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Abstract. Let {Xn} ⊂ Lp(P), 1 < p ≤ 2, q = p/(p − 1), be a se-
quence of martingale differences. We prove that the Komlós–Révész

type weighted averages
∑

n
k=1

(Xk/‖Xk‖
q
p)

∑

n
k=1

(1/‖Xk‖
q
p)

converge a.s. and in the Lp-

norm, and the limit is 0 if and only if
∑∞

n=1(1/‖Xn‖q
p) = ∞. We show

also that convergence need not hold when we deal with a centered un-
correlated sequence (whether the series

∑∞
n=1(1/‖Xn‖2

2) converges or
not). Furthermore, for 1 < p < 2 all the results of Komlós–Révész are
extended to symmetric independent p-stable random variables.

1. Introduction

Let {Xn} be a sequence of independent random variables with constant
mean m and finite variances. It was proved by Komlós and Révész [12,

Theorem 1] that the weighted averages

(1)

∑n
k=1

(

Xk/var(Xk)
)

∑n
k=1

(

1/var(Xk)
)

converge a.s. to m if and only if
∑∞

n=1

(

1/var(Xn)
)

= ∞. It was noted
there, using Cauchy’s inequality, that among all the possible weighted av-

erages of X1, · · · , Xn the above gives the minimal variance of error, and
this minimum is attained only for the weighted average (1). It was also

proved in Theorem 2 there that for any sequence of positive numbers σn

for which
∑∞

n=1(1/σ
2
n) converges there exists a sequence of centered inde-

pendent random variables {ξn} ⊂ L2(P) with ‖ξn‖2
2 = σ2

n such that no

sequence of weighted averages of {ξn}, in particular (1), converges to m
(even) in probability.

It is worth mentioning that there is another approach to the concept of
weighted averages where the weights are pre-specified independently of the
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random variables under consideration. In that case we look for conditions on
the weights such that the weighted averages a.s. converge for any sequence

of random variables in a certain class. We mention the work of Jamison,
Orey and Pruitt [10] for integrable i.i.d. random variables (extended in the

recent work of Etemadi [7] to identically distributed pairwise independent
integrable random variables). Beyond independence, we mention the work

of Azuma [1] for uniformly bounded martingale differences (see also [14] for
recent results and extended references).

In this note we define Komlós–Révész type weighted averages for mar-
tingale difference sequences, even without variances. For {Xn} ⊂ Lp(P),

1 < p ≤ 2 with dual index q = p/(p − 1), they have the form
∑n

k=1(Xk/‖Xk‖q
p)

∑n
k=1(1/‖Xk‖q

p)
.

We prove that these weighted averages converge a.s. and in the corre-
sponding norm whether the series

∑∞
n=1(1/‖Xn‖q

p) converges or diverges.

The limit is 0 if and only if
∑∞

n=1(1/‖Xn‖q
p) diverges. Then Theorem 1 of

[12] follows as a corollary. We discuss the limitation of the theory when we

replace the independent random variables by centered uncorrelated random

variables. Finally, for p < 2 and symmetric independent p-stable random
variables we obtain complete analogs of Theorem 1 and Theorem 2 of [12].

2. Komlós–Révész estimation for martingale differences

Theorem 2.1. Let {Xn} ⊂ Lp(P), 1 < p ≤ 2, be a sequence of martingale

differences with respect to the increasing sequence of σ-algebras {Fn}. Let

q = p/(p − 1) and assume that ‖Xn‖p 6= 0 for every n ≥ 1. Then the

weighted averages

(2)

∑n
k=1(Xk/‖Xk‖q

p)
∑n

k=1(1/‖Xk‖q
p)

converge a.s. and in the Lp-norm. The limit is 0 a.s. if and only if the

series
∑∞

n=1(1/‖Xn‖q
p) diverges.

Proof. We distinguish between two cases. In the first case we assume that
∑∞

n=1(1/‖Xn‖q
p) diverges. We quote the Abel–Dini result as it appears in

Hildebrandt [9].

If {dn} is a sequence of positive numbers such that
∑∞

n=1 dn diverges, then

for every α > 1, the series
∑∞

n=1

(

dn/(
∑n

k=1 dk)
α
)

converges.

Now, put Yn = Xn/
(

‖Xn‖q
p

∑n
k=1(1/‖Xk‖q

p)
)

. By our assumption and by

the Abel–Dini theorem we obtain that
∞

∑

n=1

‖Yn‖p
p =

∞
∑

n=1

1/‖Xn‖q
p

(
∑n

k=1(1/‖Xk‖q
p)

)p < ∞ .
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Using Chow’s extension [3, Corollary 5] of the Marcinkiewicz-Zygmund re-
sult for martingales, we conclude that

∑∞
n=1 Yn converges a.s. Kronecker’s

lemma then yields the a.s. convergence to 0 of (2). Using Theorem 2 of
Bahr and Esseen [2], we obtain

∥

∥

∥

l
∑

n=j

Yn

∥

∥

∥

p

p
≤ 2

l
∑

n=j

‖Yn‖p
p = 2

l
∑

n=j

1/‖Xn‖q
p

(
∑n

k=1(1/‖Xk‖q
p)

)p −→
j,l→∞

0 .

Hence
∑∞

n=1 Yn converges in the Lp-norm. Using a Banach space version of

Kronecker’s lemma (see [5]), the averages in (2) converge to (necessarily) 0
in the Lp-norm.

Assume that
∑∞

n=1(1/‖Xn‖q
p) converges. Put Zn = Xn/‖Xn‖q

p. By as-

sumption,
∑∞

n=1 ‖Zn‖p
p converges. So by Chow’s theorem the series

∑∞
n=1 Zn

converges a.s. and the averages in (2) converge a.s.

Again, using the Bahr–Esseen result,

∥

∥

∥

l
∑

k=j

Zk

∥

∥

∥

p

p
≤ 2

l
∑

k=j

‖Zk‖p
p = 2

l
∑

k=j

(1/‖Xk‖q
p).

So, the series
∑∞

n=1 Zn =
∑∞

n=1(Xn/‖Xn‖q
p) converges in the Lp-norm and

so the weighted averages (2) converge in the Lp-norm (necessarily to the

same a.s. limit). We will show that it is a non-zero limit.
Using Jensen’s inequality for conditional expectations (e.g., [6, p. 33]),

we have

E
(

∣

∣

n+1
∑

k=1

Zk

∣

∣

p∣
∣Fn

)

≥
∣

∣

∣
E

(

n+1
∑

k=1

Zk

∣

∣Fn

)
∣

∣

∣

p

=
∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣

p

.

Hence,
∥

∥

∥

n+1
∑

k=1

Zk

∥

∥

∥

p
≥

∥

∥

∥

n
∑

k=1

Zk

∥

∥

∥

p
≥ · · · ≥ ‖Z1‖p > 0.

So,

0 < ‖Z1‖p ≤ lim
n→∞

∥

∥

∥

n
∑

k=1

Zk

∥

∥

∥

p
=

∥

∥

∥

∞
∑

k=1

Zk

∥

∥

∥

p
.

Hence
∑∞

n=1 Zn is non-zero and the weighted averages (2) do not converge
to zero, neither a.s. nor in norm.

�

Corollary 2.2. Let {Xn} ⊂ Lp(P), 1 < p ≤ 2, be a sequence of independent

random variables with E[Xn] = m for every n ≥ 1. Let q = p/(p − 1) and

assume that ‖Xn − m‖p 6= 0 for every n ≥ 1. Then the weighted averages
∑n

k=1(Xk/‖Xk − m‖q
p)

∑n
k=1(1/‖Xk − m‖q

p)
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converge a.s. and in the Lp-norm. The limit is a.s. m if and only if the

series
∑∞

n=1(1/‖Xn − m‖q
p) diverges.

Proof. Apply the previous theorem to {Xn − m}. �

Remarks. 1. The above corollary extends Theorem 1 in Komlós–Révész

[12] to the case where none of the random variables has a finite variance (so
for p = 2 the averages (2) are not defined).

2. The above theorem is a generalization of Komlós–Révész beyond the
scope of independence.

3. The statistical meaning of the above corollary is the following: if
you have noisy measurements of an unknown quantity m by n independent

devices, such that the imperfection of each device is measured by the p-th
norm of its deviation (which is assumed to be known, or can be estimated in

advance for each device), then the suggested sequence of weighted averages
is a strong consistent estimator of m if the Komlós–Révész type condition

holds. For p < 2, ‖Xn − m‖p is the p-th analog of the standard deviation
of measurement by the n-th device. The Komlós–Révész type condition

means that the sequence of p-deviations should not grow too fast.

Example 1. A sequence of centered independent random variables {Xn}
which for every 1 < p ≤ 2 have weighted averages (2) that converge a.s.,

while their usual Cesàro averages fail to converge a.s.

We construct a centered independent sequence by the following law:

P(Xn = ±n) = (2n)−1 and P(Xn = 0) = 1 − n−1. Hence by construction
the series

∑∞
n=1 P(|Xn| = n) diverges and by the Borel–Cantelli lemma we

have lim supn Xn/n = 1. So, the usual Cesàro averages fail to converge a.s.
On the other hand, ‖Xn‖p = n(p−1)/p, so

∑∞
n=1(1/‖Xn‖q

p) =
∑∞

n=1(1/n)

diverges and the weighted averages (2) converge to 0 a.s.

Example 2. For every 1 < p < 2 there exits a sequence of centered

independent random variables {Xn} without variances such that the series
∑∞

n=1(1/‖Xn‖q
p) diverges.

Take a sequence {ξn} of centered i.i.d. random variables such that
‖ξ1‖p < ∞ and ‖ξ1‖2 = ∞. Put Xn = n1/qξn with q = p/(p − 1). Clearly,

the assertions of the example hold so our theorem applies, while the result
of [12] cannot be applied.

Example 3. For every 1 < p < 2 there exits a sequence of sym-

metric independent bounded random variables {Xn} such that the series
∑∞

n=1(1/‖Xn‖q
p) diverges but

∑∞
n=1(1/‖Xn‖2

2) converges.

Take a symmetric independent sequence {ξn} ⊂ Lp with infinite variances

for which
∑∞

n=1(1/‖ξn‖q
p) diverges. Since ‖ξn‖2 = ∞, for every n there

exists αn > 0 such that E[|ξn|21{|ξn|≤αn}] ≥ n2. Now, define the symmetric
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independent sequence Xn = ξn1{|ξn|≤αn}. By construction
∑∞

n=1(1/‖Xn‖2
2)

converges and since ‖Xn‖p ≤ ‖ξn‖p, the series
∑∞

n=1(1/‖Xn‖q
p) diverges.

Example 4. A sequence of symmetric independent bounded random vari-

ables {Xn} exists such that for every 1 < p < 2 the series
∑∞

n=1(1/‖Xn‖q
p)

converges but
∑∞

n=1(1/‖Xn‖2
2) diverges.

Define the independent sequence by the following rule P(Xn = ±√
n) =

1/2. So, ‖Xn‖p =
√

n and since q > 2, the sequence {Xn} satisfies the
assertions.

It is a natural question to ask whether the above theorem and its corollary

hold for other classes of random variables. Natural classes are the centered

uncorrelated or pairwise independent random variables. The extension of
Theorem 1 of [12] to the latter class was explored by Rosalsky [18]. Using

the method of N. Etemadi, he proved that if {Xn} is a sequence of pairwise
independent random variables with finite variances and a constant mean

m, then under the following three conditions

(i)
∞

∑

n=1

(

1/var(Xn)
)

= ∞,

(ii) lim
n→∞

var(Xn)
n

∑

k=1

(

1/var(Xk)
)

= ∞, (iii) sup
n

‖Xn‖1 < ∞,

the weighted averages (1) converge a.s. to m. On the other hand, we
prove that for martingale differences the weighted averages (2) converge

a.s. whether (i) above holds or not — it is only the identification of the
limit which depends on (i). We will show that for the class of uncorre-

lated random variables a.s. convergence of the weighted averages (1) may
fail, with or without the Komlós–Révész condition (i); in the following two

examples (ii) is satisfied.

Example 5. A sequence of centered uncorrelated random variables can be

constructed such that the series
∑∞

n=1(1/‖Xn‖2
2) converges and the weighted

averages (2) diverge a.s.

K. Tandori [19] proved the following result: if {|an|} is a non-increasing

sequence for which
∑∞

n=1 |an|2 log2 n diverges, then there exists a centered

uncorrelated sequence {φn} in (0, 1) for which the orthogonal series
∑∞

n=1 anφn

diverges a.s. Hence there exists a centered uncorrelated sequence {φn} for
which the orthogonal series

∑∞
n=1

(

φn/(
√

n log n)
)

diverges a.s. Now, put

Xn =
√

n log nφn. So,
∑∞

n=1(1/‖Xn‖2
2) =

∑∞
n=1

(

1/(n log2 n)
)

converges

and
∑∞

n=1(Xn/‖Xn‖2
2) =

∑∞
n=1

(

φn/(
√

n log n)
)

diverges a.s. Hence, the

weighted averages (2) fail to converge a.s.
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Example 6. A sequence of centered uncorrelated random variables exists

such that the series
∑∞

n=1(1/‖Xn‖2
2) diverges and the weighted averages (2)

diverge a.s.

L. Csernyák [4] has proved (see also [17]) the following result:
If {|an|} is a non-increasing sequence for which

∑∞
n=1 |an|2 diverges,

then there exists a centered uncorrelated sequence {φn} in (0, 1) so that

lim supn→∞ |∑n
k=1 akφk|/ log n = ∞ a.s. Hence, there exists a centered un-

correlated sequence {φn} such that lim supn→∞ |
∑n

k=1(φk/
√

k)|/log n = ∞
a.s. Now, put Xn =

√
nφn. So,

∑n
k=1(Xk/‖Xk‖2

2)
∑n

k=1(1/‖Xk‖2
2)

=

∑n
k=1(φk/

√
k)

∑n
k=1(1/k)

≈
∑n

k=1(φk/
√

k)

log n
,

and the weighted averages a.s. diverge.

Remarks. 1. Examples 5 and 6 show that even the convergence part
of Theorem 2.1 does not hold in general for centered uncorrelated random

variables. We do not know if it does for centered pairwise independent
random variables with finite variances with no additional conditions.

2. According to Tandori’s works the constructed centered uncorrelated

sequence {φn} which we refer to in Example 5 can be taken to be uni-
formly bounded. The centered uncorrelated sequence {φn} constructed by

Csernyák [4] is unbounded. The questions whether one could construct {φn}
to be real unimodular, i.e., ±1 a.s., (in either construction) are still open.

I would like to thank professor Ference Móricz for clarifying this point.
Using a result of M. Kac, affirmative answer(s) to this (these) question(s)

will imply that {Xn} in Example 5 and/or Example 6 could be taken to
be centered and pairwise independent. This would show that Theorem 2.1

can not be extended even to the pairwise independent case without the
additional assumption(s) of Rosalsky (ii) and/or (iii).

3. Symmetric p-stable independent random variables

Definition. A real random variable X is called a symmetric p-stable

random variable (r.v.) with parameter σ = σp(X) > 0 and index 0 < p < 2
if for all t ∈ R its characteristic function satisfies

E[exp(itX)] = exp(−σp|t|p/2) .

It is known that (see Feller [8, XVII, §4], and for more specific calculation
see Marcus and Pisier [16, §1]),

lim
t→∞

tpP(|X| > t) = cpσ
p

for some cp which depends only on p.
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It is also known that a p-stable random variable might not have an ab-
solute p-th moment, but according to the above property it does have an

absolute r-th moment for every r < p.
Now, if {Zn} are i.i.d. symmetric p-stable random variables, then for all

complex sequences {an}, by stability we have
n

∑

k=1

akZk
D
= Z1

(

n
∑

k=1

|ak|p
)1/p

.

Hence, for every r < p, there exists a positive constant cp,r, which depends

only on p and r such that
∥

∥

∥

n
∑

k=1

akZk

∥

∥

∥

r
= cp,r

(

n
∑

k=1

|ak|p
)1/p

.

Lemma 3.1. Let {αk} be a positive sequence with
∑n

k=1 αk = 1. If 1 <
p < ∞ and q = p/(p−1), then for every sequence of numbers {σk} we have

n
∑

k=1

αp
kσ

p
k ≥ 1/

(

n
∑

k=1

(1/σq
k)

)p−1
.

Proof. Using Hölder’s inequality we obtain

1 =
(

n
∑

k=1

αk

)p
=

(

n
∑

k=1

αk σk(1/σk)
)p ≤

(

n
∑

k=1

αp
k σp

k

)(

n
∑

k=1

(1/σq
k)

)p−1

�

From now on we always assume that 1 < p < 2.

Theorem 3.2. Let 1 < r < p < 2. Let {Zn} be symmetric p-stable in-

dependent random variables. Let q = p/(p − 1) and for every n ≥ 1 put

σn = σp(Zn). Assume that σn > 0 for every n ≥ 1. Then the weighted

averages

(3)

∑n
k=1(Zk/σ

q
k)

∑n
k=1(1/σ

q
k)

converge in the Lr-norm and a.s. The limit is a.s. 0 if and only if the series
∑∞

n=1(1/σ
q
n) diverges. Among all the weighted averages of {Z1, . . . , Zn} the

weighted average (3) has the minimal Lr-norm and this minimum is attained

only with (3).

Proof. Clearly, if X is a symmetric p-stable r.v. with parameter σ, then
X/σ is a symmetric p-stable r.v. with parameter 1. Therefore, the sequence

{Zn/σn} is a sequence of i.i.d. symmetric p-stable random variables with
common parameter 1. Hence for r < p we have

∥

∥

∥

l
∑

n=j

Zn/σ
q
n

∑n
k=1(1/σ

q
k)

∥

∥

∥

r
=

∥

∥

∥

l
∑

n=j

(1/σq−1
n )(Zn/σn)

∑n
k=1(1/σ

q
k)

∥

∥

∥

r
=
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(∗)

cp,r

(

l
∑

n=j

1/σq
n

(
∑n

k=1(1/σ
q
k)

)p

)1/p

If
∑∞

n=1(1/σ
q
n) diverges, the Abel–Dini theorem yields convergence of the

series
∑∞

n=1

[

(1/σq
n)/

(
∑n

k=1(1/σ
q
k)

)p]
. So, the right hand side of (*) tends

to zero as min(j, l) → ∞. This means that
∑∞

n=1

[

(Zn/σq
n)/

(
∑n

k=1(1/σ
q
k)

)]

converges in the Lr-norm, hence in probability. By the Lévy–Itô–Nisio
theorem (see Ledoux and Talagrand [13, Theorem 6.1]) the series converges

a.s. So, Kronecker’s lemma (also its Banach space version [5]) yields the
a.s. (Lr-norm) convergence to 0.

Now, we assume that
∑∞

n=1(1/σ
q
n) converges. Using the same idea as

above, for r < p,

∥

∥

∥

l
∑

k=j

(Zk/σ
q
k)

∥

∥

∥

r
= cp,r

(

l
∑

k=j

(1/σq
k)

)1/p

−→
j,l→∞

0 .

Therefore, the series
∑l

k=j(Zk/σ
q
k) converges in the Lr-norm. Again using

the Lévy–Itô–Nisio theorem, it converges a.s. So do the weighted averages
converge a.s. and in the Lr-norm. The equality

∥

∥

∥

n
∑

k=1

(Zk/σ
q
k)

∥

∥

∥

p

r
= cp

p,r

n
∑

k=1

(1/σq
k)

shows that the Lr-limit (hence the a.s. limit) is not zero.

Now for the last assertion, for any sequence of weights w
(n)
k such that

∑n
k=1 w

(n)
k = 1, using the Lemma above, we have,

∥

∥

∥

n
∑

k=1

w
(n)
k Zk

∥

∥

∥

p

r
=

∥

∥

∥

n
∑

k=1

(w
(n)
k σk)(Zk/σk)

∥

∥

∥

p

r
= cp

p,r

n
∑

k=1

(w
(n)
k σk)

p ≥

cp
p,r

(
∑n

k=1(1/σ
q
k)

)p−1 =
cp
p,r

∑n
k=1(1/σ

q
k)

(
∑n

k=1(1/σ
q
k)

)p =

∥

∥

∥

∑n
k=1(Zk/σ

q
k)

∥

∥

∥

p

r
(
∑n

k=1(1/σ
q
k)

)p .

Under the assumption
∑n

k=1 w
(n)
k = 1, equality in Hölder’s inequality holds

only when w
(n)
k = (1/σq

k)/
∑n

k=1(1/σ
q
k). �

Corollary 3.3. Let 1 < p < 2 and put q = p/(p−1). Let {σn} be a sequence

of positive numbers such that the series
∑∞

n=1(1/σ
q
n) converges. Then there

exists a sequence of symmetric independent p-stable random variables with

σn = σp(Zn) such that for any sequence of positive weights {w(n)
k : k ≥ 1}n≥1

with
∑n

k=1 w
(n)
k = 1, the weighted averages

∑n
k=1 w

(n)
k Zk do not converge to

zero in probability.
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Proof. Construct a sequence of symmetric independent p-stable random
variables {Zn} with parameters σk = σp(Zk), k = 1, 2, . . .. By stability we

have
n

∑

k=1

w
(n)
k Zk =

n
∑

k=1

(w
(n)
k σk)(Zk/σk)

D
= (Z1/σ1)

(

n
∑

k=1

(w
(n)
k σk)

p
)1/p

.

Put M =
∑∞

n=1(1/σ
q
n). By the lemma above, we obtain

P
(
∣

∣

n
∑

k=1

w
(n)
k Zk

∣

∣ > t
)

= P
(
∣

∣(Z1/σ1)
(

n
∑

k=1

(w
(n)
k σk)

p
)1/p∣

∣ > t
)

≥

P
(
∣

∣Z1/σ1

∣

∣M−(p−1)/p > t
)

> 0 .

�

Remarks. 1. The above corollary is the analog, for the p-stable case, of

Theorem 2 of Komlós–Révész [12].
2. The results in this section could be done for symmetric complex inde-

pendent p-stable random variables.

ACKNOWLEDGEMENTS. I would like to thank Michael Lin for

suggesting this problem and for many helpful discussions.

References

[1] Azuma, K. (1967). Weighted sums of certain dependent random variables.
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