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Abstract

The general problem of defining and determining the sample distribution in the case of continuous-

parameter random fields, is addressed. Defining a distribution in the case of deterministic functions is

straightforward, based on measures of sub-level sets. However, the fields we consider are the sum of a

deterministic component (non-random multi-dimensional function) and an i.i.d. random field; an attempt

to extend the same notion to the stochastic case immediately raises some fundamental difficulties. We

show that by “uniformly sampling” such random fields the difficulties may be avoided and a sample

distribution may be compatibly defined and determined. Not surprisingly, the obtained result resembles

the known fact that the probability distribution of the sum of two independent random variables is the

convolution of their distributions. Finally, we apply the results to derive a solution to the problem of

deformation estimation of one- and multi-dimensional signals in the presence of measurement noise.

Index Terms

Continuous parameter random fields, sample distribution, law of large numbers, uniformly dis-

tributed sequences.

I. INTRODUCTION

Evaluation of the distribution function of a given function is a well known procedure when the

functions, whether deterministic or random are defined on a discrete one- or multi-dimensional
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lattice. However, there are applications and problems (see an example below) where the setting

of the physical model and of the resulting estimation algorithm involve the evaluation of the

sample distribution over some continuous domain. When the domain over which the observations

are defined is some subset of the continuous domain, R
m, many potential difficulties arise in

analyzing the properties of the sample distribution of the random process.

To clarify the notion of sample distribution considered in this paper, let us first consider the

case of non-random (i.e., deterministic) functions. Given a measurable deterministic function

g : R
m → R, it is straightforward to define its distribution in terms of measures of the sub-level

sets {x ∈ R
m : g(x) ≤ t}, t ∈ R. More specifically, let Bc(R

m) denote the space of bounded,

compactly supported, Lebesgue measurable functions from R
m to R. Let λ denote the Lebesgue

measure on the m-dimensional Euclidean space R
m. We define the transformation T on Bc(R

m)

by

[Tg](t) =
λ{x ∈ supp{g} : g(x) ≤ t}

λ{supp{g}}
, g ∈ Bc(R

m), (1)

where supp{g} denotes the support of the function g.

A. Signal Registration

As shown in the next section, the transformation T plays the role of a distribution transforma-

tion: it maps a deterministic function g ∈ Bc(R
m) to Tg, a single variable distribution function.

Tg may be thought of as the “continuous cumulative histogram” of the function g; it describes

the “relative cumulative frequency” of the range of the function g, in terms of measures of its

sub-level sets.

The interest in rigorously analyzing the properties of the operator T and of the resulting

distribution function Tg goes beyond a mere theoretical interest. In fact, the study presented in

this paper was motivated by the problem of matching (or finding the correspondence between)

two related observations on the same object, that is, the problem of transformation estimation and

its applications to signal registration. This problem, which amounts to estimating the variation

between different occurrences of a function (representing a physical entity), is an elementary

problem in signal and image processing. Its explicit, or implicit, solution is an essential part of

any registration or recognition algorithm.

In particular, we were interested in the case where observations on an object are assumed to

simultaneously undergo an affine transformation of coordinates and a non-linear mapping of the
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amplitudes. More specifically, let g : R
m → R represent a multi-dimensional signal (e.g., m = 2

in the case where the observed signals are images). Consider an observation f on g of the form

f(x) = Q(g(A(x))) = [Q ◦ g ◦ A](x),

where Q : R → R is invertible and A : R
m → R

m is an affine transformation. The right-

hand composition of g with A (composition from within) can be thought of as a spatial/time

deformation (i.e., a deformation of the coordinate system), while its left-hand composition with Q

(composition from without) can be thought of as a memoryless non-linear input/output system

applied to the amplitude of the signal. Hence, in image formation terminology, the physical

model corresponding to such model is that of a simultaneous deformation of both geometry and

radiometry. From this point of view and in the absence of noise, given two functions (signals)

g and h, the problem is then to find, if exists, a pair (Q,A) such that f(x) = Q(g(A(x))).

However, the set of possible appearances of an object is immense; for example, in images

due to variations in pose, illumination and acquisition system. Thus, the task of determining

the correspondence between two observations is extremely complicated. Unfortunately, straight-

forward approaches for solving this problem typically lead to a high-dimensional non-convex

search problem (see Section V for details). Hence, the direct approach is practically infeasible.

Nevertheless, as we show in Section II, the transformation T has two useful key features:

(i) It is invariant under right-hand affine compositions: T (g ◦ A) = Tg for any non-singular

affine transformation A : R
m → R

m; and (ii) T (Q ◦ g) = [Tg] ◦ Q−1 for any strictly increasing

continuous function Q : R → R such that Q(0) = 0. The first property implies that Tg, the

distribution of g, is invariant to any affine transformation of the domain of g (i.e., “geometry”);

whereas the second implies that the distribution of a signal Q ◦ g, obtained by a non-linear

mapping of the amplitudes of g, is nothing but the distribution of g, subject to “warping” of its

domain by Q−1.

These two properties are the key in enabling an elegant solution to the problem of jointly

estimating the deformations of both the domain and range of a function (signal), described

above. As we briefly discuss in Section V and in more detail in [1]–[3], in the absence of noise,

the original high-dimensional non-convex search problem that needs to be solved in order to

estimate the deformation can be replaced by an equivalent problem, expressed in terms of two

linear systems of equations. The solution of these systems establishes an exact solution to the
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registration problem.

B. Noisy Observations

Next, suppose that h takes the additive model form

h(x) = g(x) + η(x), x ∈ supp{g}, (2)

where g : R
m → R is a known deterministic function and {η(x) : x ∈ R

m} is a real-valued i.i.d.

random field with a known distribution function Fη.

Random fields of the type (2) commonly represent noisy signals over a continuous domain,

where one continuously measures some continuous physical quantity; the additive random com-

ponent represents the overall measurement noise, usually due to the measurement procedure.

Fields of the type (2) are not identically distributed; moreover, their probability distribution

function is location dependent, i.e., they are not, in any sense, stationary. However, one may still

expect the sample distribution of h to hold information on both the deterministic and random

components. Hence, the question of determining this sample distribution is an interesting problem

on its own.

Intuitively, since h is the sum of two independent components, one may expect that by

employing T , we can establish a law of large numbers to yield Th = Tg ∗ fη, where fη is

the probability density function of η. However, the transformation T may not be directly applied

to a field of the type (2), due to inherent measurability difficulties, to be soon discussed. That

being the case,

The question addressed in this paper is whether the “sample distribution” of a random

field of the type (2) may be defined, such that is has analogous properties to those

introduced by the transformation T .

Of course the sample distribution of h may be defined in many ways. However, we pursue

a definition that preserves the properties of T , elaborately discussed in Section II, and lets us

establish a sensible law of large numbers.

Considering similar problems in the case where the domain of the random field is discrete

(i.e., where x ∈ Z
m) is elementary: the case of random processes of the type (2) with discrete-

parameter (m = 1) is straightforward and the case of multi-dimensional random fields with
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discrete-indices (m > 1) reduces to the one-dimensional case upon selection of a total order on

Z
m.

Nevertheless, there are scenarios where, due to the inherent structure of a problem, it is

natural to discuss continuous-parameter multi-dimensional random fields (i.e., where x ∈ R
m).

An example of such scenario is the problem of signal registration, discussed above. Inherently,

the mapping A of R
m into itself is of a continuous nature, as are the physical phenomena it

represents in the various problems (e.g., time warping, geometric deformation, etc.). Thus, if we

impose a discrete model (e.g., x ∈ Z
m), we find that, in general, the natural A to consider is

incompatible (as for “almost all” x ∈ Z
m, A(x) /∈ Z

m).

However, as explained below, considering the sample distribution or, in general, laws of

large numbers in the case of continuous-parameter random fields with mutually independent

random variables raises severe measurability difficulties. Such i.i.d.-driven random fields are

not measurable in the usual sense, and thus, the notion of sample distribution, as introduced

by T , is ill-posed and has to be properly redefined. In [4](p. 78, 102), Doob mentioned that

random processes with mutually independent random variables are too irregular to discuss in

the continuous-parameter case. In a sense, sample paths of such processes are too erratic to

be measurable. Indeed, in this case, the conditions of independence and joint measurability

are incompatible with each other; in fact, the set of realizations whose corresponding sample-

functions (sample-paths) are Lebesgue measurable is a non-measurable set [5], [6]; moreover, its

inner and outer measures are zero and one, respectively. Furthermore, in [6], Judd showed that,

even if the sample-measurability problem is avoided (by a proper completion of the measure),

laws of large numbers may not hold; the set of realizations where the laws of large numbers

hold is again not measurable. Therefore, the Lebesgue measure offers no basis for a meaningful

concept of the mean or the sample-distribution of a sample function.

Questions related to a continuum of independent and identically distributed random variables

and corresponding laws of large numbers (e.g., sample-distribution) have evidently gained some

interest, especially in economic theory, where various mass economic phenomena are modeled

and studied, for example [6]–[9]. For example, in [7], a Riemann-like approach is invoked

to integrate the sample function; then, laws of large numbers are obtained by using an L2-

norm convergence criterion. In another approach, large economies are modeled by hyperfinite

processes which are measurable with respect to Loeb product spaces, and corresponding laws
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of large numbers are derived (see [8] and the reference therein).

In this paper we present an approach in which the desired continuous structure of the deter-

ministic component g is maintained while avoiding the measurability difficulties attributed to the

random component η. In Sections II-III, we redefine the sample distribution transformation by

“uniformly sampling” the random field h. This transformation establishes a strong law of large

numbers (in the stochastic case) and reduces to T in the deterministic case. The conditions on

which this transformation may be a applied to a random field of the additive model type (2) are

discussed. In Section IV we determine the sample distribution of the random field h, in terms

of the sample distribution of the deterministic component g and of the probability distribution

of the random field η. Not surprisingly, the result we obtain resembles the known fact that the

probability distribution of the sum of two independent random variables is the convolution of

their distributions. Finally, in Section V we apply the results to derive a solution to the foregoing

registration problem in the case where the observation is subject to an additive noise.

II. THE DISTRIBUTION TRANSFORMATION OF A DETERMINISTIC FUNCTION

We begin by defining the three basic transformations we shall discuss.

Let {ui}
∞
i=1 ⊆ R

m be a given sequence of points in R
m. For any function h : R

m → R let us

define the family of transformations {T {ui}
n }∞n=1 by

[

T {ui}
n h

]

(t) =
1

n
# {i = 1, ..., n : h (ui) ≤ t} , (3)

where #A denotes the cardinality of the set A. Furthermore, whenever the limit lim
n→∞

[T {ui}
n h](t)

exists for all t ∈ R, we define T {ui} by

T {ui}h = lim
n→∞

T {ui}
n h. (4)

Recall that the transformation T on Bc(R
m) has already been defined as

[Th](t) =
λ{x ∈ supp{h} : h(x) ≤ t}

λ{supp{h}}
, h ∈ Bc(R

m). (5)

Notice that it also admits the following equivalent integral form

[Th](t) =
1

λ{supp{h}}

∫

supp{h}

[

χ(−∞,t] ◦ h
]

(x)dλ(x), (6)

where χA denotes the indicator function of the set A and ◦ denotes the composition of functions.

Remark 1: While the transformation T {ui}
n is well defined for any real function, the transfor-

mation T {ui} is not necessarily defined for any selection of a sequence {ui}
∞
i=1.
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A. On the properties of the transformation T

The next simple lemma shows, as mentioned before, that the transformation T plays the role

of a distribution transformation. It also shows some of its properties with respect to certain right-

and left-hand compositions.

Lemma 1: Let h ∈ Bc(R
m) be a bounded, compactly supported, Lebesgue measurable func-

tion from R
m to R. Then,

(i) The function H(t) = [Th](t) is a distribution function. Furthermore, the support of the

distribution H(t) is bounded, in the following sense:

a. H(t) = 0 for t < inf
x
h(x).

b. H(t) = 1 for t > sup
x
h(x).

(ii) T is invariant under right-hand affine compositions: T (h ◦ A) = Th for any non-singular

affine transformation A : R
m → R

m.

(iii) T (W ◦ h) = [Th] ◦ W−1 for any strictly increasing continuous function W : R → R such

that W (0) = 0.

Proof: Part (i) is immediate. Notice that supp{h ◦ A} = A−1(supp{h}); this is simply

since {x : h(A(x)) = 0} = {A−1(y) : h(y) = 0}. Thus, using the properties of the Lebesgue

measure, we have

λ{supp{h ◦ A}} = λ
{

A−1(supp{h})
}

= |A−1|λ{supp{h}},

where |A−1| denotes the determinant of the transformation A−1. Next, set y = A(x), thus

x = A−1(y) and dλ(x) = |A−1|dλ(y). Hence, by (6), the integral form of T , and a change of

variables, we have

[T (h ◦ A)](t) =
1

λ{supp{h ◦ A}}

∫

supp{h◦A}
χ(−∞,t](h(A(x)))dλ(x)

=
1

|A−1|λ{supp{h}}

∫

supp{h}
χ(−∞,t](h(y))|A−1|dλ(y) = [Th](t)

for all t, and thus (ii) is proved. Lastly, since W is strictly increasing and W (0) = 0 we have

that supp{W ◦ h} = supp{h}. Hence, for all t we have

[T (W ◦ h)](t) =
λ {x ∈ supp{W ◦ h} : [W ◦ h](x) ≤ t}

λ{supp{W ◦ h}}

=
λ {x ∈ supp{h} : h(x) ≤ W−1(t)}

λ{supp{h}}
=

[

[Th] ◦ W−1
]

(t),
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thus (iii) is proved.

The above properties play an important role in the analysis of various applied problems, as

will be demonstrated in Section V.

B. Uniformly distributed sequences

To proceed, we introduce some basic definitions and results from the theory of uniform dis-

tribution of sequences (also known as equidistribution of sequences) [10]. For a = (a1, . . . , am)

and b = (b1, . . . , bm) in R
m, we say that a ≤ b if aj ≤ bj for all j = 1, . . . , m. Define the

m-dimensional rectangle [a,b] as the set {x : a ≤ x ≤ b}. Using the notations 0 = (0, . . . , 0)

and 1 = (1, . . . , 1), the rectangle [0, 1] is the m-dimensional unit cube.

Definition 1 ( [10]): The sequence {ui}
∞
i=1 ⊆ [0, 1] is uniformly distributed in [0, 1] with

respect to the Lebesgue measure λ (abbreviated λ-u.d.) if

lim
n→∞

1

n
# {i = 1, ..., n : ui ∈ [a,b]} = λ {[a,b]} =

n
∏

i=1

(bi − ai)

for all [a,b] ⊆ [0, 1].

That is, in simple terms, the proportion of terms falling in any sub-rectangle is proportional to

its volume.

Remark 2: Many constructive examples of λ-u.d. sequences in [0, 1] ⊆ R exist [10]. In fact,

u.d. sequences are natural in the sense that a sequence of realizations of a uniformly distributed

random variable is almost surely a λ-u.d. sequence (an immediate result of the strong law

of large numbers). A generalization of the construction of u.d. sequences to [0, 1] ⊆ R
m is

straightforward.

The following characterization of λ-u.d. sequences is given in [10]: a sequence {ui}
∞
i=1 is

λ-u.d. in [0, 1] if and only if for every Riemann integrable function h on [0, 1]

lim
n→∞

1

n

n
∑

i=1

h(ui) =
∫

[0,1]
h(x)dλ(x).

Remark 3: This characterization cannot be generalized to Lebesgue measurable functions

since, in general, the Lebesgue integral cannot be determined by the values of a function on any

countable set of points.

We would like to expand the notion of λ-u.d. sequences to non-rectangular subsets of R
m. In

order to do so, let us briefly introduce the Jordan measure through the following characterization.

Let A ⊆ R
m be a bounded set; the following are equivalent [11], [12]:
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(i) A is Jordan measurable.

(ii) χA, the indicator function of A, is Riemann integrable.

(iii) λ{∂A} = 0, that is, the boundary of A is of Lebesgue measure zero.

Whenever a set is Jordan measurable, its Jordan measure (also called Jordan content) is exactly

its Lebesgue measure. It should be noted that the Jordan measure is a weak notion of measure,

since it is simply the restriction of the Lebesgue measure to the ring of bounded Lebesgue

measurable sets having boundary of measure zero. Nevertheless, it is shown in [12] that the

Riemann integral can be defined in terms of Jordan measure in about the same way that the

Lebesgue integral is defined in terms of Lebesgue measure. Therefore, since λ-u.d. sequences

are characterized in terms of Riemann integrable functions, the natural non-rectangular subsets

of R
m to consider in this context are Jordan measurable sets.

Throughout, whenever we let U ⊆ R
m be a compact, Jordan measurable subset of R

m, we

also assume it is of a positive measure.

Definition 2: Let U ⊆ R
m be a compact, Jordan measurable subset of R

m. A sequence

{ui}
∞
i=1 ⊆ U is λ-u.d. in U if

lim
n→∞

1

n

n
∑

i=1

h(ui) =
1

λ{U}

∫

U
h(x)dλ(x)

for every Riemann integrable function h with supp{h} ⊆ U .

Remark 4: By using Definition 2, it is easy to see that the λ-u.d. property of a sequence is

preserved under non-singular affine transformations: let A be a non-singular affine transformation

of R
m; {ui}

∞
i=1 is λ-u.d. in U if and only if {A(ui)}

∞
i=1 is λ-u.d. in A(U).

Indeed, suppose {A(ui)}
∞
i=1 is λ-u.d. in A(U). Let h be a Riemann integrable function with

supp{h} ⊆ U . Obviously, (h◦A−1) is a Riemann integrable function whose support is contained

in A(U). By applying the λ-u.d. property of {A(ui)}
∞
i=1 and substituting y = A−1(x), we find

that

lim
n→∞

1

n

n
∑

i=1

h(ui) = lim
n→∞

1

n

n
∑

i=1

h(A−1(A(ui)))

=
1

λ{A(U)}

∫

A(U)
h(A−1(x))dλ(x)

=
1

|A|λ{U}

∫

U
h(y)|A|dλ(y) =

1

λ{U}

∫

U
h(y)dλ(y),

and therefore {ui}
∞
i=1 is λ-u.d. in U .
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To complete the definition of λ-u.d. sequences in non-rectangular subsets of R
m, we must

validate that such sequences exist, as the next lemma asserts.

Lemma 2: Let U ⊆ R
m be a compact, Jordan measurable subset of R

m. There exists a λ-u.d.

sequence {ui}
∞
i=1 in U .

Proof: Without loss of generality we assume that U ⊆ [0, 1]; otherwise, choose A to be a

non-singular affine transformation of R
m such that A(U) ⊆ [0, 1] and use Remark 4.

Let {ui}
∞
i=1 be a λ-u.d. sequence in [0, 1]. Define the subsequence {ik}

∞
k=1 recursively: i1 =

min{i ≥ 1 : ui ∈ U} and ik = min{i > ik−1 : ui ∈ U}, k ≥ 2. That is, {ik}
∞
k=1 is the

maximal strictly increasing subsequence such that uik ∈ U for all k. Notice that since U is of

positive measure, ik is finite for every k, and thus, {ik}
∞
k=1 is well defined. We will prove that

the subsequence {uik}
∞
k=1 is λ-u.d. in U .

Let h be a Riemann integrable function with supp{h} ⊆ U . Since supp{h} ⊆ U , we have

h(ui) = 0 for i /∈ {ik}
∞
k=1, hence

1

n

n
∑

k=1

h(uik) =
1

n

in
∑

i=1

h(ui) =
in
n

·
1

in

in
∑

i=1

h(ui) (7)

for all n. By the construction of {ik}
∞
k=1, exactly n of the first in elements of {uik}

∞
k=1 belong

to U . Hence, with χU denoting the characteristic function of U , for all n we have

n =
in
∑

i=1

χU(ui).

Notice that n ≤ in and thus n → ∞ implies in → ∞. Since U is Jordan measurable, the function

χU is Riemann integrable so that we can use the λ-u.d. property of {ui}
∞
i=1 in [0, 1] to obtain

lim
n→∞

n

in
= lim

n→∞

1

in

in
∑

i=1

χU(ui) =
∫

[0,1]
χU(x)dλ(x) = λ{U}.

Using the same property of {ui}
∞
i=1 again, we obtain

lim
n→∞

1

in

in
∑

i=1

h(ui) =
∫

[0,1]
h(x)dλ(x) =

∫

U
h(x)dλ(x).

Substituting into (7) yields

lim
n→∞

1

n

n
∑

k=1

h(uik) = lim
n→∞

in
n

·
1

in

in
∑

i=1

h(ui) =
1

λ{U}

∫

U
h(x)dλ(x). (8)

Since (8) holds for any Riemann integrable function h with supp{h} ⊆ U , the sequence {uik}
∞
k=1

is λ-u.d. in U .
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C. On the transformation T {ui}

Next, we elaborate on the relationship between the transformation T and the transformation

T {ui}, defined in (4). In order to do so, we restrict the discussion to a better behaved class of

functions.

Given a function h, define Lh(t) = {x ∈ supp{h} : h(x) ≤ t}. Denote

Rc(R
m) = {h ∈ Bc(R

m) : h is Riemann integrable and

Lh(t) is Jordan measurable for all t}.

That is, Rc(R
m) is the subset of Bc(R

m) of Riemann integrable functions that also have Jordan

measurable sub-level sets, restricted to its support.

It should be noted that the additional requirement that Lh(t) is Jordan measurable for all

t is not very strong. In [12] it is shown that given a Riemann integrable function h, for all

except at most a countable number values of t, the subsets Lh(t) are Jordan measurable. That,

in turn, implies that if Lh(t0) is not Jordan measurable for some t0 then, for arbitrarily small

ǫ > 0, the set {x ∈ supp{h} : t0 − ǫ < h(x) ≤ t0} has a boundary of a positive measure.

Hence, Riemann integrable functions that do not comply with the above requirement are, roughly

speaking, irregular.

Moreover, from an applied point of view, restricting the discussion to Rc(R
m) imposes no

significant practical limitations being “rich” enough to describe any sampled physical signal.

Lemma 3: Let U ⊆ R
m be a compact, Jordan measurable subset of R

m and {ui}
∞
i=1 be a

λ-u.d. sequence in U . For all h ∈ Rc(R
m) with supp {h} = U we have

Th = T {ui}h. (9)

If, in addition, h assumes only finitely many values, then for all t we have

λ{x ∈ U : h(x) = t}

λ{U}
= lim

n→∞

1

n
#{i = 1, . . . , n : h(ui) = t}. (10)

Proof: Since h ∈ Rc(R
m), the set Lh(t) is Jordan measurable for all t. Equivalently, the

function χ(−∞,t] ◦h is Riemann integrable on U for all t, as χ(−∞,t] ◦h = χLh(t) on U . Therefore,

the λ-u.d. property of the sequence {ui}
∞
i=1 may be applied to obtain

[Th](t) =
1

λ{U}

∫

U

[

χ(−∞,t] ◦ h
]

(x)dλ(x) = lim
n→∞

1

n

n
∑

i=1

[

χ(−∞,t] ◦ h
]

(ui)
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= lim
n→∞

1

n
# {i = 1, . . . , n : h(ui) ≤ t} =

[

T {ui}h
]

(t).

Hence, the first part of the claim is proved. Denote by {v1 < v2 < . . . < vR} the values h

assumes under the finite range assumption. Obviously, (10) holds for t /∈ {v1, v2, . . . , vR}. Using

(9), for t = vr, r = 1, . . . , R, we find that

λ {x ∈ U : h (x) = vr}

λ {U}
= [Th](vr) − [Th](

vr + vr−1

2
)

=
[

T {ui}h
]

(vr) −
[

T {ui}h
]

(
vr + vr−1

2
)

= lim
n→∞

1

n
# {i = 1, . . . , n : h (ui) = vr} ,

where v0 is arbitrarily set to be less than v1, which completes the proof.

Thus, for a proper selection of {ui}
∞
i=1, the transformation T can be calculated by means of

{T {ui}
n }∞n=1 on the well-behaved class of functions Rc(R

m).

We conclude this section with the following simple lemma:

Lemma 4: If h, h ∈ Bc(R
m) such that h ≤ h then T {ui}

n h ≤ T {ui}
n h for all n ∈ N.

Proof: Simply follows by noticing that {x : h(x) ≤ t} ⊆ {x : h(x) ≤ t}.

III. DISTRIBUTION TRANSFORMATIONS OF RANDOM FIELDS

So far, we have discussed the properties of a family of distribution transformations when ap-

plied to deterministic functions. We shall now discuss the results of applying the transformations

T {ui}
n and T {ui} to a random field.

Let {η(x) : x ∈ R
m} be a real-valued i.i.d. random field on (Ω,F , P ) with a known

probability distribution function Fη. Let {ui}
∞
i=1 be a given sequence of distinct points in R

m.

The transformation T {ui}
n can now be applied to η. Put:

F (n)(t) = [T {ui}
n η](t) =

1

n
#{i = 1, ..., n : η(ui) ≤ t}.

F (n) is known as the empirical distribution function of {η(ui)}
n

i=1. For fixed t, F (n)(t) is a

random variable (of the implicit variable ω). For a realization of the random field (i.e., fixed ω)

the function F (n)(t) is a distribution function as it is an increasing step function jumping by

1/n at each point η(ui).

In this context, the Glivenko-Cantelli theorem [13] can be rephrased to state that:

lim
n→∞

F (n)(t) = Fη(t) a.s., uniformly in t, that is, lim
n→∞

∥

∥

∥F (n) − Fη

∥

∥

∥

∞
= 0 with probability 1.
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Therefore, in terms of the transformations we have previously defined, T {ui}η = limn→∞ T {ui}
n η =

Fη with probability 1. Hence, for any sequence of distinct points {ui}
∞
i=1 ⊆ R

m the transformation

T {ui} is a strongly consistent non-parametric estimator for the probability distribution function

of the random field {η(x) : x ∈ R
m}.

We conclude this section with the following lemma:

Lemma 5: Let S be an infinite subset of {ui : i = 1, 2, . . .}. Then

lim
n→∞

# {i = 1, ..., n : ui ∈ S and η (ui) ≤ t}

# {i = 1, ..., n : ui ∈ S}
= Fη(t)

a.s., uniformly in t.

Proof: Let

F S
n (t) =

# {i = 1, ..., n : ui ∈ S and η (ui) ≤ t}

# {i = 1, ..., n : ui ∈ S}

Given the subset S, let {ik}
∞
k=1 be a strictly increasing subsequence of indices such that S =

{uik}
∞
k=1. We then have

F S
ik

(t) =
# {i = 1, ..., ik : ui ∈ S and η (ui) ≤ t}

# {i = 1, ..., ik : ui ∈ S}

=
#

{

j = 1, ..., k : η
(

uij

)

≤ t
}

k
.

Now, by the Glivenko-Cantelli theorem we conclude that limk→∞ F S
ik

(t) = Fη(t) a.s., uniformly

in t. In particular, {F S
n (t)}∞n=1 has a convergent subsequence. Furthermore, since {ik} is strictly

increasing, uik+1, uik+2, . . . , ui(k+1)−1 /∈ S. Thus, F S
n (t) is constant for n = ik, ik + 1, . . . , ik+1 − 1,

that is, F S
n (t) = F S

ik
(t) for ik ≤ n < ik+1. Since

|F S
n (t) − Fη(t)| ≤ |F S

n (t) − F S
ik

(t)| + |F S
ik

(t) − Fη(t)|

the choice ik ≤ n < ik+1 eliminates |F S
n (t) − F S

ik
(t)|, hence we have

lim
n→∞

F S
n (t) = lim

k→∞
F S

ik
(t) = Fη(t)

a.s., uniformly in t.
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IV. DISTRIBUTION TRANSFORMATION OF THE ADDITIVE MODEL

In this section, we return to discuss the problem stated in the beginning of the paper and

derive our main results. Suppose that h takes the form

h(x) = g(x) + η(x), x ∈ supp{g}, (11)

where g ∈ Rc(R
m) is a deterministic function and {η(x) : x ∈ R

m} is a real-valued i.i.d.

random field with distribution function Fη.

Let U = supp{g} and {ui}
∞
i=1 be a λ-u.d. sequence of distinct points in U (such exist,

according to Lemma 2).

Proposition 1: If g assumes only finitely many values {v1, . . . , vR}, then

[T {ui}h](t) =
R

∑

r=1

λ{x ∈ U : g(x) = vr}

λ{U}
Fη(t − vr) a.s.

Proof: By the definition of T {ui}
n

[T {ui}
n h](t) =

1

n
#{i = 1, ..., n : g(ui) + η(ui) ≤ t} (12)

for all n and all t. Since g assumes finitely many values, the right-hand side of (12) decomposes

into a finite sum:
1

n
#{i = 1, ..., n : g(ui) + η(ui) ≤ t}

=
R

∑

r=1

1

n
#{i = 1, ..., n : g(ui) = vr and η(ui) ≤ t − vr}. (13)

Without loss of generality, we may assume there exists an n0 such that the sets {i = 1, ..., n0 :

g(ui) = vr} are non-empty for r = 1, . . . , R; otherwise, the empty terms in (13) may be excluded.

Hence, for n ≥ n0, each term of the sum on the right-hand side of (13) may be written as a

product of two factors

1

n
#{i = 1, ..., n : g(ui) = vr and η(ui) ≤ t − vr} = D(r)

n · F (r)
n (t − vr),

where we denote

D(r)
n =

#{i = 1, ..., n : g(ui) = vr}

n

and

F (r)
n (t) =

#{i = 1, ..., n : g(ui) = vr and η(ui) ≤ t}

#{i = 1, ..., n : g(ui) = vr}
.
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Notice that {D(r)
n }∞n=1 is a deterministic sequence, while {F (r)

n (·)}∞n=1 is a sequence of random

processes. With these notations,

[T {ui}
n h](t) =

R
∑

r=1

D(r)
n · F (r)

n (t − vr)

Now, since the conditions of Lemma 3 are satisfied,

lim
n→∞

D(r)
n = lim

n→∞

#{i = 1, ..., n : g(ui) = vr}

n
=

λ{x ∈ U : g(x) = vr}

λ{U}

for r = 1, . . . , R. Denote the limit D(r) = limn→∞ D(r)
n . Further notice that since the discrete-

parameter random process {η(ui) : i = 1, 2, . . .} satisfies the conditions of the Glivenko-Cantelli

theorem, Lemma 5 may be used to obtain

lim
n→∞

F (r)
n (t) = Fη(t) a.s.

uniformly in t. Finally, since with probability 1 we have

∥

∥

∥D(r)
n F (r)

n − D(r)Fη

∥

∥

∥

∞
=

∥

∥

∥D(r)
n F (r)

n − D(r)F (r)
n + D(r)F (r)

n − D(r)Fη

∥

∥

∥

∞

≤
∣

∣

∣D(r)
n − D(r)

∣

∣

∣

∥

∥

∥F (r)
n

∥

∥

∥

∞
+ D(r)

∥

∥

∥F (r)
n − Fη

∥

∥

∥

∞
,

the limit limn→∞{D(r)
n · F (r)

n (t − vr)} exists almost surely for all r, and we find that

[T {ui}h](t) = lim
n→∞

[T {ui}
n h](t) =

R
∑

r=1

lim
n→∞

{D(r)
n · F (r)

n (t − vr)}

=
R

∑

r=1

λ{x ∈ U : g(x) = vr}

λ{U}
Fη(t − vr) a.s. (14)

which concludes the proof.

In the special case, where the random field {η(x) : x ∈ R
m} has an absolutely continuous

probability distribution, we have the following result:

Theorem 1: Let fη be the probability density function of the random field {η(x) : x ∈ R
m}.

Then, the limit lim
n→∞

T {ui}
n h exists, and

T {ui}h = [T {ui}g] ∗ fη a.s.

Furthermore, this equality also holds in Lp(Ω, P )-norm, 1 ≤ p < ∞.

Proof: We split the proof into two steps. First, we prove the assertion for g ∈ Rc(R
m) that

only assumes finitely many values. We then extend the result to an arbitrary g ∈ Rc(R
m). We

shall use the same notations as in the proof of Lemma 1.
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Notice that Fη can be represented as the convolution of fη with the unit step function χ[0,∞),

Fη(t) =
∫ t

−∞
fη(τ)dτ =

∫ ∞

−∞
fη(τ)χ[0,∞)(t − τ)dτ

for all t ∈ R. Substituting into (14) yields

[T {ui}h](t) =
R

∑

r=1

λ{x ∈ U : g(x) = vr}

λ{U}

∫ ∞

−∞
fη(τ)χ[0,∞)(t − vr − τ)dτ (15)

with probability 1. Since χ[0,∞)(t − vr − τ) = χ[vr ,∞)(t − τ ), we have

[T {ui}h](t) =
∫ ∞

−∞
fη(τ)

[

R
∑

r=1

λ{x ∈ U : g(x) = vr}

λ{U}
χ[vr ,∞)

]

(t − τ)dτ. (16)

Clearly,
[

R
∑

r=1

λ{x ∈ U : g(x) = vr}

λ{U}
χ[vr ,∞)

]

(t) =
∑

{vr≤t}

λ{x ∈ U : g(x) = vr}

λ{U}

=
λ{x ∈ U : g(x) ≤ t}

λ{U}
= [Tg] (t). (17)

Substituting (17) into (16), we obtain

[T {ui}h](t) =
∫ ∞

−∞
fη(τ)[Tg](t − τ)dτ = [[Tg] ∗ fη] (t) a.s. (18)

Finally, since {ui}
∞
i=1 is a λ-u.d. sequence in U , Lemma 3 implies that Tg = T {ui}g, and

therefore

[T {ui}h](t) =
(

[T {ui}g] ∗ fη

)

(t) a.s. (19)

Thus, the assertion is proved, given that g ∈ Rc(R
m) is also a simple function, that is, g only

assumes finitely many values.

Next, we extend this result to an arbitrary g ∈ Rc(R
m) by means of approximation from

below and from above.

Let gk = ⌊kg⌋ /k, k ≥ 1. It is easy to see that {gk} is a sequence of simple functions in

Rc(R
m) such that gk ≤ g and gk → g pointwise. Importantly, this also implies that

(χ(−∞,t] ◦ gk) → (χ(−∞,t] ◦ g) (20)

pointwise, for all t. This important property is simply due to the left continuity of χ(−∞,t] and

the fact that gk ≤ g.

Similarly, let g̃
k

= ⌈kg⌉ /k, k ≥ 1. Then, {g̃
k
} is a sequence of simple functions in Rc(R

m)

such that g ≤ g̃
k

and g̃
k
→ g pointwise. In this case, however, a property similar to (20) is not
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guaranteed. Namely, fix t ∈ R, x ∈ R
m, and examine [χ(−∞,t] ◦ g̃

k
](x) as k → ∞; three possible

cases arise: (i) if g(x) > t then [χ(−∞,t] ◦ g̃
k
](x) = [χ(−∞,t] ◦ g](x) = 0 for all k; (ii) if g(x) < t

then there exists some k0 ∈ N such that [χ(−∞,t] ◦ g̃
k
](x) = [χ(−∞,t] ◦ g](x) = 1 for all k > k0;

(iii) if g(x) = t then [χ(−∞,t] ◦ g̃
k
](x) ≤ [χ(−∞,t] ◦ g](x) = 1 for all k. Hence, a problem may

occur for values of t such that {x : g(x) = t} has a positive measure. This problem, however,

is simple to rectify since {x : g(x) = t} has zero measure for all except at most a countable

number values of t. Let {tk} be the values of t for which {x : g(x) = t} has a positive measure,

and define

g
k
(x) =











g(x) , g(x) = tj , j = 1, . . . , k

g̃
k
(x) , otherwise.

Clearly, {g
k
} is a sequence of simple functions in Rc(R

m) such that g ≤ g
k

and g
k
→ g

pointwise. Moreover,

(χ(−∞,t] ◦ g
k
) → (χ(−∞,t] ◦ g) a.e. (21)

for all t.

Recall that h = g + η, and similarly denote

hk = g
k

+ η, hk = gk + η.

Since g
k

and gk assume only finitely many values, (19) implies that there exist subsets

Ω
(k)
0 , Ω

(k)
0 ⊆ Ω, k = 1, 2, . . ., of measure one such that

T {ui}hk = [T {ui}g
k
] ∗ fη, on Ω

(k)
0 (22)

and

T {ui}hk = [T {ui}gk] ∗ fη, on Ω
(k)
0 . (23)

Denote

Ω0 =
⋂

k

(

Ω
(k)
0 ∩ Ω

(k)
0

)

,

so that, Ω0 is again of measure one, being a countable intersection of sets of measure one. Now,

fix ω ∈ Ω0 (i.e., fix a realization of η). Since gk ≤ g ≤ g
k
, we also have hk ≤ h ≤ hk. According

to Lemma 4, for all n ∈ N we have

T {ui}
n hk ≤ T {ui}

n h ≤ T {ui}
n hk.
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Taking n → ∞ gives, for every k,

T {ui}hk = lim
n→∞

T {ui}
n hk ≤ lim inf

n→∞
T {ui}

n h

≤ lim sup
n→∞

T {ui}
n h ≤ lim

n→∞
T {ui}

n hk = T {ui}hk. (24)

We shall show that T {ui}hk and T {ui}hk tend to the same limit as k → ∞.

Notice that, by using Lemma 3 and the integral form of T , we have

[T {ui}g](t) = [Tg](t) =
1

λ{U}

∫

U
[χ(−∞,t] ◦ g](x)dλ(x)

and

[T {ui}g
k
](t) = [Tg

k
](t) =

1

λ{U}

∫

U
[χ(−∞,t] ◦ g

k
](x)dλ(x).

Recall that {g
k
} satisfies (χ(−∞,t] ◦ g

k
) → (χ(−∞,t] ◦ g) a.e. for all t. Hence, Lebesgue’s bounded

convergence theorem may be employed to show that

lim
k→∞

[T {ui}g
k
](t) = lim

k→∞

1

λ{U}

∫

U
[χ(−∞,t] ◦ g

k
](x)dλ(x)

=
1

λ{U}

∫

U
[χ(−∞,t] ◦ g](x)dλ(x) = [T {ui}g](t)

for all t. That is, we have

lim
k→∞

T {ui}g
k

= T {ui}g.

Since [T {ui}g
k
](t− τ) · fη(τ) ≤ fη(τ) and fη is integrable, the dominated convergence theorem

may used to show that

lim
k→∞

[[T {ui}g
k
] ∗ fη](t) = lim

k→∞

∫ ∞

−∞
[T {ui}g

k
](t − τ) · fη(τ)dτ

=
∫ ∞

−∞
[T {ui}g](t− τ) · fη(τ)dτ = [[T {ui}g] ∗ fη](t)

for all t.

Lastly, we evaluate (22) as k → ∞ to conclude that

lim
k→∞

T {ui}hk = lim
k→∞

[T {ui}g
k
] ∗ fη = [T {ui}g] ∗ fη. (25)

Similar derivations show that

lim
k→∞

T {ui}hk = lim
k→∞

[T {ui}gk] ∗ fη = [T {ui}g] ∗ fη. (26)

Thus, by taking the limit k → ∞ in (24), we can conclude that the limit T {ui}h = lim
n→∞

T {ui}
n h
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exists and

[T {ui}h](t) =
(

[T {ui}g] ∗ fη

)

(t) a.s.

for all t. Moreover, notice that since both T {ui}h and [T {ui}g] ∗ fη are distribution functions

bounded by 1, we have that for all t,

∣

∣

∣[T {ui}h](t) −
(

[T {ui}g] ∗ fη

)

(t)
∣

∣

∣ ≤ 2.

Therefore, by using Lebesgue’s bounded convergence theorem, we may also conclude that

[T {ui}h](t) =
(

[T {ui}g] ∗ fη

)

(t) in Lp(Ω)-norm, 1 ≤ p < ∞,

for all t, which completes the proof.

V. A SIGNAL REGISTRATION APPLICATION

Consider the problem of matching (or finding the correspondence between) two related ob-

servations on the same object. Throughout, objects are single physical entities represented by

functions; for example, a pulse (in radar), an isolated word (in speech analysis), an isolated image

(in computer vision), etc. Thus the same fundamental problem is common to various applications,

e.g., computer vision, medical data processing, speech recognition, and many more. Different,

however, are the assumptions made on the relation between the observations.

The most fundamental case is where observations are related strictly by transformations of

the domain. In this case, an abstract noiseless signal registration problem may be formulated as

follows:

Let φ : R
m → R

m be an unknown transformation of R
m, where φ belongs to a

predetermined class. Given a known function s : R
m → R, representing a signal, and

a measurement (observation) o of the form

o(x) = s(φ(x)) = [s ◦ φ](x), x ∈ supp{s ◦ φ}, (27)

solve for the transformation φ.

While this simple formulation is common to many problems, there are significant differences

in the assumptions made on the transformation φ. For example [14]–[18]:

• Speech recognition – the function s (m = 1) represents audio and (27) is typically referred

to as “time warping”. The time warping function, φ, is typically assumed to be piecewise
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linear (with additional constraints). Roughly speaking, an object is a phoneme (word), and

solving this problem is equivalent to synchronizing two repetitions on the same phoneme

(word), spoken at different paces.

• Image registration – the function s (m = 2) represents an image. Here, φ represents a

geometric deformation of the coordinate system (rigid, affine, elastic, etc.).

• Volume registration – the function s (m = 3) represents pointwise measurements about a 3D

object (e.g., X-Ray absorption in CT scan). When modeling an elastic geometric phenomena

(e.g., heart beats), φ is assumed to be a homeomorphism (or diffeomorphism) of R
3.

This problem has gained much interest and many solutions have been proposed, separately,

in each of the research fields mentioned above. However, despite its simple formulation as a

functional equation in (27), the problem of solving for φ is known to be extremely difficult

[19]. Even the seemingly simple case, where m = 2 and φ is affine (i.e., o(x) = s(Ax +

b)), typically leads to a continuous-parameter, multi-dimensional, non-linear and non-convex

optimization problem [14]–[18], [20]–[22].

While most of the solution methods are either approximate or optimization-based, a few

explicit linear methods have been proposed [23]–[25]. Namely, the latter two show that given

that φ admits a finite order parameterization (of certain types), it is possible to construct linear

systems of equations in the unknown parameters; the linear systems are obtained by using non-

linear moment-like functionals; sufficient conditions for these linear systems to be equivalent

to the original registration problem are described and, when satisfied, the solution is explicit,

unique and exact (i.e., not approximated); the method extends for all m.

In practice, however, the measuring device is not ideal and introduces deviations from the ideal

model. These must be taken into account in order to avoid severe model mismatches (see [1]–[3],

[26] and the reference therein). We elaborate here on a special case of the general problem, where

the domain is transformed by an affine transformation of R
m; this case is basic and provides a

“first-order” approximation to more complex cases. In this case, a more practical formulation of

the (affine) domain registration problem is the following (see Fig. 1 for an illustration):

Let Q : R → R be an unknown strictly increasing continuous function that vanishes

at 0; let A : R
m → R

m be an unknown non-singular affine transformation of R
m;

and let {η(x) : x ∈ R
m} be a real-valued i.i.d. random field with a known probability

distribution function Fη. Given a known function s : R
m → R, representing a signal,
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and a single measurement (observation) o of the form

o(x) = [Q ◦ s ◦ A](x) + η(x), x ∈ supp{s ◦ A}, (28)

find an estimate for Q and A.

In this formulation, the function Q represents the overall global amplitude non-linearities in

the measuring process (typically due to the nonlinear characteristics of the source, the sensing

device itself, amplifiers, etc.); the random component η represents the overall measurement

noise, modeled as a random field with mutually independent and identically distributed random

variables. An important special case is the additive white Gaussian noise (AWGN) model, where

{η (x) : x ∈ R
m} is also assumed to be zero mean Gaussian with a known variance σ2

η .

For example, in a simplistic radar model (28) becomes o(x) = q(s(ax + b)) + η(x), where

s is the transmitted pulse signal, a and b are related to the target velocity and range (due to

the doppler effect and the propagation time), q represents the non-linearity of the receiver,

and η is the measurement noise. Alternatively, in image formation terminology, the model

(28) describes the case where the global variability associated with the observation is both

geometric and radiometric. Observations on an object are assumed to simultaneously undergo

an affine transformation of coordinates and a non-linear mapping of the intensities (e.g., due to

the camera’s CCD).

Hence, (28) is the complicated problem of jointly estimating the, seemingly strongly coupled,

left- and right-hand compositions Q and A [2], [3].

To demonstrate the usability of the distribution transformation, T , let us first consider the

 Q  

ESTIMATOR

ˆ ˆ; Q

s o

Fig. 1. Illustration of the problem description (28), where different non-linear mappings are associated with each of the color

channels of the image.
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noiseless case, that is, where (28) holds with η ≡ 0. Let us also assume that s ∈ Bc(R
m). In

this case, the transformation T may be applied to (28). Using Lemma 1 we immediately find

that

To = T (Q ◦ s ◦ A) = T (Q ◦ s) = [Ts] ◦ Q−1. (29)

Hence, T has converted the joint problem (28), in the unknowns Q and A, to a “new” problem

in a single unknown, Q−1.

In order to obtain a parallel result with respect to A, let us define an auxiliary operator R on

Bc(R
m) by

Rh = [Th] ◦ h − [Th](0).

By applying R to (28), using (29) and since Q(0) = 0 we have

[Ro] = [To] ◦ o − [To](0) = ([Ts] ◦ Q−1) ◦ (Q ◦ s ◦ A) − [Ts](Q−1(0))

= [Ts] ◦ s ◦ A − [Ts](0) = ([Ts] ◦ s − [Ts](0)) ◦ A = [Rs] ◦ A

where the before last equality holds since [Ts](0) is constant over all of R
m. Hence, R (which

has been defined in terms of T ) has converted the joint problem (28), in the unknowns Q and

A, to a “new” problem in a single unknown, A.

We conclude the results above in the following symmetric corollary:

Corollary 1: With the notations of (28) we have

To = [Ts] ◦ Q−1 (30)

and

[Ro] = [Rs] ◦ A. (31)

Thus, using the distribution transformation T we have successfully decoupled the problem

(28) into two “new” registration problems, (30) and (31). Each of these problems is exactly of

the type (27), that is, where observations are strictly related by transformations of the domain. In

particular, one may solve for the unknowns Q−1 and A by solving linear systems of equations,

as previously mentioned [24], [25].

In fact, these properties of the transformation T led to the investigation of the properties of

the transformation T in the random case. However, as mentioned in the introduction, To is not

properly defined in the case where η does not vanish in (28). We were therefore interested in
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determining whether the sample distribution of o may be defined, such that is has analogous

properties to those introduced by the transformation T .

This question is answered by Theorem 1; under the assumptions that s ∈ Rc(R
m) and that

{η(x) : x ∈ R
m} admits a probability density function fη, we may conclude the following [3]:

Corollary 2: Let {ui}
∞
i=1 and {ũi}

∞
i=1 be λ-u.d. sequences of distinct points in supp{s} and

supp{s ◦ A}, respectively, then

T {ũi}o =
(

[T {ui}s] ◦ Q−1
)

∗ fη a.s. (32)

Notice that (32) is the stochastic-case analog to (30), and indeed reduces to it as fη approaches

the Dirac delta. Hence, in order to estimate the left-hand composition Q, the original stochastic

registration problem can be replaced, with probability one, with a “new” deterministic problem.

This deterministic problem has the form of a “classic” deconvolution problem. Solution of the

deconvolution problem reduces (32) to the form (30) derived for the noise-free case. Having

estimated Q, (28) may be reformulated and solved as a registration problem of strictly the

domain (i.e., geometry). As indicated above, this problem has an explicit solution.

For practical application examples of the derived methodology for the problem of joint

radiometric-geometric image registration, we refer the interested reader to [1]–[3].
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