered. As a typical example (see [CC2]) we have the following:

Theorem A. Let {Xn} ⊂ L2(Ω,P) be a sequence of centered independent random
variables, and let {pn} be a non-decreasing sequence of natural numbers. If the
series

∑∞
n=1 ‖Xn‖2

2(logn)2 log pn converges, then there exists a set Ω∗ ⊂ Ω, with
P(Ω∗) = 1, such that for every ω ∈ Ω∗ the series

∑∞
n=1Xn(ω)T png converges

π-a.s., for every contraction T on L2(π) and every g ∈ L2(π).

From [CC3] we take the following example:

Theorem B. Let {θk} be a sequence of independent N-valued random variables on
(Ω,F ,P), and let {ck} be a sequence of complex numbers. Let Φ be some positive
non-decreasing function on R+, such that for some η > 0 we have Φ(x) ≥ xη for
every x ≥ 0. Assume that for some δ > 0 we have

∑∞
n=1 P[θn > Φ(n)δ] < ∞. Let

{an} be a sequence of complex numbers. If the series
∑∞

n=1 |an|2(log n)2 log Φ(n)
converges, then there exists a set Ω∗ ⊂ Ω, with P(Ω∗) = 1, such that for every
ω ∈ Ω∗ the series

∑∞
n=1 an(T θn(ω)g − E[T θn(·)]g) converges π-a.s., for every con-

traction T on L2(π) and every g ∈ L2(π).

Various extensions of these two results were considered in [CC2, CC3], among
them: series with two commuting contractions, more than two commuting isome-
tries, or series with d-commuting (semi) flows (d ≥ 1) with (positive) real powers.

All the above cited works based their a.s. convergence results on uniform
bounds of trigonometric (almost periodic) polynomials. Especially, the results of
[BW, CL] are based on a uniform estimate which was introduced in an important
work of Weber [W1] (see Theorem 7 there). In [CC2, CC3] generalizations of
this uniform estimate were given; these generalizations made it possible there to
obtain the multi-dimensional cases mentioned above. The following two estimates
were obtained in [CC2] and [CC3], respectively:

Theorem C. Let {Xk} be a sequence of complex valued, symmetric independent

random variables on (Ω,F ,P), and let {λk = (λ
(1)
k , . . . , λ

(d)
k )} ⊂ Rd. Put |λm|∗ =

max
1≤k≤m

max{|λ(1)
k |, . . . , |λ(d)

k |}. Then there exists absolute constants ε > 0 and C > 0,

independent of {Xk}, such that (with 0/0 interpreted as 1),

E

[
sup
m>n

sup
T≥2

exp
{
ε ·

max
t∈[0,T ]d

|∑m
k=n+1Xkei〈t,λk〉|2

log[(|λm|∗ + 1)mT ]
∑m

k=n+1 |Xk|2
}]

≤ C .

Here and throughout the paper 〈·, ·〉 denotes the inner product in Rd.

Theorem D. Let {λk = (λ
(1)
k , . . . , λ

(d)
k )} be a sequence of independent Rd-valued

random variables on (Ω,F ,P), and let {ck} be a sequence of complex numbers.
Let Φ be some positive non-decreasing function on R+, such that for some η > 0
we have Φ(x) ≥ xη for every x ≥ 0. Assume that for some δ > 0 we have∑∞

n=1 P[|λn| > Φ(n)δ] <∞. Then there exists absolute constants ε > 0 and C > 0,
independent of {ck}, such that (with 0/0 interpreted as 1),

E

[
sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1 ck(ei〈t,λk〉 − E[ei〈t,λk〉])|2
log[(Φ(m) + 1)mT ]

∑m
k=n+1 |ck|2

}]
≤ C .
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These two results, extensions of results of [W1], were used in the main steps
in [CC2, CC3] to prove a.s. convergence of random power series of contractions
and its generalizations mentioned above. Furthermore, such estimates were used
in order to obtain also a.s. uniform convergence of random almost periodic (or
Fourier) series. This is the importance of such estimates.

The results of [W1] were obtained using the metric entropy method while the
results of [CC2, CC3] were obtained by quite simple basic tools and a procedure
of bypassing the so-called Bernstein’s inequality. Bernstein’s inequality was used
earlier in this context by Salem and Zygmund [SZ].

In [CC3] (see also [W1]) Theorem D was deduced from Theorem C. A major
goal of this paper is to obtain Theorem C and Theorem D from one more general
result (see Theorem 2.8). Another goal is to obtain new applications, like Theo-
rem 3.4, Corollary 3.5, Theorem 3.6, and Corollary 3.8, also concerning uniform
convergence of more general series than trigonometric series.

2. Main results

Let (Ω,F ,P) be a probability space, and let B := B(Rd) be the Borel σ-
algebra of Rd, d ≥ 1. Let {µk}∞k=1 be a sequence of finite complex valued transition
measures on Ω × B. More precisely, for every k = 1, 2, . . ., we have

(i) µk(ω.·) is a finite complex valued measure on B for any fixed ω ∈ Ω.
(ii) µk(·, B) is an F -measurable function for any fixed B ∈ B.

A transition measure µk is a random measure µk(ω, ·) on B. We always as-
sume that the total variation norm Vk(ω) := |µk|(ω,Rd) is (at least) integrable on
(Ω,F ,P).

Definition. The sequence of finite transition measures {µk}∞k=1 is called inde-
pendent if for every n 6= m and for every two simple functions φ and ψ on Rd (Borel
measurable), the random variables

∫
Rd φ(u)µn(ω, du) and

∫
Rd ψ(u)µm(ω, du) are

independent. The sequence {µk} is called centered if for every simple function φ
on Rd and every k ≥ 1, the random variable

∫
Rd φ(u)µk(ω, du) is centered, i.e.,

E[
∫

Rd φ(u)µk(ω, du)] :=
∫
Ω

∫
Rd φ(u)µk(ω, du)dP = 0.

Denote vectors in Rd by boldface, e.g., t = (t1, · · · , td) and u = (u1, · · · , ud),
and put 〈t,u〉 = t1u1 + . . . + tdud the inner product in Rd. By |t| we denote
max{|t1|, . . . , |td|}, and for a positive sequence {cn} we denote by c∗m the value
max

1≤n≤m
cn.

Given a sequence L := {Ln} of positive numbers. For every n ≥ 1 and
for fixed t ∈ Rd, we define the (F -measurable) random variable µ̂n,L(ω, t) =∫
[−Ln,Ln]d

ei〈t,u〉µn(ω, du). To simplify the notation, we omit L and ω, and put

µ̂n(t) =
∫
[−Ln,Ln]d

ei〈t,u〉µn(du). If µn(ω, ·) is supported on [−Ln, Ln]d, then

µ̂n,L(ω, t) is the random Fourier-Stieltjes transform of µn(ω, ·) computed at t, oth-
erwise it is a truncated Fourier-Stieltjes transform. For every m > n ≥ 0 we put
µ̂n,m =

∑m
k=n+1 µ̂k, and for any T > 0 we put µ̃n,m(T ) = maxt∈[0,T ]d |µ̂n.m(t)|,

(which all depend on L and ω).
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Definition. We call a sequence of transition measures {µk} L-independent,
L-centered, L-symmetric, if for every t ∈ Rd the random variables {µ̂k,L(t)} are
independent, centered, symmetric, respectively.

In particular, if the sequence of transition measures {µk} is independent and/or
centered it is L-independent and/or L-centered for every sequence L (for short we
might say L-centered independent if both properties hold). It is only the random
variables {µ̂k,L(t)} that are of interest in this paper, and the above definition is
more useful for our context although not so natural to start with.

The following examples of centered (or symmetric) independent transition mea-
sures are considered in the paper.

Example 2.1. Let {Xk} be a sequence of centered independent random vari-
ables and let {ηk} be a sequence of complex finite measures on B with finite to-
tal variation norms. Define µk(ω,B) = Xk(ω) · ηk(B). Then {µk} forms a cen-
tered independent sequence of transition measures. For every L we have µ̂k(t) =
Xk ·

∫
[−Lk,Lk]d ei〈t,λk〉ηk(du) and in particular, the sequence {µk} is L-centered and

L-independent. If {Xk} is symmetric independent, then {µk} is L-symmetric and
L-independent. In applications we usually take one of the following cases:

(i): Let {λk} be a sequence of vectors in R
d and define ηk(B) = δλk

(B). Then
µ̂k(t) = Xkei〈t,λk〉1[−Lk,Lk]d(λk). Usually we take Lk = |λk|.

(ii): Let {hk} ⊂ L1(R
d, du) and define ηk(B) =

∫
B hk(u)du. Then µ̂k(t) =

Xk ·
∫
[−Lk,Lk]d

ei〈t,u〉hk(u)du.

Example 2.2. Let {µk} be a sequence of L-symmetric and L-independent tran-
sition measures and take a copy of ([0, 1],B([0, 1]), dx), independent of (Ω,F ,P).
Let {εk} be a Rademacher sequence on [0, 1]. Then εk(x)µk(ω,B) is a transi-
tion measure on ([0, 1] × Ω) × B. By symmetry and independence, the sequences
{ε̂kµk(t)} = {εkµ̂k(t)} and {µ̂k(t)} have the same finite dimensional joint proba-
bility distributions on [0, 1] × Ω and Ω, respectively. So, a claim on {εkµ̂k(t)} is
valid a.s. if and only if a corresponding claim on {µ̂k(t)} is valid a.s. This type of
symmetrization will be used in Theorem 3.4 later.

Example 2.3. Note that if µ(ω, ·) is a transition measure with integrable total
variation norm, i.e., |µ|(ω,Rd) is integrable, then by Lebesgue bounded convergence
theorem

∫
µ(ω, ·)P(dω) is a deterministic measure. Let {λk} be a sequence of

Rd-valued independent random variables, and let {ck} be a sequence of complex
numbers. Fix L and put Ωk = {|λk| ≤ Lk}. Define

µk(ω,B) = ckδλk(ω)(B) − E[ckδλk(·)(B)] = ck1B(λk(ω)) − E[ck1B(λk(·))].

If φ is a Borel simple function on Rd, then by Fubini’s theorem (for transition
measures, see Neveu [N]) we have

∫
Rd φ(u)µk(ω, du) = ckφ(λk(ω))− ckE[φ(λk(·))].

Then {µk} forms a centered independent sequence of transition measures. Here
µ̂k(t) = ck1Ωk

ei〈t,λk〉 − E[ck1Ωk
ei〈t,λk〉] and the sequence {µk} is L-independent

and L-centered.

Lemma 2.4. Let (Ω,F ,P) be a probability space, and let {µk}∞k=1 be a sequence
of finite complex valued transition measures on Ω × B. Let L be a sequence of
positive numbers. Then for every T > 0, ω ∈ Ω, and m > n ≥ 0, there exists a
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cube I = I(ω) ⊂ [0, T ]d, with volume

|I| ≥
[ maxt∈[0,T ]d |µ̂n,m(t)|
2d(

∑m
k=n+1 L

2
k)1/2(

∑m
k=n+1 V

2
k )1/2

]d

,

such that

max
t∈[0,T ]d

|µ̂n,m(t)| ≤ 2|µ̂n,m(u)| for every u ∈ I .

Proof. Clearly, µ̂n,m(t) is differentiable with respect to the components of t.
Hence, for j = 1, . . . , d,

∣∣∣∂µ̂n,m

∂tj
(t)

∣∣∣ =
∣∣∣

m∑

k=n+1

∫

[−Lk,Lk]d
ujie

i〈t,u〉µk(du)
∣∣∣ ≤

m∑

k=n+1

Lk

∫

[−Lk,Lk]d
|µk|(du) ≤

m∑

k=n+1

LkVk ≤ (
m∑

k=n+1

L2
k)1/2(

m∑

k=n+1

V 2
k )1/2 .

Let t∗ ∈ [0, T ]d be a point for which maxt∈[0,T ]d |µ̂n.m(t)| = |µ̂n,m(t∗)|. Hence,

for every t ∈ [0, T ]d we have

µ̂n,m(t∗) − µ̂n,m(t) =
d∑

j=1

(t∗j − tj)
∂µ̂n,m

∂tj
(t′1, . . . , t

′
d),

where (t′1, · · · , t′s) is on the line segment joining t = (t1, · · · , td) and t∗ = (t∗1, · · · , t∗d).
So,

|µ̂n,m(t∗)| − |µ̂n,m(t)| ≤
d∑

j=1

|t∗j − tj |
∣∣∣∂µ̂n,m

∂tj
(t′1, . . . , t

′
d)

∣∣∣ ≤

(

m∑

k=n+1

L2
k)1/2(

m∑

k=n+1

V 2
k )1/2

d∑

j=1

|t∗j − tj | .

Put

I =
{
t ∈ [0, T ]d : |t∗j − tj | ≤

maxt∈[0,T ]d |µ̂n,m(t)|
2d(

∑m
k=n+1 L

2
k)1/2(

∑m
k=n+1 V

2
k )1/2

}
.

�

Remarks. 1. The above lemma is inspired by Kahane [K1, LEMME].
2. The assumption that µk, k ≥ 1, are transition measures was not used. One

can assume that µk(ω,B) is independent of ω.
3. The above lemma is a kind of generalization of Lemma 2.2 in [CC2]. In-

deed, take µk = ckδλk
, where {λk} ⊂ Rd, {ck} is a sequence of complex numbers,

and put Lk = |λk|. It is more in the spirit of what we could have obtained using
Bernstein’s inequality (see e.g. Kahane [K2, Proposition 5]) for periodic trigono-
metric polynomials. Note that in the almost periodic case, i.e., when the vectors
{λk} have (just) real coordinates, Bernstein’s inequality is not applicable. In the
above lemma and also in [CC2, Lemma 2.2], Bernstein’s inequality was not used.

We recall two results that we use in the sequel. The following lemma is basically
Lemma 3 in Paley and Zygumd [PZ, part I] (see also [CC2, Lemma 2.4]), and can
be proved using Stirlings’s approximation.
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Lemma 2.5. Let Z be a non-negative random variable on (Ω,P), and let C1

and C2 be some positive constants. If
∫
Z2ndP ≤ C1(C2n)n for every n ≥ 1, then∫

exp(δZ2)dP ≤ 1 + C1

1−eδC2
for every δ < 1

eC2
.

The following result is a consequence of E. Rio [R, Théorème 2.4] (which even
for bounded martingale differences gives better constants than Burkholder’s in-
equality).

Lemma 2.6. Let {Yk} ⊂ L∞(Ω,P) be a sequence of centered random variables.
Let Fn = σ(Y1, . . . , Yn) be the σ-algebra generated by {Y1, . . . , Yn}. Then for every
l ≥ j ≥ 1 and for every natural p = 1, 2, . . ., we have

E

[∣∣∣
l∑

k=j

Yk

∣∣∣
2p]

≤ (2p)!

p!2p

( l∑

k=j

‖Yk‖2
∞ +

l∑

k=j

max
k≤s≤l

‖2Yk

s∑

v=k+1

E[Yv|Fk]‖∞
)p

.

If for every k ≥ 1 the total variation norm Vk(ω) = |µk|(ω,Rd) is a bounded
random variable, we define

Rn,m =

m∑

k=n+1

‖Vk‖2
∞.

Also, for our positive sequence {Lk} we put Ln,m =
∑m

k=n+1 L
2
k; we also recall our

notation µ̃n,m(T ) = maxt∈[0,T ]d |µ̂n,m(t)|..
Proposition 2.7. Let L = {Lk} be a sequence of positive numbers. Let

(Ω,F ,P) be a probability space and let {µk}∞k=1 be a sequence of finite complex
valued transition measures on Ω × B, which is L-centered independent. Assume
that |µk|(ω,Rd) is a bounded function for every k ≥ 1. Then for every m > n ≥ 0
and for every T > 0 we have (with 0/0 interpreted as 1),

∥∥∥
[ µ̃n,m(T )

(Rn,m)1/2

]d

exp
{ 1

8e
· [µ̃n,m(T )]2

Rn,m

}∥∥∥
L1(P)

≤ 3 · 2ddd(Ln,m)d/2T d .

Proof. As the summands below are independent, using Lemma 2.6 we have
for every integer p ≥ 1 and every t,

E

[∣∣µ̂n,m(t)
∣∣2p

]
= E

[∣∣∣
m∑

k=n+1

∫

[−Lk,Lk]d
ei〈t,u〉µk(du)

∣∣∣
2p]

≤ (2p)!

p!2p
(Rn,m)p(1)

=
(p+ 1)(p+ 2) · · · (2p)

2p
(Rn,m)p ≤ (2p)p

2p
(Rn,m)p ≤ (p ·Rn,m)p

By Lemma 2.5 we obtain that

(∗)
∫

Ω

exp{δ|µ̂n,m(t)|2}dP ≤ 1 +
1

1 − eδRn,m
for every δ <

1

eRn,m

By Lemma 2.4, for every ω ∈ Ω there exists a cube I = I(ω), such that

µ̃n,m(T )1I(t) ≤ 2|µ̂n,m(t)| for every t ∈ [0, T ]d .

By applying x 7→ exp(δx2) and integrating over [0, T ]d, we obtain
[ µ̃n,m(T )

2d(Ln,m)1/2(Rn,m)1/2

]d

exp
{
δ · [µ̃n,m(T )]2

}
≤

∫

[0,T ]d
exp

{
4δ · |µ̂n,m|2(t)

}
dt .
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Integrating over Ω, applying Fubini, and using (*) we obtain

E

[[ µ̃n,m(T )

2d(Ln,m)1/2(Rn,m)1/2

]d

exp
{
δ · [µ̃n,m(T )]2

}]
≤

T d
(
1 +

1

1 − 4eδRn,m

)
for every δ <

1

4eRn,m
.

The result follows by taking δ = 1
8eRn,m

. �

Remarks. 1. Burkholder’s inequality [HH, Theorem 2.10] will yield only the
estimate (Cp2 ·Rn,m)p in the right hand side of (1), which is not sufficient to obtain
the hypothesis Lemma 2.5. Even the use of the best constants in Burkholder’s
inequality [Hi] does not help.

2. Define the σ-algebras

Fn = σ{µk(·, B) : 1 ≤ k ≤ n, B ∈ B} .
If instead of independence we assume that the transition measures {µk} satisfy
E[µn+1(·, B)|Fn] = 0, for every B ∈ B and every n ≥ 1, then for every t ∈ Rd and
for every n ≥ 1, E[µ̂n+1(t)|µ̂n(t), . . . , µ̂1(t)] = 0. Hence if |µk|(ω,Rd) is bounded,
then {µ̂k(t)} forms a sequence of bounded martingale differences for every t. This
means that when we apply Lemma 2.6 in the proof of Proposition 2.7, we still
obtain the same inequality (1) for this choice of transition measures. In this case,
the conditional expectations in Lemma 2.6 vanish as in the independent case.

3. In a more general situation, where we have a control on the conditional
expectations E[|µn|(·, B)|Fk], for every B ∈ B and every n > k, Rio’s inequality
is still applicable. In such situations, Rn,m in inequality (1) will contain terms
related to these conditional expectations (see [CC2, §6] for related remarks and
references).

4. Let {Xk} ⊂ L∞(P) be centered (not necessarily independent) random
variables, and let {λk} ⊂ Rd. Put µk(ω,B) = Xk(ω)δλk

(B) and Lk = |λk|. For this
setup, Proposition 2.7 leads immediately to [CC2, Theorem 3.1] when considering
there the characters {ei〈t,λk〉} as a σn-system. In this caseRn,m involves conditional
expectation terms (which can be written directly by {Xk}), which appear also in
[CC2, Theorem 3.1].

From now on, all the logarithms will be taken with respect to the base 2. Also,
the short notation supm>n means suprema over all pairs of integers m > n ≥ 0.

Theorem 2.8. Let L = {Lk} be a sequence of positive numbers with Lk ≥ 1,
such that

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2 converges. Let (Ω,F ,P) be a probability space and

let {µk}∞k=1 be a sequence of finite complex valued transition measures on Ω × B,
which is L-centered independent. Assume that |µk|(ω,Rd) is a bounded function
for every k ≥ 1. Then there exists absolute constants ε > 0 and C > 0, independent
of {µk}, such that (with 0/0 interpreted as 1),

∥∥∥ sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1

∫
[−Lk,Lk]d ei〈t,u〉µk(du)|2

Rn,m log[(Ln,m)d/2+2T d+2]

}∥∥∥
1
≤ C .

Proof. By uniform continuity, the measurable function
max

t∈[0,T ]d
|
∑m

k=n+1

∫
[−Lk,Lk]d ei〈t,u〉µk(du)|2 is a continuous function of T . So, the

suprema over T ≥ 2 can be taken as a suprema over the rational numbers. Hence,
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the integrand is measurable. Since the numerator and the denominator are mono-
tone increasing function of T , the suprema over the rationals T ≥ 2 can be approx-
imated by suprema over the naturals T ≥ 2.

Using Proposition 2.7 we obtain

∥∥∥
[ µ̃n,m(T )

(Rn,m)1/2

]2

exp
{
ε · [µ̃n,m(T )]2

Rn,m
− log[(Ln,m)d/2+2T d+2]

}∥∥∥
L1(P)

≤ 3 · (2d)d

(Ln,m)2T 2
,

for some absolute ε > 0. Put

In,m,T = I(Ln,m, T, n,m, d, ε) =

{
ω ∈ Ω : ε[µ̃n,m(T )]2 ≥ Rn,m log[(Ln,m)d/2+2T d+2]

}
.

We obtain

( 1√
ε

)d∥∥∥1In,m,T · exp
{
ε · [µ̃n,m(T )]2

Rn,m log[(Ln,m)d/2+2T d+2]
− 1

}∥∥∥
1
≤ 3 · (2d)d

(Ln,m)2T 2
,

where we used the fact log[(Ln,m)d/2+2T d+2] ≥ 1.

Hence,

∥∥∥ sup
m>n

sup
T≥2

1In,m,T · exp
{
ε · [µ̃n,m(T )]2

Rn,m log[(Ln,m)d/2+2T d+2]
− 1

}∥∥∥
1
≤

∞∑

n=0

∞∑

m=n+1

∞∑

T=2

∥∥∥1In,m,T · exp
{
ε · [µ̃n,m(T )]2

Rn,m log[(Ln,m)d/2+2T d+2]
− 1

}∥∥∥
1
≤

∞∑

n=0

∞∑

m=n+1

∞∑

T=2

3 · (2d√ε)d

(Ln,m)2T 2
<∞ .

On the other hand, if ω 6∈ In,m,T for some m > n ≥ 0 and T ≥ 2, then

ε · [µ̃n,m(T )]2

Rn,m log[(Ln,m)d/2+2T d+2]
≤ 1 .

The result now follows from a simple computation. �

Remarks. 1. The technical requirements T ≥ 2 and Lk ≥ 1 are used to insure
log[(Ln,m)d/2+2T d+2] ≥ 1.

2. Inspection of the proof shows that the constant C depends on d, ε, and
{Lk}. Note that the requirement

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2 < ∞ can be replaced

by
∑∞

n=1

∑∞
m=n+1

1
(Ln,m)κ < ∞ for some κ > 0. This yields an estimation with

(Ln,m)d/2+κ at the denominator.
3. The method of proof is similar to the one in [CC2, Theorem 3.5].
4. When specifying µk(ω,B) = Xk(ω)δλk

(B), for {Xk} ⊂ L∞(P) centered
(not necessarily independent) random variables, {λk} ⊂ R

d, and Lk = |λk|, we
obtain Theorem 3.5 in [CC2] for the σn-system of characters {ei〈t,λk〉}. In this
case Rn,m involves conditional expectation terms like in [CC2, Theorem 3.5] (see
also Remark 4 after Proposition 2.7).
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3. Applications

In this section we present some applications of Theorem 2.8. In particular,
the first two corollaries show how Theorem 2.8 could be used in order to obtain
(relatively easily) Theorem C and Theorem D.

Corollary 3.1. Let {Xk} be a sequence of symmetric independent complex

valued random variables on (Ω,F ,P). Let {λk = (λ
(1)
k , . . . , λ

(d)
k )} ⊂ Rd. Then

there exists absolute constants ε > 0 and C > 0, independent of {Xk}, such that
(with 0/0 interpreted as 1),

∥∥∥ sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1Xkei〈t,λk〉|2
log[(|λm|∗ + 1)mT ]

∑m
k=n+1 |Xk|2

}∥∥∥
1
≤ C .

Proof. Take a copy of ([0, 1],B([0, 1]), dx) independent of (Ω,F ,P), and take
a Rademacher sequence {εk} on it. Denote by E′ the expectation on [0, 1]. Let {ck}
be an arbitrary sequence of complex numbers.

Now, define µk(x,B) = ckεk(x)δλk
(B) and Lk := (|λk|+1)∨k. Since Ln,m ≥ m2,

we have
∞∑

n=1

∞∑

m=n+1

1/(Ln,m)2 ≤
∞∑

n=1

∞∑

m=n+1

1/m4 ≤
∞∑

n=1

1/n3 <∞ .

Also we have

Ln,m ≤
m∑

k=n+1

(|λk| + 1)2k2 ≤ m3(|λm|∗ + 1)2.

Since the above {µk} is L-symmetric independent for every L (see Example 2.1(i)),
Theorem 2.8 yields

E
′
[

sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1 ckεkei〈t,λk〉|2
log[(|λm|∗ + 1)mT ]

∑m
k=n+1 |ckεk|2

}]
≤ C ,

for some C which is independent of {ck}. This prove the result for the case
Xk = ckεk.

Denote by E the expectation in (Ω,F ,P). Let {Xk} be a sequence of symmetric
independent random variables on Ω. For every ω ∈ Ω, the above inequality with
ck(ω) = Xk(ω) yields

E
′
[

sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1Xk(ω)εkei〈t,λk〉|2
log[(|λm|∗ + 1)mT ]

∑m
k=n+1 |Xk(ω)εk|2

}]
≤ C .

By construction, the sequences {εkXk} and {Xk} have the same finite dimensional
joint probability distributions on [0, 1] × Ω and Ω, respectively. Hence, by taking
the expectation E in the above inequality (note that C is independent of ω) we
obtain the result. �

Remarks. 1 The symmetrization argument used in the proof above was called by
Kahane [K2, p. 9] a reduction principle. This idea was already used in the proof
of Corollary 3.6 in [CC2] (here the details are given for the sake of completeness).

2. Note that in the proof above we could obtain a more accurate estimation
for Ln,m, involving only maxn<k≤m |λk| instead of |λm|∗.
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Corollary 3.2. Let {λk = (λ
(1)
k , . . . , λ

(d)
k )} be a sequence of independent Rd-

valued random variables on (Ω,F ,P), and let {ck} be a sequence of complex num-
bers. Let Φ be some positive non-decreasing function on R+, such that for some
η > 0 we have Φ(x) ≥ xη for every x ≥ 0. Assume that for some δ > 0 we have∑∞

n=1 P[|λn| > Φ(n)δ] <∞. Then there exists absolute constants ε > 0 and C > 0,
independent of {ck}, such that (with 0/0 interpreted as 1),

E

[
sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1 ck(ei〈t,λk〉 − E[ei〈t,λk〉])|2
log[(Φ(m) + 1)mT ]

∑m
k=n+1 |ck|2

}]
≤ C .

Proof. (i): Put Lk = Φ(k)δ and Ωk = {|λk| ≤ Φ(k)δ}, and denote its comple-
ment by Ωk. Also put µk(ω,B) = ckδλk(ω)(B) − E[ckδλk(·)(B)] (see Example 2.3).
The sequence {µk} is L-centered independent and for every k ≥ 1, µk(ω,B) as
function of ω is bounded by 2ck (independently of B), hence Vk(ω) is bounded.

(ii): It is easy to compute that for some κ = κ(η) > 0 large enough we have∑∞
n=1

∑∞
m=n+1 1/(Ln,m)κ <∞. As we mentioned in Remark 2 after Theorem 2.8,

this does not really affect Theorem 2.8. It is also clear that Ln,m ≤ [(Φ(m)+1)m]γ,
for some γ > 0.

(iii) Recall that by Fubini’s theorem µ̂k(t) = ck1Ωk
ei〈t,λk〉 − E[ck1Ωk

ei〈t,λk〉]
(see Example 2.3).

Now, we may apply Theorem 2.8 with these settings to obtain that

E

[
sup
m>n

sup
T≥2

exp
{
ε ·

maxt∈[0,T ]d |
∑m

k=n+1 ck(1Ωk
ei〈t,λk〉 − E[1Ωk

ei〈t,λk〉])|2
log[(Φ(m) + 1)mT ]

∑m
k=n+1 |ck|2

}]

is less than some universal constant C > 0.
The procedure that we need to take in order to replace Ωk by Ω (in the above

inequality) is technical; we refer to the proof of Theorem 4.10 in [CC3]. We just say
that it is an application of simple inequalities and the convergence of

∑∞
k=1 P(Ωk).

�

Remarks. 1. Corollary 3.1 is Corollary 3.7 in [CC2] and Corollary 3.2 is Theorem
4.10 in [CC3]. Corollary 3.2 was deduced in [CC3] from Corollary 3.1; here we
avoid the symmetrization procedure used in [CC3] (see also [W1]) in order to
conclude from Corollary 3.1 the last inequality in the proof above. Here we see
that both corollaries are (almost direct) consequences of Theorem 2.8.

2. Corollary 3.1 with d = 1 and {λk} a strictly increasing sequence of natural
numbers is Theorem 7 in Weber [W1]. Corollary 3.2 with d = 1, ck ≡ 1, and some
additional conditions on the random {λk} is Theorem 9 in [W1]. Both results
in [W1] were proved using a completely different approach – the metric entropy
method.

3. Recently, the results of [W1] were re-investigated by Weber [W2]. Using
the more precise method of majorizing measures, better estimates than those in
[W1] were given when {λk} are reals with {|λk|∗} increasing at a rate which is
faster than polynomial growth (for polynomial growth there was no improvement).
Also the multi-dimensional case d > 1 was considered there.

As we will see later, corollaries as above can be used in order to obtain P-a.s.
uniform convergence over [0, T ]d of the random almost periodic series

∑∞
k=1Xke〈t,λk〉

(see §4 in [CC2]). It is also possible to show a.s. uniform convergence of the series
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∑∞
k=1 ck(e〈t,λk〉 − E[e〈t,λk〉]), where the {λk} are random. Here we are interested

in more general series.

Proposition 3.3. Let L = {Lk} be a sequence of positive numbers with Lk ≥ 1,
such that

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2 converges and Lk ≤ Ckγ for some positive con-

stants C and γ. Let (Ω,F ,P) be a probability space and let {µk}∞k=1 be a sequence
of finite complex valued transition measures on Ω×B, which is L-centered indepen-
dent. Assume that {Vk} ⊂ L∞(P). If

∞∑

n=1

√∑
k≥n ‖Vk‖2

∞

n
√

logn
<∞ ,

then for almost every ω ∈ Ω, the random series
∞∑

n=1

µ̂n(t) =
∞∑

n=1

∫

[−Ln,Ln]d
ei〈t,u〉µn(du)

converges uniformly in t ∈ [0, T ]d, for every T > 0.

Proof. Recall our notation µ̃n,m(T ) = maxt∈[0,T ]d |µ̂n,m(t)|. Using Theo-
rem 2.8 we obtain a subset of full P-measure Ω1 ⊂ Ω, such that for every ω ∈ Ω1

there exists a finite constant Cω, such that for every m > n ≥ 0 and for every
T ≥ 2, we have

max
t∈[0,T ]d

|
m∑

k=n+1

∫

[−Lk,Lk]d
ei〈t,u〉µk(du)|2 ≤ Cω log[(Ln,m)d/2+2T d+2]

m∑

k=n+1

‖Vk‖2
∞ .

Hence using Lk ≤ Ckγ , for every ω ∈ Ω1 we have
∞∑

n=1

max
22n <l≤22n+1

µ̃22n ,l(T ) ≤

√
Cω

∞∑

n=1

(log[(L22n ,22n+1 )d/2+2T d+2])
1
2

( 22n+1

∑

k=22n +1

‖Vk‖2
∞

) 1
2 ≤

C′√Cω

∞∑

n=1

√
2n

( 22n+1

∑

k=22n +1

‖Vk‖2
∞

) 1
2 ,

for some absolute positive constant C′, depends on γ, d, C, and T (but not on ω,
n or m).

Our assumption implies that the series
∑∞

n=1

(
∑

k≥n V 2
k )1/2

n
√

log n
converges a.s. De-

note this full P-measure set of convergence by Ω2. By change of variables, this

convergence implies the a.s. convergence of the series
∑∞

n=1

√
2n

( ∑22n+1

k=22n +1 V
2
k

) 1
2

(see the proof of Theorem 5.1.5 in Salem and Zygmund [SZ] or in [CC2]). Hence,
for every ω ∈ Ω1 ∩ Ω2 we obtain that

∑∞
n=1 max

22n <l≤22n+1
µ̃22n ,l(T ) converges. This

implies the result. �

Theorem 3.4. Let L = {Lk} be a sequence of positive numbers with Lk ≥ 1,
such that

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2 converges and Lk ≤ Ckγ for some positive con-

stants C and γ. Let (Ω,F ,P) be a probability space and let {µk}∞k=1 be a sequence
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of finite complex valued transition measures on Ω×B, which is L-centered indepen-
dent. Assume that {Vk} ⊂ L2(P). If

(2)

∞∑

n=1

√∑
k≥n ‖Vk‖2

2

n
√

logn
<∞ ,

then P-a.s. the random series
∑∞

n=1 µ̂n(t) converges uniformly in t ∈ [0, T ]d, for
every T > 0.

Proof. First we prove the result for the case that {µk} is a sequence of L-
symmetric independent transition measures (see Example 2.2 for the symmetriza-
tion procedure below).

Take a copy of ([0, 1],B([0, 1]), dx) independent of (Ω,F ,P), and take {εk} a
Rademacher sequence on it. For fixed ω ∈ Ω apply Proposition 3.3 to the sequence
of transition measures εk(·)µk(ω, ·) : [0, 1] × B 7→ C, in order to conclude that if ω

satisfies
∑∞

n=1

√∑
k≥n |Vk(ω)|2
n
√

log n
< ∞, then for dx-almost every x ∈ [0, 1] the series∑∞

n=1 εn(x)µ̂n(ω, t) converges uniformly in t ∈ [0, T ]d, for every T > 0.

Since the square root is a concave function, we conclude by (2) and by Beppo

Levi that
∑∞

n=1

√∑
k≥n |Vk(ω)|2
n
√

log n
converges P-a.s. Hence, by Fubini’s theorem for

dx × P-almost every (x, ω) ∈ [0, 1] × Ω the series
∑∞

n=1 εn(x)µ̂n(ω, t) converges

uniformly in t ∈ [0, T ]d, for every T > 0.

Since {µk} is L-symmetric independent, by construction the sequences {εkµ̂k(t)}
and {µ̂k(t)} have the same finite dimensional joint probability distributions on
[0, 1] × Ω and Ω, respectively. So, we conclude that for P-almost every ω ∈ Ω
the series

∑∞
n=1 µ̂n(ω, t) converges uniformly in t ∈ [0, T ]d, for every T > 0. This

establishes the symmetric case.

Now we prove the general centered case. We build two independent copies of

{µk} as follow: on (Ω×Ω,F ⊗F ,P×P) we define µ
(1)
k (ω1, ω2, B) = µk(ω1, B) and

µ
(2)
k (ω1, ω2, B) = µk(ω2, B). We have the following properties: (i) for every k ≥ 1

and t ∈ Rd the random variables µ̂
(1)
k (t) and µ̂

(2)
k (t) are independent and have the

same probability distribution as µ̂k(t); (ii) each of the sequences {µ(1)
k } and {µ(2)

k }
is L-centered independent. We conclude that the sequence of random variables

{µ̂(1)
k (t) − µ̂

(2)
k (t)} is symmetric independent, which means that {µ(1)

k − µ
(2)
k } is

L-symmetric independent.
Using condition (2) we obtain

‖ sup
n≥1

|µ(1)
n − µ(2)

n |(·, ·,Rd)‖L2(P×P) ≤ 2‖ sup
n≥1

|µn|(·,Rd)‖L2(P) <∞ , (∗)

and we conclude the general centered case as done (in a simpler situation on the
torus) in [CC1, Theorem 2.2]. The proof of the current case goes as follows:
by what we have shown above, we can already conclude the P × P-a.s. uniform

convergence of the symmetric version
∑∞

n=1[µ̂
(1)
n (t) − µ̂

(2)
n (t)]. Since (∗) holds, we

conclude by Hoffman-Jørgensen [H-J, Corollary 3.3] that
∑∞

n=1[µ̂
(1)
n (t) − µ̂

(2)
n (t)]

converges in L1(Ω × Ω,P × P, C([0, T ]d)), the Banach space of C([0, T ]d)-valued
random variables, i.e., random variables with values in the space of continuous

functions on [0, T ]d with finite E[‖ · ‖∞]-seminorm. Since {µ(2)
k } is L-centered,
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by independence and convexity of the seminorm we conclude that
∑∞

n=1 µ̂
(1)
n (t)

converges in L1(Ω × Ω,P × P, C([0, T ]d)), which is equivalent to the convergence
of

∑∞
n=1 µ̂n(t) in L1(Ω,P, C([0, T ]d)). Now the result follows by Itô and Nisio

theorem [IN] (see also Ledoux and Talagrand [LT, Theorem 6.1]) �

Remarks. 1. The technique of the proof of Proposition 3.3 goes back to Salem
and Zygmund [SZ, Theorem 5.1.5].

2. The assumption Lk = O(kγ) is only technical. One can remove this assump-
tion from Proposition 3.3 (and hence from Theorem 3.4) like it is done in [CC2,
Theorem 4.2]. If we do it, we will obtain the following (more precise) sufficient
conditions ∞∑

n=1

2n/2
( ∑

k: 22n≤L1,k≤22n+1

‖Vk‖2
2

)1/2

<∞ ,

or in particular

∞∑

n=1

( ∑
k: L1,k≥n

‖Vk‖2
2

)1/2

n
√

logn
<∞ .

3. It is possible to extend Theorem 3.4 to {Vk} ⊂ Lp, for 1 < p < 2. This can
be done using the Talagrand-Fernique tool which was re-investigated in [CC3].

Corollary 3.5. Let {λk = (λ
(1)
k , . . . , λ

(d)
k )} be a sequence of independent R

d-
valued random variables on (Ω,F ,P), such that

∑∞
k=1 P(|λk| > kγ) converges

for some γ > 0. Let {ck} be a sequence of complex numbers. If the series
∞∑

n=1

(
∑

k≥n |ck|2)1/2

n
√

logn
converges, then a.s. the series with random powers

∞∑

k=1

ck(ei〈t,λk〉 − E[ei〈t,λk〉]) converges uniformly in t ∈ [0, T ]d, for every T > 0.

Proof. Define µk(ω,B) = ckδλk(ω)(B) − E[ckδλk(·)(B)] and Lk = kγ∨1, and

put Ωk = {|λk| ≤ kγ∨1} (see also Example 2.3). Now, we apply Proposition 3.3 to
conclude the P-a.s. uniform convergence of

∑∞
k=1[ck1Ωk

ei〈t,λk〉 −E[ck1Ωk
ei〈t,λk〉]].

Since by our assumption
∑∞

k=1 P(Ωk) < ∞, by Borel Cantelli lemma we have

P-a.s. uniform convergence of
∑∞

k=1[ckei〈t,λk〉 − E[ck1Ωk
ei〈t,λk〉]]. Also by our

assumptions,
∞∑

k=1

|E[ck1Ωk
ei〈t,λk〉]| ≤

∞∑

k=1

|ck|E[1Ωk
] ≤

( ∞∑

k=1

|ck|2
)1/2( ∞∑

k=1

(P(Ωk))2
)1/2 ≤

( ∞∑

k=1

|ck|2
)1/2( ∞∑

k=1

P(Ωk)
)1/2

<∞.

The result now follows by

∞∑

k=1

[ckei〈t,λk〉 − E[ckei〈t,λk〉]] =

∞∑

k=1

[ckei〈t,λk〉 − E[ck1Ωk
ei〈t,λk〉]] −

∞∑

k=1

E[ck1Ωk
ei〈t,λk〉].

�
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Remarks. 1. If in Corollary 3.5 we assume that {λk} is an i.i.d. sequence, our
assumption becomes E[|λ1|1/γ ] <∞. Even in this particular case the result is new,
as far as we know.

2. One can assume a more general condition
∑∞

k=1 P(|λk| > Φ(k)δ) < ∞, for
Φ like in Corollary 3.2.

In the following corollary η̂k(t) denotes the usual Fourier-Stieltjes transform of
ηk.

Theorem 3.6. Let (Ω,F ,P) be a probability space, and let {Xk} ⊂ L2(P) be
a sequence of centered independent complex valued random variables. Let {Lk} be
a sequence with Lk ≥ 1, such that

∑∞
n=1

∑∞
m=n+1

1
(Ln,m)2 < ∞ and Lk ≤ Ckγ

for some positive constants C and γ. Let {ηk}∞k=1 be a sequence of finite complex
measures on B, with the support of ηk contained in [−Lk, Lk]d. Assume that the
total variation norms ‖ηk‖ = |ηk|(Rd), k ≥ 1, are finite. If

∞∑

n=1

(
∑

k≥n ‖Xk‖2
L2(P) · ‖ηk‖2)1/2

n
√

logn
<∞ ,

then P-a.s. the random series
∑∞

n=1Xnη̂n(t) converges uniformly in t ∈ [0, T ]d,
for every T > 0.

Proof. Define the transition measures µk(ω,B) = Xk(ω)ηk(B) (see Exam-
ple 2.1). Clearly Vk(ω) = |µk|(ω,Rd) = |Xk(ω)| · ‖ηk‖ and µ̂k(t) = Xkη̂k(t). Now,
we may apply Theorem 3.4. �

Remark. By considering Remark 4 after Proposition 2.7 and Remark 4 after
Theorem 2.8, we see that we may extend Theorem 3.6 to the case that {Xk} are
centered and bounded, but not necessarily independent.

Corollary 3.7. Let {Xk} ⊂ L2(Ω,P) be a sequence of centered independent

complex valued random variables, such that the series

∞∑

n=1

(
∑

k≥n ‖Xk‖2
2)

1/2

n
√

logn
con-

verges. Then for every sequence {λk = (λ
(1)
k , . . . , λ

(d)
k )} ⊂ Rd with |λk| = O(kγ)

for some γ > 0, a.s. the random series

∞∑

k=1

Xkei〈t,λk〉 converges uniformly in

t ∈ [0, T ]d, for every T > 0.

Proof. Put ηk = δλk
and Lk = (|λk|+1)∨k. Now we apply Theorem 3.6. �

Remark. Corollary 3.7 completely recovers Theorem 5.1.5 of Salem and Zygmund
[SZ]. By considering Remark 2 after Theorem 3.4 and the above remark we con-
clude that Corollary 3.7 yields the results of [CC2, §4.1].

Corollary 3.8. Let {Xk} ⊂ L2(Ω,P) be a sequence of centered independent

complex valued random variables. Let {λk = (λ
(1)
k , . . . , λ

(d)
k )} ⊂ (R+)

d
, with |λk| =

O(kγ), for some γ > 0. If

(3)

∞∑

n=1

[
∑

k≥n(Πd
j=1λ

(j)
k )2‖Xk‖2

2]
1/2

n
√

logn
<∞ ,

then P-a.s. the random series
∑∞

n=1Xn Πd
j=1

sin(λ
(j)
k tj)

tj
converges uniformly in

t ∈ [0, T ]d, for every T > 0.
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Proof. Put hk = Πd
j=11[−λ

(j)
k ,λ

(j)
k ]

and Lk = (|λk| + 1) ∨ k. Define ηk(B) =
∫

B
hk(u) du, so η̂k(t) = 2d · Πd

j=1 sin(λ
(j)
k tj)/tj . Now we apply Theorem 3.6. �

Remarks. 1. Note that
∑∞

n=1(Π
d
j=1λ

(j)
n )2‖Xn‖2

2(logn)1+ε < ∞, for some ε > 0
implies condition (3).

2. When d = 1, the random series of the corollary is nothing but

1

2

∫ 1

−1

∞∑

n=1

Xnλn cos(uλnt)du ,

so Corollary 3.8 is also a consequence of Corollary 3.7. When λk = k one can apply
directly Theorem 5.1.5 of [SZ].

3. Put λ
(j)
k = k for every k ≥ 1 and j = 1, . . . , d. In that case, Corol-

lary 3.8 yields a.s. convergence of
∑∞

n=1XnΠd
j=1

sin(ntj)
tj

uniformly in t ∈ [0, T ]d.

Condition (3) becomes
∑∞

n=1

(
∑

k≥n k2d‖Xk‖2
2)

1/2

n
√

log n
, which is similar to that of Salem

and Zygmund [SZ, Theorem 5.1.5], except the k2d in the square root. This fact

can be explained as follow: since limt→0
sin(kt)

t = k, this means that the system

{Πd
j=1 sin(ktj)/tj}k≥1 is not uniformly bounded, but has maximal amplitudes {kd}.

These amplitudes enter inside the square root as {k2d}. Although the convergence of∑∞
k=1 k

2d‖Xk‖2
2 implies the a.s. convergence of

∑∞
k=1 |Xk| (in fact of

∑∞
k=1 k

d/2|Xk|
for d > 1), the uniform convergence is not a trivial consequence of this absolute
convergence, since the system {Πd

j=1 sin(ktj)/tj}k≥1 is not uniformly bounded. As
far as we know Corollary 3.8 is new.

4. Additional types of series may be considered. For example, convergence of
∑∞

n=1

(
∑

k≥n k4d‖Xk‖2
2)

1/2

n
√

log n
implies a.s. convergence of

∑∞
n=1Xn

( sin(ntj)
tj

)2
uniformly

in t ∈ [0, T ]d (take hk to be the product of functions with graph an appropriate
triangle). In this case, the procedure of Remark 2 above will not work.

Acknowledgment I would like to thank Michael Lin for his critical comments
and for many useful discussions.
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