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Decoupled Linear Estimation of Affine Geometric
Deformations and Non-Linear Intensity

Transformations of Images
Shahar Z. Kovalsky, Guy Cohen, Rami Hagege and Joseph M. Francos

Abstract—We consider the problem of registering two obser-
vations on an arbitrary object, where the two are related by
a geometric affine transformation of their coordinate systems,
and by a non-linear mapping of their intensities. More generally,
the framework is that of jointly estimating the geometric and
radiometric deformations relating two observations on the same
object. We show that the original high-dimensional, non-linear,
non-convex search problem of simultaneously recovering the
geometric and radiometric deformations can be represented by
an equivalent sequence of two linear systems. A solution of this
sequence yields an exact, explicit, and efficient solution to the
joint estimation problem.

Index Terms—Affine transformations, image registration, lin-
ear estimation, parameter estimation, domain registration, non-
linear range registration.

I. INTRODUCTION

UNDERSTANDING different appearances of an object
is an elementary problem in various fields. Since ac-

quisition conditions vary (e.g., pose, illumination, acquisition
system), the set of possible observations on a particular object
is immense; therefore, the complicated task of characterizing
and determining the relation between a pair of observations
is crucial whether one is after the differences themselves
(e.g., change detection) or whether the interest is restricted to
determining if two observations are on the same object (e.g.,
face recognition).

Image registration, and in general the problem of estimating
transformations of observed objects, has been intensively
studied for several decades [1], [2]. As evidently seen in
these comprehensive surveys, the vast majority of the study
focuses on geometric-only registration; that is, alignment of
the domain (coordinates) of images. Correspondingly, the term
“registration” is commonly associated with geometry, which
indeed is a challenging problem for itself [3]. On the other
hand, various recent studies have focused on radiometry-only
registration; that is, alignment of the range (values/intensities)
of geometrically-aligned images. This problem is much sim-
pler since images are geometrically pre-aligned, and thus
pointwise correspondence inherently exists. Thus, straightfor-
ward methods may be used to combine images captured in
different optical settings into a single image of high dynamic
range (HDR) [4].
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Nonetheless, it seems that the problem of deriving a reg-
istration procedure in the presence of combined radiometric
and geometric variations has received much less attention.
The derivation of a registration procedure in the presence of
combined radiometric and geometric variations (i.e., both do-
main and range) is crucial in many applications and especially
for change detection. In order to detect local variations in
the appearance of the object, both its global geometric and
global radiometric deformations have to be estimated; next,
local changes may be detected, for example by eliminating
the estimated global effects and inspecting the resulting dif-
ference image between the reference and the geometrically-
radiometrically aligned observation. In this case, employing
geometric registration methods without taking the radiometric
variation into account is suboptimal in the following sense:
featureless methods (area methods [2]), such as those based
on “correlation-like” [5], Fourier [6], mutual information [7]
and optical flow [8] principles, directly employ the intensity
information of the image in order to establish an estimate
of the geometric deformation; as such, these methods are
inherently sensitive to intensity variations and typically fail
in the presence of some non-negligible radiometric transfor-
mation relating the intensities of the observations. In many
cases, this limitation eventually leads to the need to restrict
the registration procedures to employ only a small fraction of
the information available in the observations by considering
salient features of various types [2], which however are less
sensitive to radiometric mismatches.

For example, in medical imaging, cross-modality geometric
registration procedures are prone to failure due to significant,
difficult-to-model, differences in pixel (voxel) intensities; this
has led researchers to the employment of various computa-
tionally demanding variational methods for performing the
registration [9]–[11]. In the geometric registration of optical
images, it is customary to evade the radiometric effects
by using “radiometry-invariant” procedures (usually feature-
based, as previously mentioned). The physical understandings
and invariancy principles of the color constancy framework
[12] have also been utilized in attempt to minimize the
effects of such radiometric variations (these, however, usually
assume linear radiometric effects) [13]. Another approach, that
relies on the principles of the aforementioned radiometry-only
registration (e.g., HDR), overcomes radiometric phenomena in
the registration of optical images (and, in fact, benefits from
it) by using special optical apparatus (spatially varying filters
attached to the camera) [14].
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The work presented in this paper is concerned with the
problem of estimating joint geometric and radiometric image
deformations. Observations of an object are assumed to simul-
taneously undergo an affine transformation of coordinates and
a non-linear mapping of the intensities.

In the geometric aspect, the case of affine transformations of
coordinates is basic and provides a “first-order” approximation
to more complex cases (such as “small” projective deforma-
tions, etc.). In the radiometric aspect, the type of global vari-
ability we consider is often referred to as intensity mapping.
It naturally appears in the important case of single-modal
registration, where non-linearities are typically introduced by
an image acquisition system as the overall non-linearity of
its various components (sensors, amplifiers, etc.). In optical
imaging, for example, such non-linearities are characterized
by the camera response function (CRF) [15]–[17]. Notably,
such non-linearities are sometimes deliberately introduced in
hardware design for various reasons [18]. It has also been
suggested that this type of global mapping may model the
intensity variations in certain medical imaging multi-modal
schemes (see “monofunctional dependence assumption” in
[9]).

As previously mentioned, the difficulties associated with
the joint geometric-radiometric estimation problem have led
to the current state where only a few attempts have been
made to solve it. The lack of point-wise correspondence (due
to the geometric transformation) and the lack of intensity-
wise alignment (due to the radiometric mapping) does not
allow for a simple direct usage of the intensity information
of the images. Seemingly, the geometric and radiometric
problems are strongly coupled and may not be answered
separately. As such, straightforward approaches for solving
this problem typically lead to a high-dimensional non-linear
non-convex optimization problem. Only a few works have
explicitly modeled joint geometric-radiometric deformations.
Indeed, among these, most evade the inherent non-linearity of
this estimation problem through linear approximation and/or
variational optimization-based approaches [9], [19]–[23].

An exception is the work of Candocia [24], based on a
previous work of Mann [25], whereby the joint registration
of images in domain as well as range is accomplished using
piecewise linear comparametric analysis; the camera’s non-
linear comparametric function [26] is approximated with a
constrained piecewise linear model; the registration model is
then expanded using a first order Taylor expansion (of the
image), resulting in a linear estimation problem. Extensions
and enhancement to this work appeared in more recent papers.
Being based on first order Taylor expansion, such solutions are
restricted by the (implicit) assumptions of small geometric de-
formations and differentiability of the images, required for the
approximation to be reasonable. Although such assumptions
may sometimes be acceptable (for example, in the mosaicing
of an image sequence shown as an example in Candocia’s work
[24]), they are restrictive in general; an attempt to employ
a Taylor based solution in the presence of a large geometric
transformation (e.g., the simple case of a 180 degrees rotation)
will certainly fail. Furthermore, even when such methods may
be employed, the solution is approximated.

In this paper we propose a method for solving the joint
estimation problem in terms of an equivalent linear estimation
problem. In contrast to many featureless estimation methods,
and in contrast with the joint registration method proposed in
[24], the method we propose is neither approximation-based
nor does it have strong assumptions on the model (e.g., differ-
entiability of the images). Also, no assumptions are made as to
the magnitude of the geometric and radiometric deformations
relating the observations. The solution we propose is explicit
and thus computationally efficient. Moreover, in the absence
of noise it is shown to be exact (not approximated), regardless
of the deformations’ magnitudes.

In section II, we rigorously formulate the problem addressed
in this paper. We then discuss the problem in the absence of
noise in section III; the underlying algebraic structure of the
problem and the notion of sample distribution are exploited in
order to decouple the problem into two estimation problems,
where each is equivalently reformulated as a linear estimation
problem. Sections V and VI conclude the work with an
example and a brief summary.

II. PROBLEM STATEMENT

Let us begin by informally stating the problem studied in
this paper. Suppose we are given a single observation h, about
a known m-dimensional signal g, of the form

h(x) = Q(g(A(x))),

where Q is invertible and A is affine. The right-hand com-
position of g with A (composition from within) can be
thought of as a spatial/time deformation (i.e., a deformation
of the domain - the coordinate system), while its left-hand
composition with Q (composition from without) can be seen
as a memoryless non-linear input/output system applied to the
signal’s amplitude. Hence, in terms of image formation, such
model physically corresponds to a simultaneous deformation
of both geometry and radiometry.

We study the problem of estimating the joint radiometric
and geometric deformations, which amounts to the estimation
of Q and A, as illustrated in Fig. 1.
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Fig. 1. Illustration of the problem description (where different non-linear
intensity mappings are associated with each of the color channels of the
image).

More formally, let A : Rm → Rm be an affine transforma-
tion of coordinates, that is,A : x 7→ Ax+c where A ∈ Rm×m

is non-singular and c ∈ Rm. A shall represent the geometric
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deformation. Let Q : R → R be an increasing invertible
function, representing the non-linear radiometric deformation.
Let us further assume that Q(0) = 0.

Denote by Bc(Rm) the space of bounded, compactly sup-
ported, Lebesgue measurable functions from Rm to R and let
g ∈ Bc(Rm).

Throughout, we shall use ◦ to denote the composition of
functions, and supp{f} shall be used to denote the support
of a function f , i.e., the closure of the set where f does not
vanish. With these notations, the problem addressed in this
paper is the following:

Given the known function g and a single measure-
ment (observation) h of the form

h(x) = [Q ◦ g ◦ A] (x), x ∈ Rm, (1)

find an estimate for the left-hand composition Q and
the affine transformation A.

Remark 1: Since Q is invertible, the recovery (estimation)
of Q or of its inverse Q−1 are equivalent. Similarly, estimating
A or A−1 are equivalent.

III. PROPOSED METHOD

In this section, we propose an algorithmic solution to the
above problem. Adopting a functional notation and omitting
the argument of the functions, the problem model becomes

h = Q ◦ g ◦ A. (2)

In the following, we show that the joint estimation problem
may be decoupled into two simpler problems in the unknown
left-hand composition Q and affine transformation A, respec-
tively.

In order to do so, let us first introduce the basic transforma-
tion studied throughout this paper. Denote by λ the Lebesgue
measure on Rm, the m-dimensional Euclidean space. We
define the sample distribution transformation T on Bc(Rm)
by

[Tg](t) =
λ{x ∈ supp{g} : g(x) ≤ t}

λ{supp{g}} , g ∈ Bc(Rm).

(3)
The sample distribution may be thought of as a continuous

“cumulative histogram” of a function. The next simple lemma
demonstrates the role of T as a “distribution” transformation
and elaborates on some of its properties with respect to certain
right- and left-hand compositions.

Lemma 1: For a given function g ∈ Bc(Rm), the following
statements hold:

(i) The function G(t) = [Tg](t) is a distribution function.
Furthermore, the support of the distribution G(t) is
bounded, in the following sense:

a) G(t) = 0 for t < infx g(x).
b) G(t) = 1 for t > supx g(x).

(ii) T is invariant under right-hand affine compositions:
T (g ◦ A) = Tg for any non-singular affine transfor-
mation A : Rm → Rm.

(iii) T (W ◦ g) = [Tg] ◦ W−1 for any strictly increasing
continuous function W : R→ R such that W (0) = 0.

Proof: Part (i) is immediate. Notice that supp{g ◦ A} =
A−1(supp{g}); this is simply since {x : g(A(x)) = 0} =
{A−1(y) : g(y) = 0}. Thus, using the properties of the
Lebesgue measure, we have

λ{supp{g ◦ A}} = λ
{A−1(supp{g})} = |A−1|λ{supp{g}},

where |A−1| denotes the determinant of the transformation

A−1. Next, let χ(−∞,t] =
{

1 , x ≤ t
0 , otherwise

. Then, T

admits the following equivalent integral form

[Tg](t) =
1

λ{supp{g}}
∫

supp{g}

[
χ(−∞,t] ◦ g

]
(x)dλ(x). (4)

Set y = A(x), thus x = A−1(y) and dλ(x) = |A−1|dλ(y).
Hence, by (4) and a change of variables, we have

[T (g ◦ A)](t) =

∫
supp{g◦A} χ(−∞,t](g(A(x)))dλ(x)

λ{supp{g ◦ A}}

=

∫
supp{g} χ(−∞,t](g(y))|A−1|dλ(y)

|A−1|λ{supp{g}} = [Tg](t)

for all t, and thus (ii) is proved. Lastly, since W is strictly in-
creasing and W (0) = 0 we have that supp{W ◦g} = supp{g}.
Hence, for all t we have

[T (W ◦ g)](t) =
λ {x ∈ supp{W ◦ g} : [W ◦ g](x) ≤ t}

λ{supp{W ◦ g}}

=
λ

{
x ∈ supp{g} : g(x) ≤ W−1(t)

}

λ{supp{g}} =
[
[Tg] ◦W−1

]
(t),

thus (iii) is proved.
In the following we show that properties (ii) and (iii)

above are the key in enabling an elegant solution to the joint
registration problem. The next two subsections present two
complementary approaches, in which either the radiometry,
Q, or the geometry, A, is first estimated.

A. Radiometry-First Approach

In this subsection, by directly employing the properties of
the transformation T , a radiometry-first estimation scheme is
derived. By simply applying T to the relation (2) and using the
above properties, we obtain the following functional relation

Th = T (Q ◦ g ◦ A) = T (Q ◦ g) = [Tg] ◦Q−1. (5)

Hence, the following corollary may be stated:

Corollary 1: Let H(t) = [Th](t) and G(t) = [Tg](t).
Then, for all t ∈ R the following relation holds

H(t) = [G ◦Q−1](t) = G(Q−1(t)). (6)

We thus conclude that the functions H and G are related by
a right-hand composition Q−1. Hence, using the transforma-
tion T we have “converted” a functional relation expressed by
a left-hand composition (i.e., “radiometric deformation”) to a
new functional relation expressed by a right-hand composition
(i.e., “geometric deformation”). In fact, equation (6) describes
a new, one-dimensional, “time-domain” registration problem.
Hence, any suitable (parametric or non-parametric) registration
method may be used to recover (estimate) Q−1.
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“Time-domain” registration problems of the type (6) have
gained substantial interest in many research fields. Considered
as key problems (for example in speech or hand-writing
recognition), many solution methods have been proposed , e.g.
[27]. As such, these methods (e.g., DTW and modified-DTW)
may be used as is, or with minimal adaptation, in order to solve
for Q−1 in the above case. However, these methods typically
lead to optimization-based techniques.

Nevertheless, based on the work presented in [28], moment-
like non-linear functionals may be utilized to produce linear
constraints on Q. Thus enabling the explicit recovery of Q−1

by solving a linear system of equations.
More specifically, suppose that Q is also continuously differ-

entiable. In this case, (6) is an estimation problem of the form
considered in [28]. However, since H and G are distribution
functions, they are not compactly supported (as functions).
Thus, further “compactification” is required in order to employ
the method proposed in [28] for the estimation of homeomor-
phic deformations of compactly supported signals.

Let ε > 0 be some arbitrarily small number and define

cε(t) =
{

t , t < 1− ε
0 , elsewhere

(7)

Next, let H̃ = cε ◦H and G̃ = cε ◦G. By left composing
cε on both sides of (6), we find that

H̃ = cε ◦H = cε ◦ (G ◦Q−1)
= (cε ◦G) ◦Q−1 = G̃ ◦Q−1. (8)

Thus, H̃ and G̃ are bounded, compactly supported, Lebesgue
measurable functions from R to itself, related by the right-hand
composition Q−1, which, by assumption, has a continuously
differentiable inverse.

Let {ei} be a countable basis of L2(supp{H̃}). Since, by
assumption Q′ is continuous, it is in L2(supp{H̃}) and can
be represented as

Q′(t) =
∑

i

biei(t). (9)

Using the estimation algorithm proposed in [28], any finite
order model of the type (9) can now be solved for the
coefficients {bi} by means of solving a system of linear
equations.

Namely, let w : R→ R be a Lebesgue measurable function
that vanishes at zero. By applying w to (8) as left composition
and integrating we obtain

∫

R
w(H̃(t))dt =

∫

R
w(G̃(Q−1(t)))dt. (10)

By the change of variables τ = Q−1(t), we have dt =
Q′(τ)dτ . Hence, using the parametrization (9), under the finite
sum assumption, we find that

∫

R
w(G̃(Q−1(t)))dt =

∫

R
w(G̃(τ))Q′(τ)dτ

=
∑

bi

∫

R
ei(τ)w(G̃(τ))dτ. (11)

Thus, for any choice of function w : R→ R, a linear constraint
in the unknown parameters {bi} may be constructed as follows

∫

R
w ◦ H̃ =

[ ∫
R e1(w ◦ G̃) · · · ∫

R eM (w ◦ G̃)
]



b1

...
bM


 ,

(12)
where M is the model order of the expansion of Q′ in (9).

Choosing w’s that produce linearly independent constraints
lets us establish a linear system of equations in the parameters
{bi}. It is possible to show that different w’s are “almost
always” linearly independent, yielding an exact solution for
Q′ in the absence of noise.

Lastly, since Q (0) = 0, Q can be easily obtained by
integration, which completes the estimation of the mapping
Q.

Based on the conclusions in [28], we conclude that if the
derivative of Q admits a finite order representation in the
form of (9), the solution for the radiometric deformation Q
is completely determined and exact.

Once the radiometric deformation Q (or equivalently its
inverse Q−1) is recovered, (2) may be rewritten as

h = (Q ◦ g)︸ ︷︷ ︸
known

◦A. (13)

Hence, the problem reduces to a strictly geometric problem,
where A may be recovered (see further discussion in section
III-B, below).

B. Geometry-First Approach

In this subsection, the properties of the transformation
T given in Lemma 1 are used to derive a geometry-first
estimation scheme. As previously shown, T converts the joint
problem (2), in the unknowns Q and A, to a “new” problem in
a single unknown, Q−1. In order to obtain a symmetric result
in A, let us define an auxiliary operator R on Bc(Rm) by

Rh = [Th] ◦ h− [Th](0).

Next, apply R to the basic relation h = Q ◦ g ◦ A given
in (2). Notice that [Th](0) is a constant function (over all of
Rm), and thus [Th](0) ◦ A = [Th](0). Hence, by employing
Lemma 1 and since Q(0) = 0 we have

Rh = [Th] ◦ h− [Th](0)
= ([Tg] ◦Q−1) ◦ (Q ◦ g ◦ A)− [Tg](Q−1(0))
= [Tg] ◦ g ◦ A − [Tg](0)
=

(
[Tg] ◦ g − [Tg](0)

) ◦ A
= [Rg] ◦ A. (14)

Thus, the following corollary may be stated:

Corollary 2: Let H(x) = [Rh](x) and G(x) = [Rg](x).
Then, for all x ∈ Rm the following relation holds

H(x) = [G ◦ A](x) = G(A(x)). (15)

Hence, R (which has been defined in terms of T ) has
converted the joint problem (2), in the unknowns Q and A, to
a “new” problem in a single unknown, A.
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We thus conclude that the functions H and G are related by
a right-hand composition A. Hence, by applying the operator
R we have eliminated the left composition Q, representing the
radiometric deformation, in the basic relation (2). Thus, equa-
tion (15) describes a new, strictly geometric, affine registration
problem. Hence, any suitable registration method may be used
to recover (estimate) A.

As mentioned in the introduction, geometric-only regis-
tration, i.e., the problem of registering signals that vary by
transformations of the domain, is a field of active research. In
particular, a vast number of methods have been proposed in
the (fundamental) case of affine geometric transformations [1],
[2]. As with the case of “time-domain” registration problems,
discussed in section III-A, each of these methods may be used,
as is or with minimal adaptation, in order to solve for A in
the above case.

Whereas the majority of the solution methods are either
approximate or optimization-based, only a few explicit linear
methods have been proposed [29], [30]. In particular, in [29]
it is shown that (15) may be reformulated as a linear system
of equations in A. The method derived in [29] resembles the
method discussed in section III-A for the parametric estimation
of homeomorphisms; for the completeness of the discussion,
its outline may be summarized as follows:

Let A(x) = Ax + c. For now, let us assume that |A| =
det(A) = k is known. Let w : R → R be a measurable
function that vanishes at zero. By applying w to (15) as a left
composition, followed by multiplication by x and integration
(as in the calculation of a first order moment) we obtain∫

Rm

xw(H(x))dx =
∫

Rm

xw(G(Ax + c))dx. (16)

Denote b = −A−1c. By the change of variables y = Ax+c,
we have x = A−1y + b and dx = |A−1|dy = k−1dy (recall
that |A| = k), yielding

∫

Rm

xw(G(Ax))dx =
∫

Rm

(A−1y + b)w(G(y))k−1dy

= k−1A−1

∫

Rm

yw(G(y))dy (17)

+ k−1b
∫

Rm

w(G(y))dy. (18)

Putting (17) in matrix form, it is clear that for any choice of
function w : R→ R a linear constraint in the unknown entries
of A−1 and b may be constructed as follows

k

∫

Rm

x(w ◦ H)
︸ ︷︷ ︸

m×1
known

=
[
A−1 b

]
︸ ︷︷ ︸
m×(m+1)

unknown

·
[ ∫

Rm x(w ◦ G)
∫
Rm (w ◦ G)

]

︸ ︷︷ ︸
(m+1)×1

known

. (19)

Choosing w’s that produce linearly independent constraints
lets us establish a linear system of equations in the entries of
A−1 and b. It is possible to show that different w’s are “almost
always” linearly independent, yielding an exact solution in the
absence of noise; in fact, as mentioned before, a method for
optimal selection of such constraints in the presence of model
mismatch (with respect to prescribed optimality criteria) is
derived in [31].

Relaxing the assumption that |A| = k is known is straight-
forward: again, by simply changing variables, it is easy to see
that for any measurable function w : R → R that vanishes at
zero we have

|A| =
∫
Rm w ◦ G∫
Rm w ◦ H . (20)

Hence, |A| = k may be calculated in advance.
Once the geometric transformationA is determined, (2) may

be rewritten as
h = Q ◦ (g ◦ A)︸ ︷︷ ︸

known

. (21)

Hence, the problem reduces to a strictly radiometric problem,
where Q may be recovered (see further discussion in section
III-C).

C. Joint Registration - Concluding Results

This short subsection concludes the results derived for
solving the problem of joint registration in the case of noiseless
measurement. In sections III-A and III-B we have presented
two complementary approaches for decoupling and recover-
ing the unknown radiometric and geometric transformations
relating the two given observations on the object. These are
summarized as follows:

Recall that the noiseless joint registration problem
is

h = Q ◦ g ◦ A,

where the unknowns are Q and A. Using the trans-
formations T and R (which is defined in terms of T )
it is possible to symmetrically decouple this problem
into two strictly geometric problems in each of the
unknowns (Corollaries 1 and 2):

[Th] = [Tg] ◦Q−1,

[Rh] = [Rg] ◦ A.

Hence, a solution to the joint problem may be obtained, by
separately solving the latter two problems for the unknowns
Q−1 and A, respectively. Accordingly, explicit parametric
solution methods for estimating Q−1 and A, have been pre-
sented. It has been also noted that once one of these new
problems is solved, the original problem may be reduced to
a radiometric- or geometric-only problem - again solvable by
the same means.

Moreover, based on the conclusions in [28], [29], [31], if
the conditions in sections III-A and III-B are satisfied, the
overall solution for both the geometric and the radiometric
deformations, Q and A, is completely determined and exact
(i.e., not approximated), regardless of the magnitudes of these
deformations.

IV. IMPLEMENTATION REMARKS

Throughout, we have considered images as functions over a
continuous domain (coordinates). Due to the inherent physical
properties of the problem, it is natural to model and solve
it in the continuous domain. Inherently, the mapping A of
Rm into itself is of a continuous nature, as is the physical
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phenomenon of geometric deformation of real-life objects it
represents. Thus, if we impose a discrete spatial model (e.g.,
x ∈ Zm), we find that, in general, the natural A to consider
is incompatible (as for “almost all” x ∈ Zm, A(x) /∈ Zm).
In practice, in order to apply the proposed methods to digital
images, we utilized an approximated discrete form of each
expression, by a straightforward replacement of the integrals
by their corresponding finite sums.

For example, in practice, the sample distribution transforma-
tion T , defined in (3), is replaced with the following discrete
approximation:

[Th](t) =
#{(i, j) : 0 < h(i, j) ≤ t}

#{(i, j) : h(i, j) > 0} . (22)

[Th](t) is then only calculated on the finite range of h (e.g.,
t = 0, 1, . . . , 255 in the common case of 8-bit images). Other
expressions are similarly discretized.

Obviously, using such discrete approximation introduces
errors and model mismatches. However, the typical high
resolution of (optical) digital imaging allows for these errors
to be reasonably small, and satisfactory estimation results are
obtained. In [32], a rigorous analysis of the errors introduced
in the estimation of the geometric deformation due to sampling
and quantization (in (12) and (19)) is given, and methods
for minimizing these errors are proposed. Since the problem
of joint geometric-radiometric estimation has been decoupled
into two strictly geometric estimation problems (section III-C),
these methods may be directly exploited to improve upon the
performance of the joint estimation algorithm proposed in this
paper.

In the computational aspect, carefully going through the
derivations in section III shows that the overall complexity of
the proposed joint geometric-radiometric estimation method is
linear in image size. This is due to the fact that the estimation
procedure is essentially comprised of pointwise operations
and summations applied to, at most, the image pixels them-
selves, and the solution of low-dimensional linear systems of
equations; other computations (such as these employed to the
sample distributions) are computationally negligible for large
images.

V. EXAMPLE

As a demonstration of the proposed method, we tested its
applicability to a controlled sequence of real optical images.
Images of a doll’s head were acquired using a computer
controlled digital camera (Canon S2IS). The acquired RGB
images were of dimensions 2592× 1944 at 8-bit per channel.
A total of over 10,000 images were collected at different
combinations of geometry (rotation angle) and radiometry
(illumination power and shutter speed). Sample images are
shown in Fig. 2 and Fig. 3.

A computer controlled motorized arm has rotated the doll’s
head in a plane approximately perpendicular to the camera’s
optical axis; rotation angles ranged from −150 to 150 de-
grees. The illumination power and camera’s shutter speed
were also controlled; illumination power ranged from 35% to
100%, and shutter speed ranged from 1/1600 to 0.6 seconds.
Changing the illumination power and shutter speed globally

Fig. 2. A sample of the experiment dataset. A total of over 10,000 images
were collected at different combinations of geometry (rotation angle) and
radiometry (illumination power and shutter speed). The chosen template image
is shown in the center.

Fig. 3. A sample pair of images taken at the same angle but at different illumi-
nation power and shutter speed settings. 78%@0.01sec. (left) 48%@0.3sec.
(right).

affect intensity levels in the acquired image, where overall
measurement non-linearities are inherently introduced by the
camera. Moreover, changing the illumination power also alters
the light’s spectrum, thus intensifying the global non-linear
effects. In practice, we separately associated a non-linear
mapping with each of the image color channels, denoted by
QR, QG and QB , respectively.

To validate our modeling assumption on the non-linear
radiometric model, we examined several pairs of images taken
at the same rotation angle, but with different illumination
power and shutter speed settings (e.g., see Fig. 3). We then
plotted the joint histogram (comparagram) of each pair (for
each color channel). The joint histogram of two images is
defined as the matrix whose (n, m) entry is the number of
pixels that simultaneously assume the value n in the first
image and m in the second one. Recall that each pair of
images is geometrically registered; hence, had there been a
non-linear function Q radiometrically relating each pair, the
joint histogram of the pair should exactly follow the graph
of Q. Conversely, if the joint histogram of such pair seems
to follow a graph (a curve) then there is (approximately) a
global non-linear intensity mapping relating the pair. Next, we
applied the method derived in section III to estimate QR, QG

and QB for each channel separately. Finally, we overlaid the
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Fig. 4. The joint histograms of the Red, Green and Blue channels of a
sample pair of images taken at different illumination power and shutter speed
settings. Joint histograms are represented by logarithmic scale graylevels. The
corresponding estimates of QR, QG and QB are overlaid as solid lines, and
are also separately depicted in the lower-right plot.

estimates on the joint histograms of each channel (see Fig. 4).
The results strongly suggest that the type of global radiometry
considered in this paper is indeed a good approximation to the
radiometric effects evident in the collected data.

Finally, we used the joint estimation method proposed in
this paper to estimate the rotation angle. First, a reference
template image has been arbitrarily selected from the dataset
(see the marked image in the center of Fig. 2). For every
image in the dataset, the radiometric functions QR, QG and
QB were estimated, and a radiometrically-registered image
was calculated (see section III-A). Finally, the affine estimation
procedure was applied, and the corresponding rotation angle
calculated.

The overall angular estimation, over the entire dataset, had
a bias of 3.2 · 10−6 degrees with a standard deviation of 1.41
degrees. Angular estimation error is shown in Fig. 5.

−15 −10 −5 0 5 10 15
0

50

100

150

200

Estimation Error [deg]

Fig. 5. Angular estimation error.

Employing the estimation procedure for image pairs that
closely match the fundamental model (1) yields negligible
estimation errors; for example, when applied to images taken
at similar angles but at different illumination conditions (see
Fig. 3). However, the majority of the dataset has shown
substantial model mismatches due to real-life phenomena
ignored by the basic model (1); among such are projective
geometry, non-uniform illumination (due to the light sources),

Fig. 6. Robustness to model mismatches - a sample case of an angular
estimation error of 2.42 degrees. Top row: a pair of images taken at different
angles and illumination conditions; Middle Row: the same pair after applying
the radiometry and geometry estimates; Bottom row: error image - primarily
due to model mismatch (e.g., projective geometry, hair).

shadows, occlusions and other un-modeled perturbations (such
as movements of the doll’s hair, easily noticeable in Fig.
2 and 6). Nevertheless, due to the linear setting of the
equivalent problems derived in the previous sections, the
overall estimation procedure has shown robustness and yielded
reasonable estimates despite the significant mismatches (for
example see Fig. 6). On the other hand, attempts to directly use
geometry estimation procedures on the original data, without
first eliminating the radiometric effect, have failed.

VI. CONCLUDING REMARKS

We have proposed a novel method for jointly estimating
the geometric and radiometric deformations relating two ob-
servations on the same object. The case of a geometric affine
transformation relating the images’ coordinate systems, and a
non-linear function relating the intensities of the two images
has been modeled.

In section III, we derived an estimation method for the
joint problem. We have shown that by using the sample
distribution transformation T , the joint estimation problem
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may be decoupled into two simpler problems in the un-
known radiometry and unknown geometry. More specifically,
we have shown that the original high-dimensional non-linear
non-convex search problem of simultaneously recovering the
geometric and radiometric deformations can be represented
by an equivalent sequence of two linear systems. In the
absence of noise, solution of this sequence yields an exact,
explicit and efficient solution to the joint estimation problem,
regardless of the deformations’ magnitudes. In a forthcoming
paper, we further elaborate on the performance of the proposed
method in the presence of model mismatches. (See [33] for a
preliminary exposition of the extended solution).

Results obtained in experiments with real images show
the applicability of the methods proposed in this paper. The
proposed linear framework of the solution was shown to lead
to an efficient method, of linear computational complexity,
which is extremely robust to model mismatches. Thus, the
proposed solution may be used as is, or in conjunction with
other techniques in case improved performance is required;
for example, estimation results may be refined by efficiently
exploiting the robustness of the proposed method in order to
initialize an optimization based estimation method. Such an
approach will considerably reduce the probability of wrong
convergence due to local minima, as well as the involved
computational load.

The principles of the proposed method, and the general
framework into which the problem of joint estimation of
geometric and radiometric deformations has been casted to,
may be further exploited to address generalizations of the
model described in this paper. These include the cases of an
elastic (non-affine) geometric deformation as well as the case
of non-invertible intensity mappings.
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