RATES OF CONVERGENCE OF POWERS OF CONTRACTIONS

GUY COHEN AND MICHAEL LIN

ABSTRACT. We prove that if the numerical range of a Hilbert space contraction T is in a certain closed convex set of the unit disk which touches the unit circle only at 1, then $||T^n(I-T)|| = \mathcal{O}(1/n^{\beta})$ with $\beta \in [\frac{1}{2}, 1)$. For normal contractions the condition is also necessary. Another sufficient condition for $\beta = \frac{1}{2}$, necessary for T normal, is that the numerical range of T be in a disk $\{z : |z - \delta| \leq 1 - \delta\}$ for some $\delta \in (0, 1)$. As a consequence of results of Seifert, we obtain that a power-bounded T on a Hilbert space satisfies $||T^n(I - T)|| = \mathcal{O}(1/n^{\beta})$ with $\beta \in (0, 1]$ if and only if $\sup_{|\lambda|>1} |\lambda - 1|^{1/\beta} ||R(\lambda, T)|| < \infty$. When T is a contraction on L_2 satisfying the numerical range condition, it is shown that $T^n f/n^{1-\beta}$ converges to 0 a.e. with a maximal inequality, for every $f \in L_2$. An example shows that in general a positive contraction T on L_2 may have an $f \geq 0$ with $\limsup_{n \geq 1} T^n f/n = \infty$ a.e.

1. INTRODUCTION

Let T be a power-bounded operator on a complex Banach space X. The Katznelson-Tzafriri theorem [17] says that $||T^n(I-T)|| \to 0$ if and only if the peripheral spectrum $\sigma(T) \cap \mathbb{T}$ is at most the point 1. In Hilbert spaces, it follows from Léka's work [21] that when $||T^n(I-T)|| \to 0$, then we also have $||T^n(I-T)^{\gamma}|| \to 0$ for every $\gamma \in (0,1)$ (where $(I-T)^{\gamma} = I - \sum_{k=1}^{\infty} a_k T^k$, with $\{a_k\}_{k\geq 1}$ the coefficients of $(1-t)^{\gamma} = 1 - \sum_{k=1}^{\infty} a_k t^k$ for $t \in [-1,1]$, which satisfy $a_k > 0$ and $\sum_{k=1}^{\infty} a_k = 1$). Nagy and Zemánek [28] and Lyubich [25] proved that the powers of the operator T

Nagy and Zemánek [28] and Lyubich [25] proved that the powers of the operator T have the rate of convergence $||T^n(I-T)|| = \mathcal{O}(1/n)$ if and only if T satisfies the Ritt resolvent condition

$$\sup_{|\lambda|>1} \|(\lambda-1)R(\lambda,T)\| < \infty.$$

It follows from Nevanlinna's work [30, Theorem 9] that if T is power-bounded and satisfies, for some $\alpha \in [1, 2)$,

(1)
$$\sup_{1<|\lambda|<2} |\lambda-1|^{\alpha} ||R(\lambda,T)|| < \infty,$$

then $||T^n(I-T)|| = \mathcal{O}(1/n^{(2-\alpha)/\alpha})$. (The case $\alpha = 1$ is Ritt's condition).

Dungey [11] obtained several characterizations of the property $||T^n(I - T)|| = O(1/\sqrt{n})$, and in [10] he gave several sufficient conditions for a contraction T on a Hilbert space to satisfy this estimate.

Léka [22] has recently constructed, for any $\beta \in (\frac{1}{2}, 1)$, a contraction T in a complex Hilbert space with $\sigma(T) = \{1\}$ and $||T^n(I - T)|| = \mathcal{O}(1/n^\beta)$. Earlier, Nevanlinna [29, Example 4.5.2] had constructed contractions on C[0, 1] with the above rates (but

¹⁹⁹¹ Mathematics Subject Classification. Primary: 47A35, 28D05.

Key words and phrases. numerical range, Ritt operators, quasi-sectorial operators, rate of convergence of powers, resolvent estimates, contractions on L_2 .

Research of the first author was partly supported by Israel Science Foundation grant 01/12.

with larger spectra), and Paulauskas [31, Theorem 6] showed how to obtain normal contractions on a (separable) Hilbert space with the above rates.

Cachia and Zagrebnov [5] called a contraction T on a complex Hilbert space quasisectorial if its numerical range $W(T) := \{\langle Tf, f \rangle : ||f|| = 1\}$ is included in a Stolz region (the closed convex hull of the point 1 and a disk centered at 0 with radius less than 1). They proved [5, Lemma 3.1] that if T is quasi-sectorial, then $||T^n(I-T)|| = \mathcal{O}(1/n)$; see also [7, Proposition 2.3].

Paulauskas [31] defined generalized quasi-sectorial contractions by the inclusion of their numerical ranges in a certain convex subset of the closed unit disk, larger than a Stolz region (see definition below), and proved that $||T^n(I-T)|| = \mathcal{O}(1/n^{\beta})$ for an appropriate $\beta \in (\frac{1}{2}, 1)$. We offer here a different proof, which under the assumptions of [31] yields a better (larger) value of β as a function of the parameters.

2. A limit theorem for generalized quasi-sectorial contractions

We start this section by defining certain convex subsets of the closed unit disk. The geometric construction of a Stolz region is by taking a circle of radius r < 1 centered at 0 and drawing two tangent line segments from the point 1 to this circle. Paulauskas [31] suggests a similar construction, but replacing the tangent line segments by arcs of a *tangent* "parabola-like" curve $x = 1 - b|y|^{\alpha}$, $1 < \alpha < 2$, b > 0, or $\alpha = 2$ and $b > \frac{1}{2}$ (with $|y| \leq |y_0| < 1$); we call such a curve a *quasi-parabola*. We denote the obtained convex set by $D(\alpha, b)$, and call it a *quasi-Stolz set*. For a drawing see [31, p. 2078]. The actual construction of $D(\alpha, b)$ is by starting with the parameters α and b, and finding the radius of the corresponding circle; see Lemma 10 of [31]. Whenever we refer to a quasi-Stolz set $D(\alpha, b)$, it is implied that $1 < \alpha \leq 2$. An operator with numerical range contained in a quasi-Stolz set is called in [31] generalized quasi-sectorial. Note that the numerical radius of a generalized quasi-sectorial T is at most 1, so necessarily T is power-bounded with $\sup_n ||T^n|| \leq 2$ [36]. Note that curves of the form $x = 1 - b|y|^{\alpha}$ with $\alpha > 2$ and b > 0 are outside the unit disk in a neighborhood of (1, 0), so cannot be used.

Lemma 2.1. Let $D(\alpha, b)$ be a quasi-Stolz set. Then there exists K > 0 such that

(2)
$$(n+1)^{1/\alpha} \sup_{\lambda \in D(\alpha,b)} |\lambda^n (1-\lambda)| \le K \quad \forall n \ge 1.$$

The proof of Proposition 6 of [31] actually shows (2), with a value for K.

Corollary 2.2. Let $D(\alpha, b)$ be a quasi-Stolz set and let $\{\lambda_k\} \subset D(\alpha, b)$. Let T be the "diagonal" operator T defined on ℓ_p , $1 \leq p < \infty$, by $Te_k = \lambda_k e_k$, where $\{e_k\}$ is the standard unit basis. Then $||T^n(I-T)|| = \mathcal{O}(1/n^{1/\alpha})$.

Proof. We have
$$||T^n(I-T)|| = \sup_k |\lambda_k^n(1-\lambda_k)|$$
, and apply (2).

Definition. A compact set A is called a K-spectral set for T if there exists a $K_A > 0$ such that for every rational function u(z) with poles outside A we have

(3)
$$||u(T)|| \le K_A \sup_{z \in A} |u(z)|$$

As noted in [7], an easy adaptation of Lebow's lemma [20, p. 66] yields that if a compact set A does not separate the plane, then it is K-spectral for T as soon as $||p(T)|| \leq K_A \sup_{z \in A} |p(z)|$ for every polynomial p(z).

Proposition 2.3. let T be a bounded operator in a Banach space for which a quasi-Stolz set $D(\alpha, b)$ is a K-spectral set. Then T is power-bounded and $||T^n(I-T)|| = O(1/n^{1/\alpha})$.

Proof. Since $D(\alpha, b)$ is a subset of the closed unit disk, (3) yields power-boundedness. Combining (3) with (2) we obtain

$$(n+1)^{1/\alpha} ||T^n(I-T)|| \le K_{\bar{D}}K \quad \forall n \ge 1.$$

Theorem 2.4. Let T be a contraction on a complex Hilbert space with numerical range contained in a quasi-Stolz set $D(\alpha, b)$. Then $||T^n(I - T)|| = O(1/n^{1/\alpha})$.

Proof. The set $\overline{D} := \overline{D(\alpha, b)}$ is a compact convex set containing the numerical range W(T), so by Delyon and Delyon [8, Theorem 3] \overline{D} is a K-spectral set for T. The theorem now follows from Proposition 2.3.

Remark. The theorem improves [31, Theorem 4], where Paulauskas obtained only the rate $(2 - \alpha)/\alpha$ (for $\alpha < 2$, of course; the same rate as in [30] when (1) holds). He obtained the rate $1/\alpha$ only for diagonal operators (which are necessarily normal).

The next lemma shows that in Theorem 2.4 $n^{1/\alpha} ||T^n(I-T)||$ need not converge to zero, so the rate obtained there is optimal.

Lemma 2.5. Let T be a power-bounded operator on a complex Banach space X and assume that for some $\alpha \in (1,2]$ and b > 0 ($b > \frac{1}{2}$ when $\alpha = 2$) there exist reals $0 \neq t_n \rightarrow 0$, such that $(1 - b|t_n|^{\alpha} + it_n)_{n \geq 1} \subset \sigma(T)$. Then

$$\limsup_{n \to \infty} n^{1/\alpha} \|T^n (I - T)\| \ge (b^{1/\alpha} e)^{-1}.$$

Proof. Assume the statement fails. Then, for some fixed $0 < \varepsilon < (b^{1/\alpha} e)^{-1}$ and for every large k we have $k^{1/\alpha} ||T^k(I-T)|| < (b^{1/\alpha} e)^{-1} - \varepsilon$. The spectral mapping theorem then yields

$$k^{1/\alpha} \sup_{\lambda \in \sigma(T)} |\lambda|^k |\lambda - 1| < (b^{1/\alpha} e)^{-1} - \varepsilon.$$

Taking the given sequence $\lambda_j = 1 - b|t_j|^{\alpha} + it_j \in \sigma(T)$ and choosing $k_j = \left[\frac{1}{b|t_j|^{\alpha}}\right] + 1$ we obtain

$$k_j^{1/\alpha} |\lambda_j|^{k_j} |\lambda_j - 1| \ge \frac{|t_j|}{b^{1/\alpha} |t_j|} (1 - b|t_j|^{\alpha})^{1 + 1/(b|t_j|^{\alpha})} \xrightarrow{j \to \infty} (b^{1/\alpha} e)^{-1}$$

which is a contradiction.

Remark. Nevanlinna [29, Theorem 4.5.1] proved that if $\sigma(T) \cap \mathbb{T} = \{1\}$ and 1 is not isolated in $\sigma(T)$, then $\limsup n \|T^n(I - T)\| > 1/e$. Lemma 2.5 improves this result when additional information is given; however, with $\alpha = 1$, the lemma, though true, is in fact weaker than [29].

Proposition 2.6. Let T be a power-bounded operator on a complex Banach space X and assume that for some $\frac{1}{2} < \beta < 1$ we have $\sup_{n\geq 1} n^{\beta} ||T^n(I-T)|| = M < \infty$. Then there exists b > 0, such that the sepctrum $\sigma(T)$ is contained in a quasi-Stolz region $D(1/\beta, b)$.

Proof. Step 1: We denote $\alpha = 1/\beta$, and prove that there exists $\varepsilon > 0$ such that $\sigma(T) \cap \{\lambda : 0 < |\lambda - 1| < \varepsilon\}$ is contained in the "interior" of some quasi-parabola $x = 1 - b|y|^{\alpha}$ with b > 0. Assume the statement is false. Since the "interior" of the quasi-parabola $x = 1 - b|y|^{\alpha}$ increases to the half plane $\{x < 1\}$ as b decreases to 0, the assumption yields that there exist a positive sequence $\{b'_j\}$ decreasing to zero and a sequence $\{\lambda_j = x_j + iy_j\} \subset \sigma(T)$ with $1 \neq \lambda_j \rightarrow 1$ such that $x_j > 1 - b'_j|y_j|^{\alpha}$. By continuity in b of the quasi-parabolas, there are $0 < b_j < b'_j$ with $x_j = 1 - b_j|y_j|^{\alpha}$; by the construction $0 \neq y_j \rightarrow 0$ and $b_j \rightarrow 0$, and we may assume (by taking a subsequence) that $y_j > 0$ for every j (the case of $y_j < 0$ for every j being treated similarly). Clearly (for j large) $|\lambda_j| \geq x_j = 1 - b_j y_j^{\alpha} > 0$ and $|\lambda_j - 1| \geq y_j$. Putting $k_j = [1/b_j y_j^{\alpha}] + 1$ and remembering that $\alpha = 1/\beta$, we obtain

$$k_j^{\beta}|\lambda_j|^{k_j}|\lambda_j-1| \ge \frac{y_j}{b_j^{\beta}y_j^{\alpha\beta}}(1-b_jy_j^{\alpha})^{1/(b_jy_j^{\alpha})} \ge C\frac{1}{b_j^{\beta}} \to \infty,$$

which contradicts the given rate $\sup_{n\geq 1} n^{\beta} ||T^n(I-T)|| \leq M$, since by the spectral mapping theorem

$$\sup_{\lambda \in \sigma(T)} k^{\beta} |\lambda|^{k} |\lambda - 1| = \sup_{\lambda \in \sigma(k^{\beta}T^{k}(I-T))} |\lambda| \le ||k^{\beta}T^{k}(I-T)||.$$

Step 2: By Step 1 there is b > 0 and an open neighborhood of 1, say V, such that $\sigma(T) \cap V$ is included in the interior of the quasi-parabola $x = 1 - b|y|^{\alpha}$. Since $||T^n(I-T)|| \to 0$, The spectral mapping theorem implies that $\sigma(T)$ intersects the unit circle at most at the point 1, so $\sigma(T) \cap V^c$ is included in some disk of radius $\rho < 1$ centered at the origin. If the disk is in the interior of the quasi-parabola, we can increase ρ till the quasi-parabola is tangent to it, and still $\rho < 1$ since everything takes place in the open unit disk. If the quasi-parabola intersects the disk in two points, we decrease b till the quasi-parabola is tangent to the disk of radius ρ . In either case, we end up with a quasi-Stolz region $D(1/\beta, b)$ which contains $\sigma(T)$.

Corollary 2.7. Let T be a normal contraction on a complex Hilbert space, and let $1 < \alpha < 2$. Then $||T^n(I - T)|| = O(1/n^{1/\alpha})$ if and only if $\sigma(T)$ is contained in a quasi-Stolz region $D(\alpha, b)$ for some b > 0.

Proof. Since T is normal, $\overline{W(T)}$ is the convex hull of $\sigma(T)$ (e.g. [4]), so by convexity of quasi-Stolz regions the "if" part follows from Theorem 2.4. The converse follows from the previous proposition.

Remark. For $\alpha = 1$ we replace a quasi-Stolz region by a Stolz region, and then the corollary holds by [7, Prposition 2.5]. The "if" part in this case is due to Bellow, Jones and Rosenblatt [3, p. 111].

3. Resolvent conditions for convergence rates

Recall that for T bounded on a complex Banach space X the resolvent is defined by $R(\lambda, T) := (\lambda I - T)^{-1}$ whenever $\lambda I - T$ is one-to-one onto X (and then $R(\lambda, T)$ is also bounded). If $|\lambda| > r(T)$, then $R(\lambda, T) = \lambda^{-1} \sum_{n=0}^{\infty} (T/\lambda)^n$, so when T is powerbounded, the series representation of $R(\lambda, T)$ holds for every $|\lambda| > 1$.

Proposition 3.1. Let T be a power-bounded operator in X. Assume that for some $1 < \alpha < 2$ we have

(4)
$$||R(\lambda,T)|| \le \frac{C}{|\lambda-1|^{\alpha}} \quad for \quad |\lambda| > 1.$$

Then every $\lambda \in S(\alpha, 1/C) := \{z = x + iy : x > 1 - \frac{1}{C}|y|^{\alpha}\}$ is in $\rho(T)$. For b < 1/C, every $\lambda \in S(\alpha, b)$ satisfies $||R(\lambda, T)|| \le \frac{C_b}{|\lambda - 1|^{\alpha}}$.

Proof. Every $1 \neq \lambda_0 \in \mathbb{T}$ is in $\rho(T)$, since by (4) $\limsup_{\lambda \to \lambda_0, |\lambda| > 1} ||R(\lambda, T)|| < \infty$. We follow ideas of [28, p. 146]. Let A = T - I, so $\sigma(A) = \sigma(T) - 1 \subset \mathbb{D} \cup \{0\}$ and by (4)

(5)
$$\|R(\lambda, A)\| = \|R(\lambda + 1, T)\| \le \frac{C}{|\lambda|^{\alpha}} \quad \forall |\lambda + 1| > 1.$$

This holds in particular when $\operatorname{Re} \lambda > 0$ and when $\lambda = it$ with $t \neq 0$. Fix $\lambda_0 = it_0$, $t_0 \neq 0$. If $|\lambda - \lambda_0| \cdot ||(A - \lambda_0 I)^{-1}|| < 1$, then $\lambda \in \rho(A)$ and

(6)
$$(A - \lambda I)^{-1} = \sum_{n=0}^{\infty} (A - \lambda_0)^{-n-1} (\lambda - \lambda_0)^n.$$

Thus, if $|\lambda - \lambda_0| \frac{C}{|\lambda_0|^{\alpha}} < 1$, then $\lambda \in \rho(A)$, which implies that $\lambda = x_0 + it_0$ is in $\rho(A)$ if $|x_0| \leq \frac{1}{C} |t_0|$. This yields that $x + iy \in \rho(T)$ if $x \geq 1 - \frac{1}{C} |y|^{\alpha}$ (when y = 0 we have x > 1).

We now prove the estimate for the resolvent for $z \in S(\alpha, b)$ when b < 1/C; put q = bC < 1. In view of (4), we need to prove the estimate only for $z \in S(\alpha, b)$ with $\operatorname{Re} z < 1$ and $|\operatorname{Im} z| \leq 1$. Let $\lambda = z - 1 = x + iy \in S(\alpha, b) - 1$ with $0 > x > -b|y|^{\alpha}$ and $|y| \leq 1$, so $|x|/|y|^{\alpha} \leq b = q/C$. Let $\lambda_0 = iy$. Then $|\lambda - \lambda_0| = -x$, and by (5)

$$|\lambda - \lambda_0| \cdot ||R(\lambda_0, A)|| \le \frac{q}{C} |y|^{\alpha} \frac{C}{|\lambda_0|^{\alpha}} = q < 1.$$

Now $|y| \leq 1$ and $\alpha \geq 1$ imply $|\lambda|^2 = x^2 + y^2 < (|y|^{2\alpha}/C^2) + y^2 \leq |y|^2(C^2 + 1)/C^2$, and by (6) and (5) we have

$$\|(A - \lambda I)^{-1}\| \le \|(A - \lambda_0)^{-1}\| \sum_{n=0}^{\infty} q^n \le \frac{C}{|y|^{\alpha}(1-q)} \le \frac{C_b}{|\lambda|^{\alpha}},$$

which for $z = \lambda + 1$ yields $||R(z,T)|| = ||R(\lambda,A)|| \le C_b/|z-1|^{\alpha}$.

But $C_b = \frac{C}{1-q} \cdot \left(\frac{C^2+1}{C^2}\right)^{\alpha/2} > C$, so the estimate holds for every $z \in S(\alpha, b)$.

Corollary 3.2. Let T be a normal contraction on a complex Hilbert space, and assume that for some $\alpha \in (1,2)$ the resolvent condition (4) holds. Then $||T^n(I-T)|| = \mathcal{O}(1/n^{1/\alpha}).$

Proof. For b > 0 small enough, Proposition 3.1 yields that $\sigma(T) \subset D(\alpha, b)$. Since T is normal, $\overline{W(T)}$ is the convex hull of $\sigma(T)$ [4], so is also contained in $D(\alpha, b)$. Now apply Theorem 2.4.

We now show that Corllary 3.2 extends to all power-bounded operators in Hilbert space, using the recent work of Seifert [35]. For this we need the following Lemma.

Lemma 3.3. Let T be a power-bounded operator in a complex Banach space X, and let $\alpha \geq 1$. Then the following are equivalent:

(i) $||R(\lambda, T)|| \leq C|\lambda - 1|^{-\alpha}$ for $|\lambda| > 1$. (ii) $||R(e^{i\theta}, T)|| \leq c|\theta|^{-\alpha}$ for $0 < |\theta| \leq \pi$.

Proof. As noted at the beginning of the proof of Proposition 3.1, (i) implies that $\sigma(T) \cap \mathbb{T} \subset \{1\}$. The same is implicit in (ii). If $1 \notin \sigma(T)$ the equivalence is obvious by continuity of the norm $||R(\lambda, T)||$ at 1, so we may assume $\sigma(T) \cap \mathbb{T} = \{1\}$.

The first step of the proof of [35, Lemma 3.9] shows that (ii) implies (i).

Assume (ii). Let $|\lambda| > 1$ and write $\lambda = re^{i\theta}$, $|\theta| \le \pi$. For $\theta \ne 0$ we have by continuity of the resolvent

$$||R(e^{i\theta}, T)|| = \lim_{r \to 1^+} ||R(re^{i\theta}, T)|| \le \lim_{r \to 1^+} \frac{C}{|re^{i\theta} - 1|^{\alpha}} = \frac{C}{|e^{i\theta} - 1|^{\alpha}}.$$

Since $|e^{i\theta} - 1| \sim |\theta|$ as $|\theta| \to 0$, condition (ii) holds.

The next two remarkable results are due to Seifert [35].

Theorem 3.4 ([35], Corollary 3.1). Let T be power-bounded on a Banach space Xwith $\sigma(T) \cap \mathbb{T} = \{1\}$ and let $\alpha \geq 1$. If there exist $\epsilon > 0$ and constants $C_1 > c_1 > 0$ such that $c_1|\theta|^{-\alpha} \leq ||R(e^{i\theta},T)|| \leq C_1|\theta|^{-\alpha}$ for $0 < |\theta| < \epsilon$, then there exist constants C > c > 0 such that

$$\frac{c}{n^{1/\alpha}} \le \|T^n(I-T)\| \le C\left(\frac{\log n}{n}\right)^{1/\alpha}, \qquad n \ge 1.$$

Remark. Theorem 3.4 and Lemma 3.3 yield that if $||R(\lambda, T)|| \leq C|\lambda - 1|^{-\alpha}$ for $|\lambda| > 1$, then $||T^n(I-T)|| \leq C \left(\frac{\log n}{n}\right)^{1/\alpha}$, an improvement of Nevanlinna's [30, Theorem 9], where the rate obtained, for $1 < \alpha < 2$, is only $1/n^{(2-\alpha)/\alpha}$.

Theorem 3.5 ([35], Theorem 3.10). Let T be power-bounded on a Hilbert space H with $\sigma(T) \cap \mathbb{T} = \{1\}$ and let $\alpha \geq 1$. Then the following are equivalent:

(i) There exist $\epsilon > 0$ and $C_1 > 0$ such that $||R(e^{i\theta}, T)|| \le C_1 |\theta|^{-\alpha}$ for $0 < |\theta| < \epsilon$,

(ii) There exists C > 0 such that

$$||T^n(I-T)|| \le \frac{C}{n^{1/\alpha}} \quad n \ge 1.$$

Combining Theorem 3.5 with Lemma 3.3 we obtain

Theorem 3.6. Let T be power-bounded on a Hilbert space H with $\sigma(T) \cap \mathbb{T} = \{1\}$ and let $\alpha \geq 1$. Then the following conditions are equivalent:

(i) There exists C > 0 such that $||R(\lambda, T)|| \leq C|\lambda - 1|^{-\alpha}$ for $|\lambda| > 1$.

(*ii*)
$$||T^n(I-T)|| = \mathcal{O}(1/n^{1/\alpha}).$$

Remarks. 1. The case of $\alpha = 1$ in Theorem 3.6 is the known case of Ritt operators. 2. Let $Vf(t) := \int_0^t f(s)ds$ be the Volterra operator on $L_2[0,1]$ (see Example 1 below). It is known that T = I - V is power-bounded [1] with $\sigma(T) = \{1\}$, and by [37] $||T^n(I-T)|| = \mathcal{O}(1/\sqrt{n})$. Paulauskas [32] showed that $\sup_{|\lambda|<1} |\lambda - 1|^2 ||R(\lambda, T)|| = \infty$ (see also [31, p. 2082]); this shows that even when 1 is isolated in the spectrum, the resolvent estimate need not hold if we approach 1 from within the open unit disk.

4. On conditions for $||T^n(I-T)|| = \mathcal{O}(1/\sqrt{n})$

Dungey [11] gave several equivalent conditions for the rate $||T^n(I-T)|| = \mathcal{O}(1/\sqrt{n})$ when T is power-bounded on a Banach space. We look at additional conditions when T is a contraction on a Hilbert space.

Lemma 4.1. Let $\delta \in (0,1)$ and define the disk $D_{\delta} := \{z : |z-\delta| \le 1-\delta\}$. Then there exists $C_{\delta} > 0$ such that $\sup_{z \in \overline{D}_{\delta}} |z^n(1-z)| \le C_{\delta}/\sqrt{n}$ for $n \ge 1$.

Proof. Since $z^n(1-z)$ is continuous on \overline{D}_{δ} and holomorphic inside the disk, by the maximum principle

$$\sup_{z\in\bar{D}_{\delta}}|z^{n}(1-z)| = \sup_{\{|z-\delta|=1-\delta\}}|z^{n}(1-z)|.$$

Points on the circle $\{|z-\delta| = 1-\delta\}$ are represented by $z_{\theta} = \delta + (1-\delta)e^{i\theta}, 0 \le \theta < 2\pi$. Applying Lemma 2.1 of Foguel-Weiss [13] to the numbers 1 and $e^{i\theta}$ (note that its proof is valid for elements of norm at most 1, and the estimate there should be $K/(\sqrt{n}\cdot\alpha\cdot\delta)$), we obtain

$$|z_{\theta}^{n}(1-z_{\theta})| = (1-\delta)|z_{\theta}^{n}(1-e^{i\theta})| \le (1-\delta)K/(\sqrt{n}\delta(1-\delta)) = K/(\sqrt{n}\delta).$$

Thus the assertion of the lemma holds with $C_{\delta} = K/\delta$ (where K is an absolute constant, obtained in [13]).

Proposition 4.2. *let* T *be a bounded operator in a Banach space for which a closed* disk \overline{D}_{δ} is a K-spectral set. Then $||T^n(I-T)|| = O(1/\sqrt{n})$.

Proof. By Lemma 4.1,
$$||T^n(I-T)|| \leq K_{\bar{D}_{\delta}}C_{\delta}/\sqrt{n}$$
 for every $n \geq 1$.

Proposition 4.3. Let T be a contraction on a complex Hilbert space. Then each condition in the list below implies the next one:

(i) There exist a contraction S and some $\delta \in (0, 1)$ such that $T = \delta I + (1 - \delta)S$.

(ii) For some $\delta \in (0,1)$, the numerical range of T is contained the closed disk \bar{D}_{δ} . (iii) $||T^n(I-T)|| = \mathcal{O}(1/\sqrt{n})$.

(iv) There exist a power-bounded operator S and a number $\delta \in (0,1)$ such that $T = \delta I + (1-\delta)S$.

(v) For some $\delta \in (0,1)$ we have $\sigma(T) \subset \overline{D}_{\delta}$.

Proof. Assume (i). Then $|\langle Sf, f \rangle| \leq 1$ for ||f|| = 1, and we obtian

$$\langle Tf, f \rangle = \delta + (1 - \delta) \langle Sf, f \rangle \in \overline{D}_{\delta}$$

Assume (ii). Then by Delyon and Delyon [8, Theorem 3], \bar{D}_{δ} is a K-spectral set for T. By Proposition 4.2 we have $||T^n(I-T)|| \leq K_{\bar{D}_{\delta}}C_{\delta}/\sqrt{n}$ for every $n \geq 1$.

(iii) implies (iv) by [11, Theorem 1.2] (for any power-bounded T in a Banach space).

If (iv) holds, then $\sigma(T) = \{\lambda = \delta + (1 - \delta)z : z \in \sigma(S)\}$. Hence $\lambda \in \sigma(T)$ satisfies $|\lambda - \delta| = |1 - \delta||z| \le 1 - \delta$.

Remarks. 1. (i) implies (ii) if we assume only that the numerical radius of S, $w(S) := \sup\{|\lambda| : \lambda \in W(S)\}$, is not more than 1 (which implies $\sup_n ||S^n|| \le 2$ [36]). 2. When (iv) holds (in any Banach space), $|||x||| := \sup_{n \ge 0} ||S^n x||$ is an equivalent

norm for which $||S||| \leq 1$, and then also $||T||| \leq 1$; (iii) then follows from [13]. 3. If (i) holds, then $||T - \delta I|| = ||(1 - \delta)S|| \leq 1 - \delta$ implies that \bar{D}_{δ} is a spectral set for T (i.e. K-spectral with $K_{\bar{D}_{\delta}} = 1$), by von-Neumann's inequality [33, Section 154]. Conversely, if \bar{D}_{δ} is a spectral set for T, then $||T - \delta I|| \leq \sup\{|z - \delta| : z \in \bar{D}_{\delta}\} = 1 - \delta$, so (i) holds with $S = (1 - \delta)^{-1}(T - \delta I)$.

Corollary 4.4. Let T be a normal contraction in a complex Hilbert space. Then all the conditions of Proposition 4.3 are equivalent.

Proof. Since T is normal, when (iv) holds the power-bounded S is also normal, hence $||S|| \leq 1$ and (i) holds, so all first four conditions of Proposition 4.3 are equivalent.

By normality, W(T) is the convex hull of $\sigma(T)$ [4], so (v) is equivalent to (ii).

Remark. Given a non-normal contraction S, the operator $T := \frac{1}{2}(I + S)$ is a non-normal contraction which satisfies all the conditions of Proposition 4.3.

Example 1. Some power-bounded operators obtained from the Volterra operator.

Let $Vf(t) := \int_0^t f(s)ds$ be the Volterra operator on $L_2[0, 1]$. It is known that $T = (I + V)^{-1}$ is a contraction [15, Problem 150]. Since $\sigma(V) = \{0\}$, we have $\sigma(T) = \{1\}$, so $T \neq I$ shows T is not normal. From the work of Sarason [34] it follows that $T = \frac{1}{2}(I + S)$ for some contraction S, so T satisfies all the conditions of Proposition 4.3, hence the closed disk $\overline{D}_{1/2}$ is a K-spectral set for T. The fact that $||T^n(I - T)|| = \mathcal{O}(1/\sqrt{n})$, which follows from [13], was first observed by Tsedenbayar [37] (for I - V, which is similar to T [1]). The rate $\mathcal{O}(1/\sqrt{n})$ is precise, by [27].

By the similarity of I - V and T, the closed disk $\overline{D}_{1/2}$ is a K-spectral set for I - V (since by [20] it is enough to prove (3) for polynomials). Thus I - V is an example of a non-contractive power-bounded operator in H satisfying the assumptions of Proposition 4.2. Moreover, it is not difficult to deduce from the work of Foiaş and Williams [14, Proposition 2] that all the closed disks \overline{D}_{δ} , $0 < \delta < 1$, are K-spectral sets for I - V.

In [12, Proposition 2.5] Dungey proved (among other things) the following:

Proposition 4.5. Let $\mu := \{a_k\}_{k \in \mathbb{Z}}$ be a probability distribution on \mathbb{Z} . If μ is strictly aperiodic, i.e. its support $\mathbb{S} := \{k : a_k > 0\}$ is not contained in a translate of a proper subgroup of \mathbb{Z} (equivalently, $\mathbb{S} - \mathbb{S}$ generates \mathbb{Z}), then the convolution powers of μ satisfy $\sup_n \sqrt{n} \|\mu^n - \mu^{n+1}\|_{L_1(\mathbb{Z})} < \infty$.

Corollary 4.6. Let $\mu := \{a_k\}_{k \in \mathbb{Z}}$ be a strictly aperiodic probability on \mathbb{Z} and let S be an invertible operator on a Banach space which is bilaterally power-bounded (i.e. $\sup_{n \in \mathbb{Z}} ||S^n|| = K < \infty$). Then $T := \sum_{k \in \mathbb{Z}} a_k S^k$ satisfies $||T^n - T^{n+1}|| = \mathcal{O}(1/\sqrt{n})$.

Proof. Let $\mu^n = \{a_k^{(n)}\}_{k \in \mathbb{Z}}$. Since T is a Z-representation average, we have that $T^n = \sum_{k \in \mathbb{Z}} a_k^{(n)} S^k$ and

$$||T^n - T^{n+1}|| \le K \sum_{k \in \mathbb{Z}} |a_k^{(n)} - a_k^{(n+1)}| = K ||\mu^n - \mu^{n+1}||_{L_1(\mathbb{Z})} = \mathcal{O}(1/\sqrt{n})$$

by the previous proposition.

Remarks. 1. When μ is supported on \mathbb{N} , the result of the corollary holds for any S power-bounded, without requiring invertibility [12].

2. Dungey [12] showed that for certain probabilities μ supported on \mathbb{N} with infinite support, we have $||T^n(I-T)|| = \mathcal{O}(1/n)$.

3. Let P be a Markov operator with invariant probability. Then for μ strictly aperiodic supported on \mathbb{N} , some asymptotic properties of the Markov chain generated by the operator $T := \sum_{k=0}^{\infty} a_k P^k$, called in [19] a *time-sampled* Markov chain, were studied in [19].

4. If μ is strictly aperiodic and symmetric and S is unitary, then by Stein's theorem $||T^n(I-T)|| = \mathcal{O}(1/n).$

5. Let U be the unitary operator induced by a probability preserving invertible transformation τ . Bellow, Jones and Rosenblatt [3] showed that if μ strictly aperiodic satisfies $\sum_{k \in \mathbb{Z}} k^2 a_k < \infty$ and $\sum_{k \in \mathbb{Z}} k a_k = 0$, then the Markov operator $Q := \sum_{k \in \mathbb{Z}} a_k U^k$ on L_2 satisfies $||Q^n(I-Q)|| = \mathcal{O}(1/n)$, and deduced a.e. convergence of $Q^n f$ for every $f \in L_2$. For such a μ , a "quenched" central limit theorem was proved in [9] for the Markov chain generated by the above Q. A *d*-dimensional analogue is studied in [6].

Example 2. Convex combinations of powers of non-normal contractions

Let $\mu := \{a_k\}_{k \in \mathbb{Z}}$ be a strictly aperiodic probability distribution on \mathbb{Z} . Let S be a contraction on H, and define

$$T = \sum_{k \ge 0} a_k S^k + \sum_{k < 0} a_k S^{*|k|}$$

Note that if S is not normal, then T is not normal. Let U be the unitary dilation of S, defined on a larger Hilbert space H_1 of which H is a subspace with orthogonal projection P from H_1 onto H, and define

$$Q = \sum_{k \ge 0} a_k U^k + \sum_{k < 0} a_k U^{*|k|} = \sum_{k \in \mathbb{Z}} a_k U^k.$$

Then Q is a normal operator (on H_1), and by Proposition 4.6 $||Q^n(I-Q)|| = \mathcal{O}(1/\sqrt{n})$. By Corollary 4.4, there exists a contraction R on H_1 such that $Q = \delta I + (1 - \delta)R$ for some $\delta \in (0, 1)$. Then for $x \in H$ we have $Tx = PQx = \delta x + (1 - \delta)PRx$. Since $R_0 := (PR)_{|H}$ is a contraction on H, we obtain that $T = \delta I + (1 - \delta)R_0$, so the contraction T satisfies condition (i) (and therefore all the other conditions) of Proposition 4.3. Note that if μ is symmetric, or satisfies the conditions of [3], then $||T^n(I-T)|| = \mathcal{O}(1/n)$.

Remarks. 1. If in the previous example $0 < a_0 < 1$, then condition (i) of Proposition 4.3 holds without requiring the strict aperiodicity.

2. If μ in the example is supported on \mathbb{N} , then $T := \sum_{k\geq 0} a_k S^k$ satisfies all the conditions of Proposition 4.3.

5. A pointwise convergence theorem for some L_2 operators

Let T be a power-bounded operator on $L_p(\Omega, \Sigma, \mu)$ of a σ -finite measure space, $1 . For <math>\gamma > 1/p$, the convergence of $\sum_{n=1}^{\infty} \frac{||T^n f||^p}{n^{\gamma p}}$ and Beppo Levi's theorem yield that $\frac{T^n f}{n^{\gamma}} \to 0$ a.e., for every $f \in L_p(\mu)$. In fact, there is also a maximal inequality [2, Proposition I(iii)].

If T is a Markov operator induced by a transition probability P(x, A) with invariant measure μ , then it induces a contraction on all the $L_p(\mu)$ spaces. The pointwise ergodic theorem for L_1 functions and the inequality $|T^n f|^p \leq T^n(|f|^p)$, which holds a.e., yield that $\frac{|T^n f|}{n^{1/p}} \to 0$ a.e. for every $f \in L_p(\mu)$. A similar result holds if T is a Dunford-Schwartz operator (a contraction of L_1 and L_{∞}), by applying Lemma 7.4 of [18, p. 65] to the linear modulus of T. Example 4 below shows that in general, a positive contraction T on L_p may have some $f \in L_p$ with $\limsup \frac{T^n |f|}{n^{1/p}} = \infty$ a.e.

In this section we look at conditions on a power-bounded T on $L_2(\mu)$ which will yield, for an appropriate $\gamma \in [0, \frac{1}{2}]$, the a.e. convergence $\frac{T^n f}{n^{\gamma}} \to 0$ for every $f \in L_2(\mu)$.

Lemma 5.1. Let 1 , and let <math>T be a power-bounded operator on $L_p(\Omega, \Sigma, \mu)$ which satisfies $\sup_n n^{\beta} ||T^n(I-T)|| < \infty$ for some $\beta > 1/p$. Then $T^n f \to 0$ a.e. for every $f \in (I-T)L_p(\mu)$.

Proof.
$$\sum_{n=1}^{\infty} ||T^n(I-T)g||^p < \infty$$
, so $\sum_{n=1}^{\infty} |T^n(I-T)g|^p < \infty$ a.e.

Lemma 5.2. let $D(\alpha, b)$ be a quasi-Stolz region, with $1 \le \alpha \le 2$, b > 0 when $\alpha < 2$ and $b > \frac{1}{2}$ when $\alpha = 2$. Then $\sup_{1 \ne z \in D(\alpha, b)} \frac{|1-z|^2}{(1-|z|^2)^{2/\alpha}} < \infty$.

Proof. By the construction of quasi-Stolz domains, 1 is the only unimodular point in $\overline{D}(\alpha, b)$, so $\frac{|1-z|^2}{(1-|z|^2)^{2/\alpha}}$ is bounded on $D(\alpha, b) \cap \{ \Re e \ z \le 0 \}$, and boundedness depends on the behaviour near 1. Take a point $z = x + iy \in D(\alpha, b)$, and put $u = u(z) = x + i(\frac{1-x}{b})^{1/\alpha}$, which is a point on the upper half of the quasi-parabola $x = 1 - b|y|^{\alpha}$. It is clear that $|1-z| \le |1-u|$ and $|u| \ge |z|$, so

$$\frac{|1-z|^2}{(1-|z|^2)^{2/\alpha}} \le \frac{|1-u|^2}{(1-|u|^2)^{2/\alpha}} = \frac{(1-x)^2 + (\frac{1-x}{b})^{2/\alpha}}{(1-x^2 - (\frac{1-x}{b})^{2/\alpha})^{2/\alpha}}$$

After dividing by $(1-x)^{2/\alpha}$ and letting $x \uparrow 1$, we conclude that the limit is $\frac{1/b^{2/\alpha}}{2^{2/\alpha}}$ for $1 < \alpha < 2$, the limit is $\frac{b^2+1}{4b^2}$ for $\alpha = 1$, and the limit is $\frac{1}{2b-1}$ in the case $\alpha = 2$ (in which b > 1/2). Thus in all cases $|1-z|^2/(1-|z|^2)^{2/\alpha}$ is bounded near 1.

The proof of our Theorem 5.4 below is inspired by a method of E. Stein (see [3]), and will require the following lemma.

Lemma 5.3. Let $0 \leq \beta \leq 1$. Then there exists C > 0 such that $\sum_{n=1}^{\infty} n^{\beta} t^n \leq \frac{C}{(1-t)^{\beta+1}}$ for all $0 \leq t < 1$.

Proof. From the theory of hypergeometric functions we have the representation (see formula (1.9) in [38, p. 76]) $\frac{1}{(1-t)^{\beta+1}} = \sum_{n=0}^{\infty} {\binom{n+\beta}{n}} t^n$, with the following estimate for the coefficients (see formula (1.18) in [38, p. 77]):

(7)
$$\binom{n+\beta}{n} = \frac{n^{\beta}}{\Gamma(\beta+1)} \Big[1 + \mathcal{O}(\frac{1}{n}) \Big].$$

We then write

(8)
$$\frac{1}{\Gamma(\beta+1)}\sum_{n=0}^{\infty}n^{\beta}t^{n} = \sum_{n=0}^{\infty}\left[\frac{n^{\beta}}{\Gamma(\beta+1)} - \binom{n+\beta}{n}\right]t^{n} + \sum_{n=0}^{\infty}\binom{n+\beta}{n}t^{n}.$$

Using (7) we estimate the first series on the right hand side of (8):

$$\sum_{n=1}^{\infty} \left| \frac{n^{\beta}}{\Gamma(\beta+1)} - \binom{n+\beta}{n} \right| t^n \le C \sum_{n=1}^{\infty} \frac{1}{n^{1-\beta}} t^n \le \frac{C}{1-t} \le \frac{C}{(1-t)^{1+\beta}},$$

which together with the last series in (8) yields the assertion.

Theorem 5.4. Let $D(\alpha, b)$ be a quasi-Stolz region, with $1 < \alpha \leq 2$ and b > 0 ($b \geq 1/2$ for $\alpha = 2$). If $\overline{D}(\alpha, b)$ is a K-spectral set for a power-bounded operator T on $L_2(\mu)$, in particular (by [8]) if the numerical range of T is included in $\overline{D}(\alpha, b)$, then for every $f \in L_2(\mu)$ we have

(i)
$$\|\sup_{n \to T^n f} \frac{|T^n f|}{n^{1-1/\alpha}}\|_2 < \infty$$

(ii) $\frac{T^n f}{n^{1-1/\alpha}} \to 0$ a.e.

Proof. By Proposition 2.3 we have $\sup_n n^{1/\alpha} ||T^n(I-T)|| < \infty$, so when $\alpha < 2$ Lemma 5.1 yields that $T^n f$ converges a.e. for f in the dense subspace $\{Tg = g\} + (I-T)L_2$, hence $\frac{T^n f}{n^{1-1/\alpha}} \to 0$ a.e. for f in a dense subspace. When $\alpha = 2$, for every $\epsilon > 0$ we obtain $\frac{T^n(I-T)g}{n^{\epsilon}} \to 0$ a.e. for every g, similarly to the proof of Lemma 5.1.

Hence we always have $\frac{T^n f}{n^{1-1/\alpha}} \to 0$ a.e. for f in a dense subspace, so (ii) for every $f \in L_2$ follows from (i) by the Banach principle.

It is well-known (and easy to check) that

$$T^{n} = \frac{1}{n} \sum_{k=0}^{n-1} T^{k} + \frac{1}{n} \sum_{k=1}^{n} k(T^{k} - T^{k-1}).$$

Hence for every $f \in L_2(\mu)$ we have

$$\left\|\sup_{n}\frac{|T^{n}f|}{n^{1-1/\alpha}}\right\|_{2} \leq$$

(9)
$$\left\| \sup_{n} \frac{1}{n^{2-1/\alpha}} \right\|_{k=0}^{n} T^{k} f \left\|_{2} + \left\| \sup_{n} \frac{1}{n^{2-1/\alpha}} \right\|_{k=1}^{n} k(T^{k} - T^{k-1}) f \left\|_{2} \right\|_{2}.$$

We first deal with the second term. The Cauchy-Schwarz inequality yields

$$\frac{1}{n^{2-1/\alpha}} \Big| \sum_{k=1}^{n} k(T^{k} - T^{k-1})f \Big| \le \frac{1}{n^{2-1/\alpha}} \Big(\sum_{k=1}^{n} k^{\frac{3\alpha-2}{\alpha}} \Big)^{\frac{1}{2}} \Big(\sum_{k=1}^{n} k^{\frac{2-\alpha}{\alpha}} |(T^{k} - T^{k-1})f|^{2} \Big)^{\frac{1}{2}} \le C_{\alpha} \Big(\sum_{k=1}^{n} k^{\frac{2-\alpha}{\alpha}} |(T^{k} - T^{k-1})f|^{2} \Big)^{\frac{1}{2}} \le C_{\alpha} \Big(\sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} |(T^{k} - T^{k-1})f|^{2} \Big)^{\frac{1}{2}}.$$

We use the fact that $D(\alpha, b)$ is K-spectral, and then apply Lemma 5.3 to obtain

$$\sum_{k=1}^{n} k^{\frac{2-\alpha}{\alpha}} \| (T^{k} - T^{k-1}) f \|_{2}^{2} \le K_{D(\alpha,b)} \sup_{z \in D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} |z^{k} - z^{k-1}|^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k} - z^{k-1}) \|_{2}^{2} \le K_{D(\alpha,b)} \sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} \| (z^{k}$$

$$\kappa_{\alpha} K_{D(\alpha,b)} \sup_{1 \neq z \in D(\alpha,b)} \frac{|1-z|^2}{(1-|z|^2)^{2/\alpha}}.$$

Lemma 5.2 now implies $\sum_{k=1}^{\infty} k^{\frac{2-\alpha}{\alpha}} ||(T^k - T^{k-1})f||_2^2 < \infty$, so we conclude that the second term of (9) is finite.

Since $1 < \alpha \leq 2$, the series $\sum_{n=1}^{\infty} \frac{\|T^n f\|_2}{n^{2-\frac{1}{\alpha}}}$ converges, and the finiteness of the first term in (9) follows from the modified Kronecker's lemma in the claim below.

Claim: If $\{b_n\}$ is positive increasing and $\{f_k\} \subset L_2$ such that $\sum_{n=1}^{\infty} \frac{\|f_n\|_2}{b_n}$ converges, then $\|\sup_n \frac{1}{b_n} \sum_{k=1}^n f_k\|_2 < \infty$.

Proof. We may and do assume that $f_k \ge 0$ for every k. Put $S_0 = 0$ and $S_n = \sum_{k=1}^n \frac{f_k}{b_k}$, so $b_k(S_k - S_{k-1}) = f_k$. Then

$$\frac{1}{b_n}\sum_{k=1}^n f_k = \frac{1}{b_n}\sum_{k=1}^n b_k(S_k - S_{k-1}) = \frac{1}{b_n}[b_nS_n - \sum_{k=1}^{n-1}(b_{k+1} - b_k)S_k].$$

Since S_n is increasing with $||S_n||_2 \leq \sum_{k=1}^{\infty} \frac{||f_k||_2}{b_k}$, it converges a.e. as well as in L_2 -norm, say to S, and we obtain $\frac{1}{b_n} \sum_{k=1}^n f_k \leq 2S$ a.e., which proves the claim.

When $\alpha = 1$, the above proof shows the finiteness of the second term of (9) (this is Stein's argument, as in [3]). However, finiteness of the first term in (9) does not always hold, even for contractions, unless we assume T to be a positive contraction and refer to Akcoglu's theorem (e.g. [18, p. 189]). We then have the following extension of [3].

Theorem 5.5. If a Stolz region D(1, b) is a K-spectral set for a positive contraction T on $L_2(\mu)$, in particular (by [8]) if the numerical range of T is included in $\overline{D}(1, b)$, then for every $f \in L_2(\mu)$ we have

(i) $\|\sup_n |T^n f|\|_2 < \infty$. (ii) $T^n f \to 0$ a.e.

Remark. Le Merdy and Xu [24] proved that if T is a positive Ritt contraction on L^p , 1 , then <math>T has a bounded $H^{\infty}(D)$ functional calculus for some Stolz region D (so D is a K-spectral set for T), and used it to prove the above theorem also for positive contractions of L^p .

Theorem 5.6. Let $\delta \in (0, 1)$ and put $D_{\delta} = \{z : |z - \delta| < 1 - \delta\}$. If \overline{D}_{δ} is a K-spectral set for a power-bounded operator T on $L_2(\mu)$, in particular (by [8]) if the numerical range of T is included in \overline{D}_{δ} , then for every $f \in L_2(\mu)$ we have

(i)
$$\|\sup_{n} \frac{|T^n f|}{n^{1/2}}\|_2 < \infty$$

(ii) $\frac{T^n f}{n^{1/2}} \to 0$ a.e.

The proof is similar to that of Theorem 5.4 (with $\alpha = 2$), except that instead of Lemma 5.2 we use the following lemma.

Lemma 5.7. For
$$\delta \in (0,1)$$
 put $D_{\delta} = \{z : |z - \delta| < 1 - \delta\}$. Then $\sup_{z \in D_{\delta}} \frac{|1-z|^2}{1-|z|^2} < \infty$.

Proof. Since the closed disk D_{δ} touches the unit circle only at 1, the boundedness depends on the behaviour in D_{δ} near 1. Take $z = x + iy \in D_{\delta}$ and let u = u(z) :=

 $x + i\sqrt{(1-\delta)^2 - (x-\delta)^2}$ be on the boundary of D_{δ} above z. Clearly $|1-z| \leq |1-u|$ and $|z| \leq |u|$, so

$$\begin{aligned} \frac{|1-z|^2}{1-|z|^2} &\leq \frac{|1-u|^2}{1-|u|^2} = \frac{(1-x)^2 + (1-\delta)^2 - (x-\delta)^2}{1-x^2 - (1-\delta)^2 + (x-\delta)^2} = \\ \frac{(1-x)^2 + (1+x-2\delta)(1-x)}{(1-x)(1+x) - (1+x-2\delta)(1-x)}, \end{aligned}$$

which tends to $(1 - \delta)/\delta$ as $x \uparrow 1$. Thus $|1 - z|^2/(1 - |z|^2)$ is bounded on D_{δ} .

Remark. When T is a normal contraction on $L_2(\mu)$, by [4] Theorems 5.4 and 5.6 apply if $\sigma(T)$ is in $\overline{D}(\alpha, b)$ or in \overline{D}_{δ} , respectively.

Corollary 5.8. Let T be a normal contraction on $L_2((\mu)$. If $||T^n(I-T)|| = \mathcal{O}(1/n^\beta)$ for some $\frac{1}{2} \leq \beta < 1$, then for every $f \in L_2(\mu)$ we have $||\sup_n \frac{|T^n f|}{n^{1-\beta}}|| < \infty$ and $\frac{T^n f}{n^{1-\beta}} \to 0$ a.e.

Proof. We apply Corollary 2.7 or Corollary 4.4, and then [4], and use Theorem 5.4 or Theorem 5.6. \Box

Example 3 Non-normal operators to which Theorem 5.6 applies.

Let V be the Volterra operator on $L_2[0,1]$. Then, as discussed in Example 1, the operator $T = (I + V)^{-1}$ is a non-normal contraction for which $\bar{D}_{1/2}$ is a K-spectral set, and I - V, which is similar to T, is a power-bounded operator for which $\bar{D}_{1/2}$ is a K-spectral set. Thus Theorem 5.6 applies to these operators.

Theorem 5.6 is justified since, even for positive contractions in L_2 , property (ii) need not hold in general, as shown by the following example, based on ideas of Irmisch [16, p. 37], which was suggested by Y. Derriennic.

Example 4. A positive contraction S on L_2 and $g \in L_2$ with $\limsup \frac{S^n g}{\sqrt{n \log n}} \equiv \infty$. In 1964, Chacon constructed a positive contraction T on L_1 for which there is some $0 \leq f_0 \in L_1$ with $\limsup_{n\to\infty} \frac{T^n f_0}{n} = \infty$ a.e. (see [18, p. 151]). Mesiar [26] modified Chacon's construction to obtain a positive contraction T on L_1 for which there is a function $0 \leq f_0 \in L_1$ with $\limsup_{n\to\infty} \frac{T^n f_0}{n \log n} = \infty$ a.e. We use the following notations (as presented in [18, p. 151]): τ is an invertible non-singular transformation of (Ω, μ) and T on $L_1(\mu)$ is defined by $T(d\nu/d\mu) = d(\nu\tau^{-1})/d\mu$ for $\nu \ll \mu$, so $T^*h = h \circ \tau$. We then obtain, with $\theta = \tau^{-1}$, that

(10)
$$Tf = \frac{d(\mu\theta)}{d\mu} \cdot (f \circ \theta), \qquad f \in L_1(\mu).$$

Since for any $h \in L_1(\mu)$ we have $\int_{\theta A} h d\mu = \int_A (h \circ \theta) d(\mu \theta)$, for $\nu \ll \mu$ we obtain

(11)
$$\frac{d\nu}{d\mu} \circ \theta = \frac{d(\nu\theta)}{d(\mu\theta)}$$

This yields $T^2 f = \frac{d(\mu\theta)}{d\mu} \cdot \left(\frac{d(\mu\theta)}{d\mu} \circ \theta\right) \cdot (f \circ \theta^2) = \frac{d(\mu\theta^2)}{d\mu} \cdot (f \circ \theta^2)$, and by induction

(12)
$$T^n f(x) = \frac{d(\mu \theta^n)}{d\mu}(x) \cdot f(\theta^n x), \qquad f \in L_1(\mu).$$

Fix $1 , and define S on <math>L_p(\mu)$ by $Sg := \left(\frac{d(\mu\theta)}{d\mu}\right)^{1/p} \cdot (g \circ \theta)$. Then S is a positive isometry of $L_p(\mu)$. Using (11) we obtain by induction that

(13)
$$S^{n}g(x) = \left(\frac{d(\mu\theta^{n})}{d\mu}(x)\right)^{1/p} \cdot g(\theta^{n}x) \qquad g \in L_{p}(\mu).$$

Let $0 \leq f_0 \in L_1(\mu)$ be the function of Mesiar's example, with $\limsup_n \frac{T^n f_0}{n \log n} = \infty$ a.e., and put $g_0 = f_0^{1/p}$. Then (13) and (12) yield

$$\left(\frac{S^n g_0}{(n\log n)^{1/p}}\right)^p = \frac{1}{n\log n} \frac{d(\mu\theta^n)}{d\mu} \cdot (g_0^p \circ \theta^n) = \frac{T^n f_0}{n\log n}$$

which shows that $\limsup_n \frac{S^n g_0}{(n \log n)^{1/p}} = \infty$ a.e. The asserted example is for p = 2.

Since T is invertible with $(T^{-1})^*h = h \circ \theta$, we obtain that $\frac{d(\mu\tau)}{d\mu} \cdot \frac{d(\mu\theta)}{d\mu} \circ \tau = 1$. Hence S is invertible on $L_p(\mu)$, with $S^{-1}g := \left(\frac{d(\mu\tau)}{d\mu}\right)^{1/p} \cdot (g \circ \tau)$. Thus for p = 2, S is unitary.

Remarks. 1. Note that $\frac{\|T^ng\|}{(n\log n)^{1/p}} \to 0$ for any T power-bounded on L_p and $g \in L_p$, which implies that there is $\{n_k\}$ (which depends on g) with $\frac{T^{n_k}g}{(n_k\log n_k)^{1/p}} \to 0$ a.e.

2. Assani and Mesiar [2] studied the a.e. convergence of $\frac{T^n f}{n^{\gamma}}$ for power-bounded positive operators of L_p . In their Theorem III they show that there exists a probability preserving transformation such that for every $p \ge 1$ and $\gamma \in (0, 1/p)$ there is a function $f = f_{p,\gamma} \in L_p$ such that $\limsup_n \frac{T^n f}{n^{\gamma}} \ge 1$ a.s. In their Theorem V they show the existence of a probability preserving transformation such that for p > 1 there is a function $f = f_p \in L_p$ for which $\sup_n \frac{T^n |f|}{n^{1/p}}$ is not in L_p (though $T^n f/n^{1/p} \to 0$ a.e.).

6. Problems

In this section we discuss some problems raised by our results.

Problem 1. Let T be a contraction on H with $||T^n(I-T)|| = \mathcal{O}(1/n^{\beta}), \frac{1}{2} \leq \beta < 1$. Is there a quasi-Stolz $\mathcal{D}(1/\beta, b)$ which is K-spectral for T?

This question deals with the converse of Proposition 2.3 for contractions in H, and is about a weak converse to Theorem 2.4. By Proposition 2.6 $\sigma(T)$ is contained in some quasi-Stolz region $D(1/\beta, b)$, so when T is normal the answer is positive. For a Ritt contraction ($\beta = 1$) Le Merdy [23, Theorem 8.1] proved that the answer is positive. However, it is not known if the numerical range of a (non-normal) Ritt contraction in H must be in a Stolz region.

Problem 2. Are all the conditions of Proposition 4.3 equivalent for every contraction T on H?

Corollary 4.4 yields a positive answer for normal contractions. Of particular interest is the question whether $||T^n(I-T)|| = \mathcal{O}(1/\sqrt{n})$ implies (ii) in Proposition 4.3, which in turn yields that the disk \bar{D}_{δ} is a K-spectral set for T; a positive answer will allow the use of Theorem 5.6 for any contraction on $L_2(\mu)$ which satisfies $||T^n(I-T)|| =$ $\mathcal{O}(1/\sqrt{n})$. This problem is related to the case $\beta = \frac{1}{2}$ of Problem 1 above. **Problem 3.** Given $\frac{1}{2} < \beta < 1$, find a strictly aperiodic $\mu = \{a_k\}$ on \mathbb{Z} such that for every unitary U the operator $T = \sum_k a_k U^k$ satisfies $||T^n(I-T)|| = \mathcal{O}(1/n^\beta)$. Corollary 4.6 yields the rate $1/\sqrt{n}$ for any μ strictly aperiodic. Of course, if μ is such that for every unitary the operator T satisfies $||T^n(I-T)|| = \mathcal{O}(1/n)$ (e.g. μ is symmetric, or as in the results of [3] or [12]), then it has also the rate $1/n^\beta$ for every $\beta < 1$. Thus the question is about finding μ such that $||T^n(I-T)|| = \mathcal{O}(1/n^\beta)$ for every unitary and, in addition, for some unitary U the rate $1/n^\beta$ is precise.

Acknowledgements. The authors are grateful to Yuri Tomilov for bringing Seifert's paper [35] to their attention, and for his comments on an earlier version of this paper, to Christophe Cuny for his remarks as well as for bringing the paper of Assani and Mesiar [2] to their attention, and to Vygantas Paulauskas for sharing with them his unpublished note [32].

References

- G.R. Allen, Power-bounded elements and radical Banach algebras, in "Linear Operators", Banach Center Publications vol. 38, Warsaw, 1997, pp. 9-16.
- [2] I. Assani and R. Mesiar, Sur la convergence ponctuelle de $\frac{T^n f}{n^{\alpha}}$, dans L^p , Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl. 85 (1985), 21-29.
- [3] A. Bellow, R. Jones and J. Rosenblatt, Almost everywhere convergence of powers, in "Almost everywhere convergence", Academic Press, 1989, pp. 99-120.
- [4] S. K. Berberian, The numerical range of a normal operator, Duke Math. J. 31 (1964), 479-483.
- [5] V. Cachia and V. Zagrebnov, Operator-norm approximation of semi-groups by quasi-sectorial contractions, J. Funct. Anal. 180 (2001), 176-194.
- [6] G. Cohen and J.-P. Conze, *CLT for random walks of commuting endomorphisms on compact Abelian groups*, preprint (46 pages).
- [7] G. Cohen, C. Cuny and M. Lin, Alomst everywhere convergence of powers of some positive L_p contractions, J. Math. Anal. Appl. 420 (2014), 1129-1153.
- [8] B. Delyon and F. Delyon, Generalizations of von-Neumann's spectral sets and integral representation of operators, Bull. Soc. Math. France 127 (1999), 25-41.
- [9] Y. Derriennic and M. Lin, The central limit theorem for random walks of probability preserving transformations, Contemp. Math. 444 (2007), 31-51.
- [10] N. Dungey, A class of contractions in Hilbert space and applications, Bull. Polish Acad. Sci. Math. 55 (2007), 347-355.
- [11] N. Dungey, On time regularity and related conditions for power-bounded operators, Proc. London Math. Soc. (3) 97 (2008), 97-116.
- [12] N. Dungey, Subordinated discrete semigroups of operators, Trans. Amer. Math. Soc. 363 (2011), 1721-1741.
- [13] S. Foguel and B. Weiss, On convex power series of a conservative Markov operator, Proc. Amer. Math. Soc. 38 (1973), 325-330.
- [14] C. Foiaş and J.P. Williams, Some remarks on the Volterra operator, Proc. Amer. Math. Soc. 31 (1972), 177-184.
- [15] P.R. Halmos, A Hilbert Space Problem Book, Van-Nostrand, Princeton, NJ, 1967.
- [16] R. Irmisch, Punktweise Ergodensätze für (c, α) -Verfahren, $0 < \alpha < 1$, Ph.D. thesis, Technical University Darmastadt, 1980.
- [17] Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328.
- [18] U. Krengel. Ergodic Theorems, de Gruyter, Berlin, 1985.
- [19] K. Latuszyński and G. Roberts, CLT and asymptotic variance of time sampled Markov chains, Methodol. Comput. Appl. Probab. 15 (2013), 237-247.
- [20] A. Lebow, On von-Neumann's theory of spectral sets, J. Math. Anal. Appl. 7 (1963), 64-90.

- [21] Z. Léka, A Katznelson-Tzafriri type theorem in Hilbert spaces, Proc. Amer. Math. Soc. 137 (2009), 3763-3768.
- [22] Z. Léka, Time regularity and functions of the Volterra operator, Studia Math. 220 (2014), 1-14.
- [23] C. Le Merdy, H[∞] functional calculus and square function estimates for Ritt operators, Rev. Mat. Iberoam. 30 (2014), 1149-1190.
- [24] C. Le Merdy and Q. Xu, Maximal theorems and square functions for analytic operators on L^pspaces, J. London Math. Soc. (2) 86 (2012), 343-365.
- [25] Y. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt's type condition, Studia Math. 134 (1999), 153-167.
- [26] R. Mesiar, On contractions in L_1 , Časopis Pěst. Mat. 114 (1989), 337-342.
- [27] A. Montes-Rodríguez, J. Sánchez-Alvarez and J. Zemánek, Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. (3) 91 (2005), 761-788.
- [28] B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143-151.
- [29] O. Nevanlinna, Convergence of Iterations of Linear Equations, Birkhäuser, Basel, 1993.
- [30] O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113-134.
- [31] V. Paulauskas, A generalization of sectorial and quasi-sectorial operators, J. Funct. Anal. 262 (2012), 2074-2099.
- [32] V. Paulauskas, On the behaviour of the resolvent of the operator I V, unpublished, May 2012.
- [33] F. Riesz and B. Sz.-Nagy, Leçons d'Analyse Fonctionnelle, 3rd ed., Akdemiai Kiado, Budapest, 1955.
- [34] D. Sarason, A remark on the Volterra operator, J. Math. Anal. Appl. 12 (1965), 244-246.
- [35] D. Seifert, Rates of decay in the classical Katznelson-Tzafriri theorem, J. d'Anal. Math., to appear; Arxiv1410.1297v1 (2014).
- [36] B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math. (Szeged) 27 (1966), 17-25.
- [37] D. Tsedenbayar, On the power boundedness of certain Volterra operator pencils, Studia Math. 156 (2003), 59-66.
- [38] A. Zygmund, Trigonometric Series, corrected 2nd edition, Cambridge, UK, 1968.

DEPARTMENT OF ELECTRICAL ENGINEERING, BEN-GURION UNIVERSITY, BEER-SHEVA, ISRAEL *E-mail address*: guycohen@ee.bgu.ac.il

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY, BEER-SHEVA, ISRAEL *E-mail address*: lin@math.bgu.ac.il