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Abstract. We prove that if the numerical range of a Hilbert space contraction T
is in a certain closed convex set of the unit disk which touches the unit circle only
at 1, then ‖Tn(I − T )‖ = O(1/nβ) with β ∈ [ 12 , 1). For normal contractions the

condition is also necessary. Another sufficient condition for β = 1
2 , necessary for T

normal, is that the numerical range of T be in a disk {z : |z − δ| ≤ 1 − δ} for some
δ ∈ (0, 1). As a consequence of results of Seifert, we obtain that a power-bounded
T on a Hilbert space satisfies ‖Tn(I − T )‖ = O(1/nβ) with β ∈ (0, 1] if and only
if sup|λ|>1 |λ − 1|1/β‖R(λ, T )‖ < ∞. When T is a contraction on L2 satisfying the

numerical range condition, it is shown that Tnf/n1−β converges to 0 a.e. with a
maximal inequality, for every f ∈ L2. An example shows that in general a positive
contraction T on L2 may have an f ≥ 0 with lim supTnf/ log n

√
n =∞ a.e.

1. Introduction

Let T be a power-bounded operator on a complex Banach space X. The Katznelson-
Tzafriri theorem [17] says that ‖T n(I−T )‖ → 0 if and only if the peripheral spectrum
σ(T )∩T is at most the point 1. In Hilbert spaces, it follows from Léka’s work [21] that
when ‖T n(I−T )‖ → 0, then we also have ‖T n(I−T )γ‖ → 0 for every γ ∈ (0, 1) (where
(I − T )γ = I −

∑∞
k=1 akT

k, with {ak}k≥1 the coefficients of (1 − t)γ = 1 −
∑∞

k=1 akt
k

for t ∈ [−1, 1], which satisfy ak > 0 and
∑∞

k=1 ak = 1).
Nagy and Zemánek [28] and Lyubich [25] proved that the powers of the operator T

have the rate of convergence ‖T n(I − T )‖ = O(1/n) if and only if T satisfies the Ritt
resolvent condition

sup
|λ|>1

‖(λ− 1)R(λ, T )‖ <∞.

It follows from Nevanlinna’s work [30, Theorem 9] that if T is power-bounded and
satisfies, for some α ∈ [1, 2),

(1) sup
1<|λ|<2

|λ− 1|α‖R(λ, T )‖ <∞,

then ‖T n(I − T )‖ = O(1/n(2−α)/α). (The case α = 1 is Ritt’s condition).
Dungey [11] obtained several characterizations of the property ‖T n(I − T )‖ =
O(1/

√
n), and in [10] he gave several sufficient conditions for a contraction T on a

Hilbert space to satisfy this estimate.
Léka [22] has recently constructed, for any β ∈ (1

2
, 1), a contraction T in a complex

Hilbert space with σ(T ) = {1} and ‖T n(I − T )‖ = O(1/nβ). Earlier, Nevanlinna
[29, Example 4.5.2] had constructed contractions on C[0, 1] with the above rates (but
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with larger spectra), and Paulauskas [31, Theorem 6] showed how to obtain normal
contractions on a (separable) Hilbert space with the above rates.

Cachia and Zagrebnov [5] called a contraction T on a complex Hilbert space quasi-
sectorial if its numerical range W (T ) := {〈Tf, f〉 : ‖f‖ = 1} is included in a Stolz
region (the closed convex hull of the point 1 and a disk centered at 0 with radius less
than 1). They proved [5, Lemma 3.1] that if T is quasi-sectorial, then ‖T n(I − T )‖ =
O(1/n); see also [7, Proposition 2.3].

Paulauskas [31] defined generalized quasi-sectorial contractions by the inclusion of
their numerical ranges in a certain convex subset of the closed unit disk, larger than
a Stolz region (see definition below), and proved that ‖T n(I − T )‖ = O(1/nβ) for an
appropriate β ∈ (1

2
, 1). We offer here a different proof, which under the assumptions

of [31] yields a better (larger) value of β as a function of the parameters.

2. A limit theorem for generalized quasi-sectorial contractions

We start this section by defining certain convex subsets of the closed unit disk. The
geometric construction of a Stolz region is by taking a circle of radius r < 1 centered
at 0 and drawing two tangent line segments from the point 1 to this circle. Paulauskas
[31] suggests a similar construction, but replacing the tangent line segments by arcs
of a tangent ”parabola-like” curve x = 1− b|y|α, 1 < α < 2, b > 0, or α = 2 and b > 1

2
(with |y| ≤ |y0| < 1); we call such a curve a quasi-parabola. We denote the obtained
convex set by D(α, b), and call it a quasi-Stolz set. For a drawing see [31, p. 2078]. The
actual construction of D(α, b) is by starting with the parameters α and b, and finding
the radius of the corresponding circle; see Lemma 10 of [31]. Whenever we refer to a
quasi-Stolz set D(α, b), it is implied that 1 < α ≤ 2. An operator with numerical range
contained in a quasi-Stolz set is called in [31] generalized quasi-sectorial. Note that
the numerical radius of a generalized quasi-sectorial T is at most 1, so necessarily T
is power-bounded with supn ‖T n‖ ≤ 2 [36]. Note that curves of the form x = 1− b|y|α
with α > 2 and b > 0 are outside the unit disk in a neighborhood of (1, 0), so cannot
be used.

Lemma 2.1. Let D(α, b) be a quasi-Stolz set. Then there exists K > 0 such that

(2) (n+ 1)1/α sup
λ∈D(α,b)

|λn(1− λ)| ≤ K ∀n ≥ 1.

The proof of Proposition 6 of [31] actually shows (2), with a value for K.

Corollary 2.2. Let D(α, b) be a quasi-Stolz set and let {λk} ⊂ D(α, b). Let T be the
”diagonal” operator T defined on `p, 1 ≤ p < ∞, by Tek = λkek, where {ek} is the
standard unit basis. Then ‖T n(I − T )‖ = O(1/n1/α).

Proof. We have ‖T n(I − T )‖ = supk |λnk(1− λk)|, and apply (2). �

Defintion. A compact set A is called a K-spectral set for T if there exists a KA > 0
such that for every rational function u(z) with poles outside A we have

(3) ‖u(T )‖ ≤ KA sup
z∈A
|u(z)|.
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As noted in [7], an easy adaptation of Lebow’s lemma [20, p. 66] yields that if a
compact set A does not separate the plane, then it is K-spectral for T as soon as
‖p(T )‖ ≤ KA supz∈A |p(z)| for every polynomial p(z).

Proposition 2.3. let T be a bounded operator in a Banach space for which a quasi-
Stolz set D(α, b) is a K-spectral set. Then T is power-bounded and ‖T n(I − T )‖ =
O(1/n1/α).

Proof. Since D(α, b) is a subset of the closed unit disk, (3) yields power-boundedness.
Combining (3) with (2) we obtain

(n+ 1)1/α‖T n(I − T )‖ ≤ KD̄K ∀n ≥ 1.

�

Theorem 2.4. Let T be a contraction on a complex Hilbert space with numerical range
contained in a quasi-Stolz set D(α, b). Then ‖T n(I − T )‖ = O(1/n1/α).

Proof. The set D̄ := D(α, b) is a compact convex set containing the numerical range
W (T ), so by Delyon and Delyon [8, Theorem 3] D̄ is a K-spectral set for T . The
theorem now follows from Proposition 2.3. �

Remark. The theorem improves [31, Theorem 4], where Paulauskas obtained only
the rate (2− α)/α (for α < 2, of course; the same rate as in [30] when (1) holds). He
obtained the rate 1/α only for diagonal operators (which are necessarily normal).

The next lemma shows that in Theorem 2.4 n1/α‖T n(I − T )‖ need not converge to
zero, so the rate obtained there is optimal.

Lemma 2.5. Let T be a power-bounded operator on a complex Banach space X and
assume that for some α ∈ (1, 2] and b > 0 (b > 1

2
when α = 2) there exist reals

0 6= tn → 0, such that (1− b|tn|α + itn)n≥1 ⊂ σ(T ). Then

lim sup
n→∞

n1/α‖T n(I − T )‖ ≥ (b1/α e)−1.

Proof. Assume the statement fails. Then, for some fixed 0 < ε < (b1/αe)−1 and for
every large k we have k1/α‖T k(I−T )‖ < (b1/α e)−1−ε. The spectral mapping theorem
then yields

k1/α sup
λ∈σ(T )

|λ|k|λ− 1| < (b1/α e)−1 − ε.

Taking the given sequence λj = 1 − b|tj|α + itj ∈ σ(T ) and choosing kj = [ 1
b|tj |α ] + 1

we obtain

k
1/α
j |λj|kj |λj − 1| ≥ |tj|

b1/α|tj|
(1− b|tj|α)1+1/(b|tj |α) →

j→∞
(b1/α e)−1

which is a contradiction. �

Remark. Nevanlinna [29, Theorem 4.5.1] proved that if σ(T ) ∩ T = {1} and 1
is not isolated in σ(T ), then lim supn‖T n(I − T )‖ > 1/e. Lemma 2.5 improves this
result when additional information is given; however, with α = 1, the lemma, though
true, is in fact weaker than [29].
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Proposition 2.6. Let T be a power-bounded operator on a complex Banach space X
and assume that for some 1

2
< β < 1 we have supn≥1 n

β‖T n(I −T )‖ = M <∞. Then
there exists b > 0, such that the sepctrum σ(T ) is contained in a quasi-Stolz region
D(1/β, b).

Proof. Step 1: We denote α = 1/β, and prove that there exists ε > 0 such that
σ(T ) ∩ {λ : 0 < |λ − 1| < ε} is contained in the ”interior” of some quasi-parabola
x = 1 − b|y|α with b > 0. Assume the statement is false. Since the ”interior” of the
quasi-parabola x = 1 − b|y|α increases to the half plane {x < 1} as b decreases to 0,
the assumption yields that there exist a positive sequence {b′j} decreasing to zero and
a sequence {λj = xj + iyj} ⊂ σ(T ) with 1 6= λj → 1 such that xj > 1 − b′j|yj|α. By
continuity in b of the quasi-parabolas, there are 0 < bj < b′j with xj = 1−bj|yj|α; by the
construction 0 6= yj → 0 and bj → 0, and we may assume (by taking a subsequence)
that yj > 0 for every j (the case of yj < 0 for every j being treated similarly). Clearly
(for j large) |λj| ≥ xj = 1− bjyαj > 0 and |λj − 1| ≥ yj. Putting kj = [1/bjy

α
j ] + 1 and

remembering that α = 1/β, we obtain

kβj |λj|kj |λj − 1| ≥ yj

bβj y
αβ
j

(1− bjyαj )1/(bjy
α
j ) ≥ C

1

bβj
→∞,

which contradicts the given rate supn≥1 n
β‖T n(I − T )‖ ≤ M , since by the spectral

mapping theorem

sup
λ∈σ(T )

kβ|λ|k|λ− 1| = sup
λ∈σ(kβTk(I−T ))

|λ| ≤ ‖kβT k(I − T )‖.

Step 2: By Step 1 there is b > 0 and an open neighborhood of 1, say V , such
that σ(T ) ∩ V is included in the interior of the quasi-parabola x = 1 − b|y|α. Since
‖T n(I − T )‖ → 0, The spectral mapping theorem implies that σ(T ) intersects the
unit circle at most at the point 1, so σ(T ) ∩ V c is included in some disk of radius
ρ < 1 centered at the origin. If the disk is in the interior of the quasi-parabola, we can
increase ρ till the quasi-parabola is tangent to it, and still ρ < 1 since everything takes
place in the open unit disk. If the quasi-parabola intersects the disk in two points, we
decrease b till the quasi-parabola is tangent to the disk of radius ρ. In either case, we
end up with a quasi-Stolz region D(1/β, b) which contains σ(T ). �

Corollary 2.7. Let T be a normal contraction on a complex Hilbert space, and let
1 < α < 2. Then ‖T n(I − T )‖ = O(1/n1/α) if and only if σ(T ) is contained in a
quasi-Stolz region D(α, b) for some b > 0.

Proof. Since T is normal, W (T ) is the convex hull of σ(T ) (e.g. [4]), so by convexity
of quasi-Stolz regions the ”if” part follows from Theorem 2.4. The converse follows
from the previous proposition. �

Remark. For α = 1 we replace a quasi-Stolz region by a Stolz region, and then
the corollary holds by [7, Prposition 2.5]. The ”if” part in this case is due to Bellow,
Jones and Rosenblatt [3, p. 111].
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3. Resolvent conditions for convergence rates

Recall that for T bounded on a complex Banach space X the resolvent is defined
by R(λ, T ) := (λI − T )−1 whenever λI − T is one-to-one onto X (and then R(λ, T ) is
also bounded). If |λ| > r(T ), then R(λ, T ) = λ−1

∑∞
n=0(T/λ)n, so when T is power-

bounded, the series representation of R(λ, T ) holds for every |λ| > 1.

Proposition 3.1. Let T be a power-bounded operator in X. Assume that for some
1 < α < 2 we have

(4) ‖R(λ, T )‖ ≤ C

|λ− 1|α
for |λ| > 1.

Then every λ ∈ S(α, 1/C) := {z = x + iy : x > 1− 1
C
|y|α} is in ρ(T ). For b < 1/C,

every λ ∈ S(α, b) satisfies ‖R(λ, T )‖ ≤ Cb
|λ−1|α .

Proof. Every 1 6= λ0 ∈ T is in ρ(T ), since by (4) lim supλ→λ0,|λ|>1 ‖R(λ, T )‖ <∞. We
follow ideas of [28, p. 146]. Let A = T − I, so σ(A) = σ(T )− 1 ⊂ D ∪ {0} and by (4)

(5) ‖R(λ,A)‖ = ‖R(λ+ 1, T )‖ ≤ C

|λ|α
∀ |λ+ 1| > 1.

This holds in particular when Reλ > 0 and when λ = it with t 6= 0. Fix λ0 = it0,
t0 6= 0. If |λ− λ0| · ‖(A− λ0I)−1‖ < 1, then λ ∈ ρ(A) and

(6) (A− λI)−1 =
∞∑
n=0

(A− λ0)−n−1(λ− λ0)n.

Thus, if |λ − λ0| C
|λ0|α < 1, then λ ∈ ρ(A), which implies that λ = x0 + it0 is in ρ(A)

if |x0| ≤ 1
C
|t0|. This yields that x + iy ∈ ρ(T ) if x ≥ 1 − 1

C
|y|α (when y = 0 we have

x > 1).
We now prove the estimate for the resolvent for z ∈ S(α, b) when b < 1/C; put

q = bC < 1. In view of (4), we need to prove the estimate only for z ∈ S(α, b) with
Re z < 1 and |Im z| ≤ 1. Let λ = z − 1 = x + iy ∈ S(α, b) − 1 with 0 > x > −b|y|α
and |y| ≤ 1, so |x|/|y|α ≤ b = q/C. Let λ0 = iy. Then |λ− λ0| = −x, and by (5)

|λ− λ0| · ‖R(λ0, A)‖ ≤ q

C
|y|α C

|λ0|α
= q < 1.

Now |y| ≤ 1 and α ≥ 1 imply |λ|2 = x2 + y2 < (|y|2α/C2) + y2 ≤ |y|2(C2 + 1)/C2, and
by (6) and (5) we have

‖(A− λI)−1‖ ≤ ‖(A− λ0)−1‖
∞∑
n=0

qn ≤ C

|y|α(1− q)
≤ Cb
|λ|α

,

which for z = λ+ 1 yields ‖R(z, T )‖ = ‖R(λ,A)‖ ≤ Cb/|z − 1|α.

But Cb = C
1−q ·

(
C2+1
C2

)α/2
> C, so the estimate holds for every z ∈ S(α, b). �

Corollary 3.2. Let T be a normal contraction on a complex Hilbert space, and assume
that for some α ∈ (1, 2) the resolvent condition (4) holds. Then
‖T n(I − T )‖ = O(1/n1/α).
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Proof. For b > 0 small enough, Proposition 3.1 yields that σ(T ) ⊂ D(α, b). Since T

is normal, W (T ) is the convex hull of σ(T ) [4], so is also contained in D(α, b). Now
apply Theorem 2.4. �

We now show that Corllary 3.2 extends to all power-bounded operators in Hilbert
space, using the recent work of Seifert [35]. For this we need the following Lemma.

Lemma 3.3. Let T be a power-bounded operator in a complex Banach space X, and
let α ≥ 1. Then the following are equivalent:

(i) ‖R(λ, T )‖ ≤ C|λ− 1|−α for |λ| > 1.
(ii) ‖R(eiθ, T )‖ ≤ c|θ|−α for 0 < |θ| ≤ π.

Proof. As noted at the beginning of the proof of Proposition 3.1, (i) implies that
σ(T ) ∩ T ⊂ {1}. The same is implicit in (ii). If 1 /∈ σ(T ) the equivalence is obvious
by continuity of the norm ‖R(λ, T )‖ at 1, so we may assume σ(T ) ∩ T = {1}.

The first step of the proof of [35, Lemma 3.9] shows that (ii) implies (i).
Assume (ii). Let |λ| > 1 and write λ = reiθ, |θ| ≤ π. For θ 6= 0 we have by

continuity of the resolvent

‖R(eiθ, T )‖ = lim
r→1+

‖R(reiθ, T )‖ ≤ lim
r→1+

C

|reiθ − 1|α
=

C

|eiθ − 1|α
.

Since |eiθ − 1| ∼ |θ| as |θ| → 0, condition (ii) holds. �

The next two remarkable results are due to Seifert [35].

Theorem 3.4 ([35], Corollary 3.1). Let T be power-bounded on a Banach space X
with σ(T ) ∩ T = {1} and let α ≥ 1. If there exist ε > 0 and constants C1 > c1 > 0
such that c1|θ|−α ≤ ‖R(eiθ, T )‖ ≤ C1|θ|−α for 0 < |θ| < ε, then there exist constants
C > c > 0 such that

c

n1/α
≤ ‖T n(I − T )‖ ≤ C

(
log n

n

)1/α

, n ≥ 1.

Remark. Theorem 3.4 and Lemma 3.3 yield that if ‖R(λ, T )‖ ≤ C|λ − 1|−α for

|λ| > 1, then ‖T n(I−T )‖ ≤ C
(

logn
n

)1/α
, an improvement of Nevanlinna’s [30, Theorem

9], where the rate obtained, for 1 < α < 2, is only 1/n(2−α)/α.

Theorem 3.5 ([35], Theorem 3.10). Let T be power-bounded on a Hilbert space H
with σ(T ) ∩ T = {1} and let α ≥ 1. Then the following are equivalent:

(i) There exist ε > 0 and C1 > 0 such that ‖R(eiθ, T )‖ ≤ C1|θ|−α for 0 < |θ| < ε,
(ii) There exists C > 0 such that

‖T n(I − T )‖ ≤ C

n1/α
n ≥ 1.

Combining Theorem 3.5 with Lemma 3.3 we obtain

Theorem 3.6. Let T be power-bounded on a Hilbert space H with σ(T ) ∩ T = {1}
and let α ≥ 1. Then the following conditions are equivalent:

(i) There exists C > 0 such that ‖R(λ, T )‖ ≤ C|λ− 1|−α for |λ| > 1.

(ii) ‖T n(I − T )‖ = O(1/n1/α).
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Remarks. 1. The case of α = 1 in Theorem 3.6 is the known case of Ritt operators.
2. Let V f(t) :=

∫ t
0
f(s)ds be the Volterra operator on L2[0, 1] (see Example 1

below). It is known that T = I−V is power-bounded [1] with σ(T ) = {1}, and by [37]
‖T n(I−T )‖ = O(1/

√
n). Paulauskas [32] showed that sup|λ|<1 |λ− 1|2‖R(λ, T )‖ =∞

(see also [31, p. 2082]); this shows that even when 1 is isolated in the spectrum, the
resolvent estimate need not hold if we approach 1 from within the open unit disk.

4. On conditions for ‖T n(I − T )‖ = O(1/
√
n)

Dungey [11] gave several equivalent conditions for the rate ‖T n(I−T )‖ = O(1/
√
n)

when T is power-bounded on a Banach space. We look at additional conditions when
T is a contraction on a Hilbert space.

Lemma 4.1. Let δ ∈ (0, 1) and define the disk D̄δ := {z : |z− δ| ≤ 1− δ}. Then there
exists Cδ > 0 such that supz∈D̄δ |z

n(1− z)| ≤ Cδ/
√
n for n ≥ 1.

Proof. Since zn(1 − z) is continuous on D̄δ and holomorphic inside the disk, by the
maximum principle

sup
z∈D̄δ
|zn(1− z)| = sup

{|z−δ|=1−δ}
|zn(1− z)|.

Points on the circle {|z−δ| = 1−δ} are represented by zθ = δ+(1−δ)eiθ, 0 ≤ θ < 2π.
Applying Lemma 2.1 of Foguel-Weiss [13] to the numbers 1 and eiθ (note that its proof
is valid for elements of norm at most 1, and the estimate there should be K/(

√
n·α·δ)),

we obtain

|znθ (1− zθ)| = (1− δ)|znθ (1− eiθ)| ≤ (1− δ)K/(
√
nδ(1− δ)) = K/(

√
nδ).

Thus the assertion of the lemma holds with Cδ = K/δ (where K is an absolute
constant, obtained in [13]). �

Proposition 4.2. let T be a bounded operator in a Banach space for which a closed
disk D̄δ is a K-spectral set. Then ‖T n(I − T )‖ = O(1/

√
n).

Proof. By Lemma 4.1, ‖T n(I − T )‖ ≤ KD̄δCδ/
√
n for every n ≥ 1. �

Proposition 4.3. Let T be a contraction on a complex Hilbert space. Then each
condition in the list below implies the next one:

(i) There exist a contraction S and some δ ∈ (0, 1) such that T = δI + (1− δ)S.
(ii) For some δ ∈ (0, 1), the numerical range of T is contained the closed disk D̄δ.
(iii) ‖T n(I − T )‖ = O(1/

√
n).

(iv) There exist a power-bounded operator S and a number δ ∈ (0, 1) such that
T = δI + (1− δ)S.

(v) For some δ ∈ (0, 1) we have σ(T ) ⊂ D̄δ.

Proof. Assume (i). Then |〈Sf, f〉| ≤ 1 for ‖f‖ = 1, and we obtian

〈Tf, f〉 = δ + (1− δ)〈Sf, f〉 ∈ D̄δ.

Assume (ii). Then by Delyon and Delyon [8, Theorem 3], D̄δ is a K-spectral set for
T . By Proposition 4.2 we have ‖T n(I − T )‖ ≤ KD̄δCδ/

√
n for every n ≥ 1.

(iii) implies (iv) by [11, Theorem 1.2] (for any power-bounded T in a Banach space).
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If (iv) holds, then σ(T ) = {λ = δ + (1 − δ)z : z ∈ σ(S)}. Hence λ ∈ σ(T ) satisfies
|λ− δ| = |1− δ||z| ≤ 1− δ. �

Remarks. 1. (i) implies (ii) if we assume only that the numerical radius of S,
w(S) := sup{|λ| : λ ∈ W (S)}, is not more than 1 (which implies supn ‖Sn‖ ≤ 2 [36]).

2. When (iv) holds (in any Banach space), ‖|x‖| := supn≥0 ‖Snx‖ is an equivalent
norm for which ‖|S‖| ≤ 1, and then also ‖|T‖| ≤ 1; (iii) then follows from [13].

3. If (i) holds, then ‖T − δI‖ = ‖(1− δ)S‖ ≤ 1− δ implies that D̄δ is a spectral set
for T (i.e. K-spectral with KD̄δ = 1), by von-Neumann’s inequality [33, Section 154].
Conversely, if D̄δ is a spectral set for T , then ‖T −δI‖ ≤ sup{|z−δ| : z ∈ D̄δ} = 1−δ,
so (i) holds with S = (1− δ)−1(T − δI).

Corollary 4.4. Let T be a normal contraction in a complex Hilbert space. Then all
the conditions of Proposition 4.3 are equivalent.

Proof. Since T is normal, when (iv) holds the power-bounded S is also normal, hence
‖S‖ ≤ 1 and (i) holds, so all first four conditions of Proposition 4.3 are equivalent.

By normality, W (T ) is the convex hull of σ(T ) [4], so (v) is equivalent to (ii). �

Remark. Given a non-normal contraction S, the operator T := 1
2
(I + S) is a

non-normal contraction which satisfies all the conditions of Proposition 4.3.

Example 1. Some power-bounded operators obtained from the Volterra operator.
Let V f(t) :=

∫ t
0
f(s)ds be the Volterra operator on L2[0, 1]. It is known that

T = (I + V )−1 is a contraction [15, Problem 150]. Since σ(V ) = {0}, we have
σ(T ) = {1}, so T 6= I shows T is not normal. From the work of Sarason [34] it
follows that T = 1

2
(I + S) for some contraction S, so T satisfies all the conditions of

Proposition 4.3, hence the closed disk D̄1/2 is a K-spectral set for T . The fact that
‖T n(I − T )‖ = O(1/

√
n), which follows from [13], was first observed by Tsedenbayar

[37] (for I − V , which is similar to T [1]). The rate O(1/
√
n) is precise, by [27].

By the similarity of I − V and T , the closed disk D̄1/2 is a K-spectral set for
I − V (since by [20] it is enough to prove (3) for polynomials). Thus I − V is an
example of a non-contractive power-bounded operator in H satisfying the assumptions
of Proposition 4.2. Moreover, it is not difficult to deduce from the work of Foiaş and
Williams [14, Proposition 2] that all the closed disks D̄δ, 0 < δ < 1, are K-spectral
sets for I − V .

In [12, Proposition 2.5] Dungey proved (among other things) the following:

Proposition 4.5. Let µ := {ak}k∈Z be a probability distribution on Z. If µ is strictly
aperiodic, i.e. its support S := {k : ak > 0} is not contained in a translate of a
proper subgroup of Z (equivalently, S− S generates Z), then the convolution powers of
µ satisfy supn

√
n‖µn − µn+1‖L1(Z) <∞.

Corollary 4.6. Let µ := {ak}k∈Z be a strictly aperiodic probability on Z and let S
be an invertible operator on a Banach space which is bilaterally power-bounded (i.e.
supn∈Z ‖Sn‖ = K <∞). Then T :=

∑
k∈Z akS

k satisfies ‖T n − T n+1‖ = O(1/
√
n).
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Proof. Let µn = {a(n)
k }k∈Z. Since T is a Z-representation average, we have that T n =∑

k∈Z a
(n)
k Sk and

‖T n − T n+1‖ ≤ K
∑
k∈Z

|a(n)
k − a

(n+1)
k | = K‖µn − µn+1‖L1(Z) = O(1/

√
n)

by the previous proposition. �

Remarks. 1. When µ is supported on N, the result of the corollary holds for any
S power-bounded, without requiring invertibility [12].

2. Dungey [12] showed that for certain probabilities µ supported on N with infinite
support, we have ‖T n(I − T )‖ = O(1/n).

3. Let P be a Markov operator with invariant probability. Then for µ strictly
aperiodic supported on N, some asymptotic properties of the Markov chain generated
by the operator T :=

∑∞
k=0 akP

k, called in [19] a time-sampled Markov chain, were
studied in [19].

4. If µ is strictly aperiodic and symmetric and S is unitary, then by Stein’s theorem
‖T n(I − T )‖ = O(1/n).

5. Let U be the unitary operator induced by a probability preserving invertible trans-
formation τ . Bellow, Jones and Rosenblatt [3] showed that if µ strictly aperiodic sat-
isfies

∑
k∈Z k

2ak <∞ and
∑

k∈Z kak = 0, then the Markov operator Q :=
∑

k∈Z akU
k

on L2 satisfies ‖Qn(I−Q)‖ = O(1/n), and deduced a.e. convergence of Qnf for every
f ∈ L2. For such a µ, a ”quenched” central limit theorem was proved in [9] for the
Markov chain generated by the above Q. A d-dimensional analogue is studied in [6].

Example 2. Convex combinations of powers of non-normal contractions
Let µ := {ak}k∈Z be a strictly aperiodic probability distribution on Z. Let S be a
contraction on H, and define

T =
∑
k≥0

akS
k +

∑
k<0

akS
∗|k|.

Note that if S is not normal, then T is not normal. Let U be the unitary dilation
of S, defined on a larger Hilbert space H1 of which H is a subspace with orthogonal
projection P from H1 onto H, and define

Q =
∑
k≥0

akU
k +

∑
k<0

akU
∗|k| =

∑
k∈Z

akU
k.

Then Q is a normal operator (on H1), and by Proposition 4.6 ‖Qn(I−Q)‖ = O(1/
√
n).

By Corollary 4.4, there exists a contraction R on H1 such that Q = δI + (1 − δ)R
for some δ ∈ (0, 1). Then for x ∈ H we have Tx = PQx = δx + (1 − δ)PRx.
Since R0 := (PR)|H is a contraction on H, we obtain that T = δI + (1 − δ)R0, so
the contraction T satisfies condition (i) (and therefore all the other conditions) of
Proposition 4.3. Note that if µ is symmetric, or satisfies the conditions of [3], then
‖T n(I − T )‖ = O(1/n).

Remarks. 1. If in the previous example 0 < a0 < 1, then condition (i) of Proposi-
tion 4.3 holds without requiring the strict aperiodicity.

2. If µ in the example is supported on N, then T :=
∑

k≥0 akS
k satisfies all the

conditions of Proposition 4.3.
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5. A pointwise convergence theorem for some L2 operators

Let T be a power-bounded operator on Lp(Ω,Σ, µ) of a σ-finite measure space,

1 < p < ∞. For γ > 1/p, the convergence of
∑∞

n=1
‖Tnf‖p
nγp

and Beppo Levi’s theorem

yield that Tnf
nγ
→ 0 a.e., for every f ∈ Lp(µ). In fact, there is also a maximal inequality

[2, Proposition I(iii)].
If T is a Markov operator induced by a transition probability P (x,A) with invariant

measure µ, then it induces a contraction on all the Lp(µ) spaces. The pointwise ergodic
theorem for L1 functions and the inequality |T nf |p ≤ T n(|f |p), which holds a.e., yield

that |T
nf |

n1/p → 0 a.e. for every f ∈ Lp(µ). A similar result holds if T is a Dunford-
Schwartz operator (a contraction of L1 and L∞), by applying Lemma 7.4 of [18, p.
65] to the linear modulus of T . Example 4 below shows that in general, a positive

contraction T on Lp may have some f ∈ Lp with lim sup Tn|f |
n1/p =∞ a.e.

In this section we look at conditions on a power-bounded T on L2(µ) which will
yield, for an appropriate γ ∈ [0, 1

2
], the a.e. convergence Tnf

nγ
→ 0 for every f ∈ L2(µ).

Lemma 5.1. Let 1 < p < ∞, and let T be a power-bounded operator on Lp(Ω,Σ, µ)
which satisfies supn n

β‖T n(I − T )‖ < ∞ for some β > 1/p. Then T nf → 0 a.e. for
every f ∈ (I − T )Lp(µ).

Proof.
∑∞

n=1 ‖T n(I − T )g‖p <∞, so
∑∞

n=1 |T n(I − T )g|p <∞ a.e. �

Lemma 5.2. let D(α, b) be a quasi-Stolz region, with 1 ≤ α ≤ 2, b > 0 when α < 2

and b > 1
2

when α = 2. Then sup16=z∈D(α,b)
|1−z|2

(1−|z|2)2/α
<∞.

Proof. By the construction of quasi-Stolz domains, 1 is the only unimodular point in

D̄(α, b), so |1−z|2
(1−|z|2)2/α

is bounded on D(α, b) ∩ {<e z ≤ 0}, and boundedness depends

on the behaviour near 1. Take a point z = x + iy ∈ D(α, b), and put u = u(z) =
x + i(1−x

b
)1/α, which is a point on the upper half of the quasi-parabola x = 1− b|y|α.

It is clear that |1− z| ≤ |1− u| and |u| ≥ |z|, so

|1− z|2

(1− |z|2)2/α
≤ |1− u|2

(1− |u|2)2/α
=

(1− x)2 + (1−x
b

)2/α

(1− x2 − (1−x
b

)2/α)2/α
.

After dividing by (1− x)2/α and letting x ↑ 1, we conclude that the limit is 1/b2/α

22/α
for

1 < α < 2, the limit is b2+1
4b2

for α = 1, and the limit is 1
2b−1

in the case α = 2 (in which

b > 1/2). Thus in all cases |1− z|2/(1− |z|2)2/α is bounded near 1. �

The proof of our Theorem 5.4 below is inspired by a method of E. Stein (see [3]),
and will require the following lemma.

Lemma 5.3. Let 0 ≤ β ≤ 1. Then there exists C > 0 such that
∑∞

n=1 n
βtn ≤ C

(1−t)β+1

for all 0 ≤ t < 1.

Proof. From the theory of hypergeometric functions we have the representation (see
formula (1.9) in [38, p. 76]) 1

(1−t)β+1 =
∑∞

n=0

(
n+β
n

)
tn, with the following estimate for

the coefficients (see formula (1.18) in [38, p. 77]):

(7)

(
n+ β

n

)
=

nβ

Γ(β + 1)

[
1 +O(

1

n
)
]
.
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We then write

(8)
1

Γ(β + 1)

∞∑
n=0

nβtn =
∞∑
n=0

[
nβ

Γ(β + 1)
−
(
n+ β

n

)]
tn +

∞∑
n=0

(
n+ β

n

)
tn.

Using (7) we estimate the first series on the right hand side of (8):
∞∑
n=1

∣∣∣∣ nβ

Γ(β + 1)
−
(
n+ β

n

)∣∣∣∣tn ≤ C

∞∑
n=1

1

n1−β t
n ≤ C

1− t
≤ C

(1− t)1+β
,

which together with the last series in (8) yields the assertion. �

Theorem 5.4. Let D(α, b) be a quasi-Stolz region, with 1 < α ≤ 2 and b > 0 (b ≥ 1/2
for α = 2). If D̄(α, b) is a K-spectral set for a power-bounded operator T on L2(µ),
in particular (by [8]) if the numerical range of T is included in D̄(α, b), then for every
f ∈ L2(µ) we have

(i) ‖ supn
|Tnf |
n1−1/α‖2 <∞.

(ii) Tnf
n1−1/α → 0 a.e.

Proof. By Proposition 2.3 we have supn n
1/α‖T n(I−T )‖ <∞, so when α < 2 Lemma

5.1 yields that T nf converges a.e. for f in the dense subspace {Tg = g}+ (I − T )L2,
hence Tnf

n1−1/α → 0 a.e. for f in a dense subspace. When α = 2, for every ε > 0 we

obtain Tn(I−T )g
nε

→ 0 a.e. for every g, similarly to the proof of Lemma 5.1.

Hence we always have Tnf
n1−1/α → 0 a.e. for f in a dense subspace, so (ii) for every

f ∈ L2 follows from (i) by the Banach principle.

It is well-known (and easy to check) that

T n =
1

n

n−1∑
k=0

T k +
1

n

n∑
k=1

k(T k − T k−1).

Hence for every f ∈ L2(µ) we have∥∥∥ sup
n

|T nf |
n1−1/α

∥∥∥
2
≤

(9)
∥∥ sup

n

1

n2−1/α

∣∣ n∑
k=0

T kf
∣∣ ∥∥

2
+
∥∥ sup

n

1

n2−1/α

∣∣ n∑
k=1

k(T k − T k−1)f
∣∣ ∥∥

2
.

We first deal with the second term. The Cauchy-Schwarz inequality yields

1

n2−1/α

∣∣ n∑
k=1

k(T k − T k−1)f
∣∣ ≤ 1

n2−1/α

( n∑
k=1

k
3α−2
α

) 1
2
( n∑
k=1

k
2−α
α |(T k − T k−1)f |2

) 1
2

≤ Cα
( n∑
k=1

k
2−α
α |(T k − T k−1)f |2

) 1
2 ≤ Cα

( ∞∑
k=1

k
2−α
α |(T k − T k−1)f |2

) 1
2 .

We use the fact that D̄(α, b) is K-spectral, and then apply Lemma 5.3 to obtain
n∑
k=1

k
2−α
α ‖(T k − T k−1)f‖2

2 ≤ KD(α,b) sup
z∈D(α,b)

∞∑
k=1

k
2−α
α |zk − zk−1|2 ≤
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καKD(α,b) sup
1 6=z∈D(α,b)

|1− z|2

(1− |z|2)2/α
.

Lemma 5.2 now implies
∑∞

k=1 k
2−α
α ‖(T k − T k−1)f‖2

2 < ∞, so we conclude that the
second term of (9) is finite.

Since 1 < α ≤ 2, the series
∑∞

n=1
‖Tnf‖2
n2− 1

α
converges, and the finiteness of the first

term in (9) follows from the modified Kronecker’s lemma in the claim below.

Claim: If {bn} is positive increasing and {fk} ⊂ L2 such that
∑∞

n=1
‖fn‖2
bn

converges,

then ‖ supn
1
bn

∑n
k=1 fk‖2 <∞.

Proof. We may and do assume that fk ≥ 0 for every k. Put S0 = 0 and Sn =
∑n

k=1
fk
bk

,

so bk(Sk − Sk−1) = fk. Then

1

bn

n∑
k=1

fk =
1

bn

n∑
k=1

bk(Sk − Sk−1) =
1

bn
[bnSn −

n−1∑
k=1

(bk+1 − bk)Sk].

Since Sn is increasing with ‖Sn‖2 ≤
∑∞

k=1
‖fk‖2
bk

, it converges a.e. as well as in L2-norm,

say to S, and we obtain 1
bn

∑n
k=1 fk ≤ 2S a.e., which proves the claim. �

When α = 1, the above proof shows the finiteness of the second term of (9) (this is
Stein’s argument, as in [3]). However, finiteness of the first term in (9) does not always
hold, even for contractions, unless we assume T to be a positive contraction and refer
to Akcoglu’s theorem (e.g. [18, p. 189]). We then have the following extension of [3].

Theorem 5.5. If a Stolz region D̄(1, b) is a K-spectral set for a positive contraction
T on L2(µ), in particular (by [8]) if the numerical range of T is included in D̄(1, b),
then for every f ∈ L2(µ) we have

(i) ‖ supn |T nf |‖2 <∞.
(ii) T nf → 0 a.e.

Remark. Le Merdy and Xu [24] proved that if T is a positive Ritt contraction
on Lp, 1 < p < ∞, then T has a bounded H∞(D) functional calculus for some Stolz
region D (so D is a K-spectral set for T ), and used it to prove the above theorem also
for positive contractions of Lp.

Theorem 5.6. Let δ ∈ (0, 1) and put Dδ = {z : |z− δ| < 1− δ}. If D̄δ is a K-spectral
set for a power-bounded operator T on L2(µ), in particular (by [8]) if the numerical
range of T is included in D̄δ, then for every f ∈ L2(µ) we have

(i) ‖ supn
|Tnf |
n1/2 ‖2 <∞.

(ii) Tnf
n1/2 → 0 a.e.

The proof is similar to that of Theorem 5.4 (with α = 2), except that instead of
Lemma 5.2 we use the following lemma.

Lemma 5.7. For δ ∈ (0, 1) put Dδ = {z : |z − δ| < 1− δ}. Then supz∈Dδ
|1−z|2
1−|z|2 <∞.

Proof. Since the closed disk D̄δ touches the unit circle only at 1, the boundedness
depends on the behaviour in Dδ near 1. Take z = x + iy ∈ Dδ and let u = u(z) :=
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x+ i
√

(1− δ)2 − (x− δ)2 be on the boundary of Dδ above z. Clearly |1− z| ≤ |1−u|
and |z| ≤ |u|, so

|1− z|2

1− |z|2
≤ |1− u|

2

1− |u|2
=

(1− x)2 + (1− δ)2 − (x− δ)2

1− x2 − (1− δ)2 + (x− δ)2
=

(1− x)2 + (1 + x− 2δ)(1− x)

(1− x)(1 + x)− (1 + x− 2δ)(1− x)
,

which tends to (1− δ)/δ as x ↑ 1. Thus |1− z|2/(1− |z|2) is bounded on Dδ. �

Remark. When T is a normal contraction on L2(µ), by [4] Theorems 5.4 and 5.6
apply if σ(T ) is in D̄(α, b) or in D̄δ, respectively.

Corollary 5.8. Let T be a normal contraction on L2((µ). If ‖T n(I − T )‖ = O(1/nβ)

for some 1
2
≤ β < 1, then for every f ∈ L2(µ) we have ‖ supn

|Tnf |
n1−β ‖ <∞ and Tnf

n1−β → 0
a.e.

Proof. We apply Corollary 2.7 or Corollary 4.4, and then [4], and use Theorem 5.4 or
Theorem 5.6. �

Example 3 Non-normal operators to which Theorem 5.6 applies.
Let V be the Volterra operator on L2[0, 1]. Then, as discussed in Example 1, the
operator T = (I + V )−1 is a non-normal contraction for which D̄1/2 is a K-spectral
set, and I − V , which is similar to T , is a power-bounded operator for which D̄1/2 is
a K-spectral set. Thus Theorem 5.6 applies to these operators.

Theorem 5.6 is justified since, even for positive contractions in L2, property (ii) need
not hold in general, as shown by the following example, based on ideas of Irmisch [16,
p. 37], which was suggested by Y. Derriennic.

Example 4. A positive contraction S on L2 and g ∈ L2 with lim sup Sng√
n logn

≡ ∞.

In 1964, Chacon constructed a positive contraction T on L1 for which there is some
0 ≤ f0 ∈ L1 with lim supn→∞

Tnf0
n

= ∞ a.e. (see [18, p. 151]). Mesiar [26] modified
Chacon’s construction to obtain a positive contraction T on L1 for which there is a
function 0 ≤ f0 ∈ L1 with lim supn→∞

Tnf0
n logn

=∞ a.e. We use the following notations

(as presented in [18, p. 151]): τ is an invertible non-singular transformation of (Ω, µ)
and T on L1(µ) is defined by T (dν/dµ) = d(ντ−1)/dµ for ν << µ, so T ∗h = h ◦ τ . We
then obtain, with θ = τ−1, that

(10) Tf =
d(µθ)

dµ
· (f ◦ θ), f ∈ L1(µ).

Since for any h ∈ L1(µ) we have
∫
θA
hdµ =

∫
A

(h ◦ θ)d(µθ), for ν << µ we obtain

(11)
dν

dµ
◦ θ =

d(νθ)

d(µθ)
.

This yields T 2f = d(µθ)
dµ
·
(d(µθ)

dµ
◦ θ
)
· (f ◦ θ2) = d(µθ2)

dµ
· (f ◦ θ2), and by induction

(12) T nf(x) =
d(µθn)

dµ
(x) · f(θnx), f ∈ L1(µ).
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Fix 1 < p < ∞, and define S on Lp(µ) by Sg :=
(d(µθ)

dµ

)1/p · (g ◦ θ). Then S is a

positive isometry of Lp(µ). Using (11) we obtain by induction that

(13) Sng(x) =

(
d(µθn)

dµ
(x)

)1/p

· g(θnx) g ∈ Lp(µ).

Let 0 ≤ f0 ∈ L1(µ) be the function of Mesiar’s example, with lim supn
Tnf0
n logn

=∞ a.e.,

and put g0 = f0
1/p. Then (13) and (12) yield(

Sng0

(n log n)1/p

)p
=

1

n log n

d(µθn)

dµ
· (gp0 ◦ θn) =

T nf0

n log n
,

which shows that lim supn
Sng0

(n logn)1/p
=∞ a.e. The asserted example is for p = 2.

Since T is invertible with (T−1)∗h = h ◦ θ, we obtain that d(µτ)
dµ
· d(µθ)

dµ
◦ τ = 1. Hence

S is invertible on Lp(µ), with S−1g :=
(d(µτ)

dµ

)1/p · (g ◦ τ). Thus for p = 2, S is unitary.

Remarks. 1. Note that ‖Tng‖
(n logn)1/p

→ 0 for any T power-bounded on Lp and g ∈ Lp,
which implies that there is {nk} (which depends on g) with Tnkg

(nk lognk)1/p
→ 0 a.e.

2. Assani and Mesiar [2] studied the a.e. convergence of Tnf
nγ

for power-bounded
positive operators of Lp. In their Theorem III they show that there exists a probability
preserving transformation such that for every p ≥ 1 and γ ∈ (0, 1/p) there is a function
f = fp,γ ∈ Lp such that lim supn

Tnf
nγ
≥ 1 a.s. In their Theorem V they show the

existence of a probability preserving transformation such that for p > 1 there is a

function f = fp ∈ Lp for which supn
Tn|f |
n1/p is not in Lp (though T nf/n1/p → 0 a.e.).

6. Problems

In this section we discuss some problems raised by our results.

Problem 1. Let T be a contraction on H with ‖T n(I−T )‖ = O(1/nβ), 1
2
≤ β < 1.

Is there a quasi-Stolz D(1/β, b) which is K-spectral for T?
This question deals with the converse of Proposition 2.3 for contractions in H, and is
about a weak converse to Theorem 2.4. By Proposition 2.6 σ(T ) is contained in some
quasi-Stolz region D(1/β, b), so when T is normal the answer is positive. For a Ritt
contraction (β = 1) Le Merdy [23, Theorem 8.1] proved that the answer is positive.
However, it is not known if the numerical range of a (non-normal) Ritt contraction in
H must be in a Stolz region.

Problem 2. Are all the conditions of Proposition 4.3 equivalent for every contrac-
tion T on H?
Corollary 4.4 yields a positive answer for normal contractions. Of particular interest
is the question whether ‖T n(I−T )‖ = O(1/

√
n) implies (ii) in Proposition 4.3, which

in turn yields that the disk D̄δ is a K-spectral set for T ; a positive answer will allow
the use of Theorem 5.6 for any contraction on L2(µ) which satisfies ‖T n(I − T )‖ =
O(1/

√
n). This problem is related to the case β = 1

2
of Problem 1 above.
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Problem 3. Given 1
2
< β < 1, find a strictly aperiodic µ = {ak} on Z such that

for every unitary U the operator T =
∑

k akU
k satisfies ‖T n(I − T )‖ = O(1/nβ).

Corollary 4.6 yields the rate 1/
√
n for any µ strictly aperiodic. Of course, if µ is

such that for every unitary the operator T satisfies ‖T n(I − T )‖ = O(1/n) (e.g. µ is
symmetric, or as in the results of [3] or [12]), then it has also the rate 1/nβ for every
β < 1. Thus the question is about finding µ such that ‖T n(I − T )‖ = O(1/nβ) for
every unitary and, in addition, for some unitary U the rate 1/nβ is precise.
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