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Abstract. Let T be a normal contraction on a Hilbert space H . For f ∈ H

we study the one-sided ergodic Hilbert transform lim
n→∞

∑n

k=1

Tkf

k
. We prove

that weak and strong convergence are equivalent, and show that the conver-

gence is equivalent to convergence of the series
∑∞

n=1

logn‖
∑n

k=1
Tkf‖2

n3 . When

H = (I − T )H, the transform is shown to be precisely minus the infinitesimal
generator of the strongly continuous semi-group {(I − T )r}r≥0.

The equivalence of weak and strong convergence of the transform is
proved also for T an isometry or the dual of an isometry.

For a general contraction T , we obtain that convergence of the series
∑∞

n=1

〈Tnf,f〉 log n

n
implies strong convergence of

∑∞
n=1

Tnf

n
.
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1. Introduction

Let θ be a measure preserving invertible transformation of a probability space
(S,Σ,m), and let U be the unitary operator induced on L2(m). For θ ergodic,

Izumi [I] raised the question of almost everywhere (a.e.) convergence of
∑∞

k=1
Ukf
k

for all functions f ∈ L2(m) with zero integral. Halmos [H] proved that when the
probability space (S,Σ,m) is non-atomic, there is always a function f ∈ L2(m)
with zero integral for which the above series fails to converge in L2-norm. For
additional background and references see [AL].
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For T power-bounded on a Banach space X we have ‖ 1
n

∑n
k=1 T

kf‖ → 0 if

and only if f ∈ (I − T )X, and it is known that weak and strong convergence of
the averages are equivalent (e.g., [Kr, §2.1]). Hence, by Kronecker’s lemma, weak

convergence of the one-sided ergodic Hilbert transform
∑∞

k=1
Tkf
k strengthens the

strong convergence to zero of the averages.

Theorem 1.1. Let T be a power-bounded operator on a Banach space X, put Y :=
(I − T )X, and denote by S the restriction of T to Y . Then the following are
equivalent:

(i) (I − T )X is closed in X.

(ii) The series
∑∞

k=1
Sk

k converges in operator norm.

(iii) The series
∑∞

k=1
Tkf
k converges in norm for every f ∈ Y .

(iv) The series
∑∞

k=1
Tkf
k converges weakly for every f ∈ Y .

Proof. (i)=⇒(ii): It is easy to compute that we always have operator-norm con-

vergence of
∑∞

k=1
Tk

k (I−T ). By [L], condition (i) implies that (I−S) is invertible
on Y , so (ii) holds.

Clearly (ii)=⇒(iii)=⇒(iv).

By [AL, Proposition 4.1], (iv) implies that Gf := −∑∞
k=1

Tkf
k (weak con-

vergence) is a bounded operator on Y which is the infinitesimal generator of a
semi-group. Now the proof of [DL, Theorem 2.23] yields (i). �

Remarks. 1. Condition (i) implies that 1
n

∑n
k=1 T

k converges in operator
norm, even for non-reflexive spaces [L].

2. The equivalence of the first three conditions is implicit in [DL], since
(iii)=⇒(i) by [DL, Theorem 2.23].

3. The result of [H] follows from the theorem, since condition (i) is not satisfied
by unitary operators induced by aperiodic probability preserving transformations
(for which the spectrum is the whole unit circle).

Since for a contraction T in H the fixed points of T and T ∗ are the same

[RN, §144], we have (I − T )H = (I − T ∗)H , so 1
n

∑n
k=1 T

kf → 0 if and only if
1
n

∑n
k=1 T

∗kf → 0.

Proposition 1.2. Let T be a contraction in a Hilbert space H. Then
∑∞

k=1
Tkf
k

converges (weakly) if and only if
∑∞

k=1
T∗kf

k converges (weakly).

Proof. Using the unitary dilation of T , Campbell [Ca] proved that for every f ∈ H

the series
∑∞

k=1
Tkf−T∗kf

k converges in norm. �

For a power-bounded operator T on a Banach space X , Derriennic and Lin

[DL] defined the operator (I − T )α for 0 < α < 1 by the series I −∑∞
k=1 a

(α)
k T k,

where a
(α)
k > 0 with

∑∞
k=1 a

(α)
k = 1 are the coefficients of the power-series (1−t)α =

1−
∑∞

k=1 a
(α)
k tk for |t| ≤ 1. They proved that (I−T )X ⊂ (I −T )αX ⊂ (I − T )X,
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and when (I − T )X is not closed both inclusions are strict. For T mean ergodic

(e.g., X is reflexive) we have f ∈ (I − T )αX if and only if

∞
∑

k=1

T kf

k1−α
converges

strongly ([DL, Theorem 2.11]), and then
∑∞

k=1
Tkf
k converges strongly.

When (I − T )X = X we have that {(I−T )r : r ≥ 0} is a strongly continuous
one-parameter semi-group [DL, Theorem 2.22], and the domain of its infinitesimal

generator G contains all f for which
∑∞

k=1
Tkf
k converges weakly, and then the

sum of the series is −Gf [AL, Proposition 4.1].

For fixed t ∈ [−1, 1) the infinitesimal generator of (1 − t)r = er log(1−t) is

obviously log(1− t) = −∑∞
k=1

tk

k , so two natural questions arise (when (I − T )X
is not closed, but dense):

(i) If f is in the domain of G, does the series
∑∞

k=1
Tkf
k converge weakly?

(ii) If
∑∞

k=1
Tkf
k converges weakly, does it converge strongly?

We answer both questions positively for normal contractions in a (complex)
Hilbert space; for T unitary or self-adjoint this was proved in [AL].

2. Preliminaries

Lemma 2.1. Let {fk} be a sequence in a Banach space. If the series

∞
∑

k=1

fk
k

con-

verges, then for every α > 0 the series

∞
∑

k=1

fk
k1+α

converges and we have

lim
α→0+

∞
∑

k=1

fk
k1+α

=

∞
∑

k=1

fk
k
.

Proof. We put Sn =
∑n

k=1
fk
k . By Abel’s summation by parts we have

n
∑

k=1

fk
kα+1

=
Sn

nα
+

n−1
∑

k=1

Sk

[ 1

kα
− 1

(k + 1)α

]

Since Sn converges we have supn ‖Sn‖ < ∞, so the first term on the right-hand
side above tends to zero as n tends to infinity. The second term is absolutely
summable as the factor of Sk there behaves like 1/k1+α. Hence we obtain the first
assertion. In particular we obtain

∞
∑

k=1

fk
kα+1

=

∞
∑

k=1

Sk

[ 1

kα
− 1

(k + 1)α

]

(1)

It remains to prove the second assertion. We are going to define a Toeplitz
summability matrix.
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Let αj → 0+ be an arbitrary sequence and define a summability matrix (with
positive entries!) aj,k = 1

kαj − 1
(k+1)αj . Clearly, (i): limj→∞ aj,k = 0 for every k ≥ 1

and (ii):
∑∞

k=1 aj,k = 1 for every j. Put S = limn→∞ Sn.

Using (1) above we have

∥

∥

∥

∞
∑

k=1

fk
k1+αj

− S
∥

∥

∥
=

∥

∥

∥

∞
∑

k=1

aj,k(Sk − S)
∥

∥

∥
≤

∞
∑

k=1

aj,k‖Sk − S‖

Since ‖Sk − S‖ −→
k→∞

0, properties (i) and (ii) yield

lim
j→∞

∥

∥

∥

∞
∑

k=1

fk
k1+αj

− S
∥

∥

∥
= 0.

Since {αj} is arbitrary, the assertion follows. �

Corollary 2.2. Let (X,µ) be a measure space and let T be an operator on Lp(X)

(p ≥ 1). If for some f ∈ X, the series

∞
∑

k=1

T kf

k
converges a.e., then

lim
α→0+

∞
∑

k=1

T kf

k1+α
=

∞
∑

k=1

T kf

k
a.e.

Proof. For a.e. x ∈ X we put fk = [T kf ](x). Now, apply Lemma 2.1 in the normed
space C. �

Corollary 2.3. For every |z| ≤ 1, with z 6= 1, we have

lim
α→0+

∞
∑

n=1

zn

n1+α
=

∞
∑

n=1

zn

n
.

Corollary 2.4. Let T be an operator in a Banach space X and let f ∈ X. If the

series
∞
∑

k=1

T kf

k
converges, then lim

α→0+

∞
∑

k=1

T kf

k1+α
=

∞
∑

k=1

T kf

k
.

Remarks. 1. When the series

∞
∑

k=1

T kf

k
converges weakly, the proof of the

lemma still yields norm convergence of
∞
∑

k=1

T kf

k1+α
for each α > 0, but the lemma

yields only weak convergence of these series, as α→ 0+.

2. Combining Proposition 4.1 and Corollary 4.5 of [AL], we obtain the more
difficult result (not used in the sequel) that for T power-bounded, weak convergence

of the series

∞
∑

k=1

T kf

k
implies the full conclusion of Corollary 2.4.
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By considering the power series
∑∞

k=1
zk

k = − log(1 − z) for |z| < 1, we

conclude that for z = reix, with r < 1, 0 ≤ x < 2π, we have (see [Z, Ch. I, p. 2]):

∞
∑

n=1

rn cosnx

n
=

1

2
log

1

1− 2r cosx+ r2
= − log |1− z|

∞
∑

n=1

rn sinnx

n
= arctan

r sinx

1− r cosx
= − arg(1 − z).

On the other hand, since the series
∑∞

n=1 n
−1 cosnx and

∑∞
n=1 n

−1 sinnx
converge for x 6= 0 (the latter even everywhere and both converge uniformly for
ε ≤ x ≤ 2π − ε), we have continuity at r = 1− by Abel’s summability, so

∞
∑

n=1

cosnx

n
= log

1

|2 sin 1
2x|

and

∞
∑

n=1

sinnx

n
=

1

2
(π − x), (2)

for 0 < x < 2π (see [Z, Ch. I, p. 5]).

We also have (see [Z, Ch. II, p. 61] and [Z, Ch. V, p. 191], respectively)

sup
n≥1

max
0≤x≤2π

|
n
∑

k=1

sinkx

k
| <∞. (3)

and sup
n≥1

|
n
∑

k=1

cos kx

k
| ≤ log

1

x
+ C for 0 < x ≤ π

Put Sn(x) =
∑n

k=1
cos kx

k . Abel’s summation by parts (with S0 ≡ 0) yields

n
∑

k=1

rk cos kx

k
= rnSn(x) +

n−1
∑

k=1

(rk − rk+1)Sk(x) =

rnSn(x) + r(1 − r)

n−1
∑

k=1

rk−1Sk(x).

Hence for 0 ≤ r ≤ 1 and 0 < x ≤ π we have

sup
n≥1

|
n
∑

k=1

rk cos kx

k
| ≤ 2r log

1

x
+ C (4)

Similar summation by parts for
∑n

k=1
rk sin kx

k yields

sup
0≤r≤1

sup
n≥1

max
0≤x≤2π

|
n
∑

k=1

rk sin kx

k
| <∞. (5)

We also notice that for 0 ≤ r < 1 and any x we have

sup
n≥1

|
n
∑

k=1

rk cos kx

k
| ≤

∞
∑

k=1

rk

k
= − log(1− r) ,
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so we obtain by (4) that for every 0 ≤ r ≤ 1 and 0 ≤ |x| ≤ π we have

sup
n≥1

|
n
∑

k=1

rk cos kx

k
| ≤ C + 2min{log 1

|x| ,− log(1 − r)} (6)

Note that only when x = 0 and r = 1 both sides of (6) are infinite; in all other
cases they are finite.

3. The ergodic Hilbert transform for normal contractions

Let T be a normal operator on a complex Hilbert space H with resolution of the
identity E(dz). For f ∈ H denote by σf (dz) = 〈E(dz)f, f〉 the spectral measure

of T with respect to f . By the mean ergodic theorem, f ∈ (I − T )H if and only if
σf ({1}) = 0.

Theorem 3.1. Let T be a normal contraction on H and let 0 6= f ∈ H with spectral
measure σf . Put D = {z : |z| ≤ 1}. The following conditions are equivalent:

(i):

∞
∑

n=1

T nf

n
converges strongly;

(ii):

∞
∑

n=1

T nf

n
converges weakly;

(iii): sup
N

∥

∥

∥

∥

N
∑

j=1

T jf

j

∥

∥

∥

∥

<∞;

(iv):

∫

D

log2 |1− z|σf (dz) <∞ .

If either condition holds, then f ∈ (I − T )H,

〈
∞
∑

n=1

T nf

n
, g〉 = −

∫

D

log(1− z)〈E(dz)f, g〉 for every g ∈ H , and

∥

∥

∥

∞
∑

n=1

T nf

n

∥

∥

∥

2

=

∫

D

| log(1 − z)|2σf (dz).

Proof. Clearly, (i) ⇒ (ii) and by the uniform boundedness principle (ii) ⇒ (iii).

(iii) ⇒ (iv). Clearly (iii) implies that f is orthogonal to the fixed points of

T ∗, so f ∈ (I − T )H, and we have σf ({1}) = 0. Hence all integrals below with

respect to σf are in fact over D̃ = {z : |z| ≤ 1, z 6= 1}.
The spectral theorem gives us the equality

∥

∥

∥

∥

N
∑

j=1

T jf

j

∥

∥

∥

∥

2

=

∫

D̃

[

(

<
{

N
∑

j=1

zj

j

})2

+
(

=
{

N
∑

j=1

zj

j

})2
]

σf (dz).



The one-sided ergodic Hilbert transform 7

The imaginary part is uniformly bounded on the whole closed unit disk D =
{|z| ≤ 1}, so we just need to take care of the real part. By Fatou’s lemma and the
previous equality we have

∫

D̃

log2 |1− z|σf (dz) =

∫

D̃

lim inf
N→∞

(

<
{

N
∑

n=1

zn

n

})2

σf (dz) ≤ sup
N

∥

∥

∥

∥

N
∑

j=1

T jf

j

∥

∥

∥

∥

2

<∞.

(iv) ⇒ (i). The convergence of the integral yields σf ({1}) = 0. Hence all

integrals with respect to σf are actually over D̃. By the spectral theorem, we have
∥

∥

∥

∥

M
∑

j=N

T jf

j

∥

∥

∥

∥

2

=

∫

D̃

[

(

<
{

M
∑

j=N

zj

j

})2

+
(

=
{

M
∑

j=N

zj

j

})2
]

σf (dz).

We will show that limN,M→∞ ‖
∑M

j=N
T jf
j ‖ = 0.

The series
∑∞

n=1
zn

n converges at each point of D̃, so we conclude that

lim
k→∞

sup
N,M≥k

|∑M
n=N

zn

n | = 0. Furthermore, ={∑N
n=1

zn

n } is uniformly bounded on

D̃, hence sup
k≥1

sup
N,M≥k

|={
∑M

n=N
zn

n }| <∞ uniformly on D̃.

Using Lebesgue’s monotone convergence theorem (by considering sup
k≤N,M≤K

(·)

and letting K → ∞), we obtain

sup
N,M≥k

∫

D

(

=
{

M
∑

n=N

zn

n

})2

σf (dz) ≤
∫

D

sup
N,M≥k

(

=
{

M
∑

n=N

zn

n

})2

σf (dz)

Using Lebesgue’s dominated convergence theorem we conclude that

lim
k→∞

sup
N,M≥k

∫

D̃

(

=
{

M
∑

j=N

zj

j

})2

σf (dz) = 0 .

So, it only remains to check the assertion for <{∑N
n=1

zn

n }. We split D̃ into two
disjoint parts by putting

D′ = {z ∈ D̃ : | arg z| > 1} and D′′ = {z ∈ D̃ : | arg z| ≤ 1}.
Using (6) we conclude that

sup
N

max
z∈D′

∣

∣

∣
<
{

N
∑

n=1

zn

n

}

∣

∣

∣
≤ C.

Again, the same arguments and using Lebesgue’s dominated convergence theorem
we conclude that

lim
N,M→∞

∫

D′

(

<
{

M
∑

j=N

zj

j

})2

σf (dz) = 0 .
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On D′′ we have the following consideration. By (6) we have

∫

D′′

sup
N≥1

(

<
{

N
∑

n=1

zn

n

})2

σf (dz) ≤

≤ C1‖f‖2 + C2

∫

D′′

min{log2[| log(z/|z|)|], log2(1− |z|)}σf (dz) .

Now, let z = |z|eix with z ∈ D′′. Since |x| ≤ 1 and 1− |z| ≤ 1 we have,

min{log2 |x|, log2(1 − |z|)} = log2[max{|x|, 1− |z|}] .
On the other hand, since 4|z| sin2 x

2 ≤ x2 we obtain

2[max{|x|, 1− |z|}]2 ≥ (1− |z|)2 + x2 ≥ (1− |z|)2 + 4|z| sin2 x
2
= |1− z|2.

Since all the arguments of the logarithms below are less than or equal 1, this yields
using our assumption,

∫

D′′

min{log2[| log(z/|z|)|], log2(1− |z|)}σf (dz) ≤
∫

D′′

log2[
1√
2
|1− z|]σf (dz) ≤ C‖f‖2 + C′

∫

D′′

log2 |1− z|σf(dz) <∞ .

Hence, using the same arguments as we have considered in the case of the imaginary
part and applying Lebesgue’s dominated convergence theorem, we conclude the
implication (iv) ⇒ (i).

If any of the conditions in the theorem holds, then the last assertion follows
from what we have done and the convergence

∑∞
n=1

zn

n = − log(1− z) on D̃. �

Remarks. 1. The equivalence of conditions (i) and (iv) in Theorem 3.1 is
implicit (without proof) in [G4]; an explicit statement is given and proved there
for T unitary.

2. For the particular cases of T unitary or self-adjoint, the equivalence of the
four conditions in the theorem was proved in [AL].

Proposition 3.2. Let T be a normal contraction on H and let 0 6= f ∈ H with
spectral measure σf . If

∞
∑

n=1

‖∑n
k=1 T

kf‖2 logn
n3

<∞ ,

then

∫

D

log2 |1− z|σf (dz) <∞ .

Proof. For every n ≥ 1 put

Dn := {z = re2iπθ : 1− 1

n
≤ r ≤ 1, − 1

2n
≤ θ ≤ 1

2n
}.

Then {Dn} is decreasing, D1 = D, and
⋃∞

n=1(Dn −Dn+1) = D − {1}.
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Let n ≥ 2. Since (1− 1
n )

n−1 decreases to 1/e, for 1− 1/n ≤ r ≤ 1 we have

rn ≥ r(1 − 1

n
)n−1 > r/3

1− rn = (1− r)

n−1
∑

k=0

rk ≥ (1− r)nrn−1 ≥ n(1− r)/3.

For |θ| ≤ 1
2n we have | sin(πnθ)| ≥ 2n|θ| ≥ 2n

π | sin(πθ)|.
For z = re2iπθ ∈ Dn, n ≥ 2, since r ≥ 1

2 , we thus obtain

|
n
∑

k=1

zk|2 = |z|2
∣

∣

∣

∣

1− zn

1− z

∣

∣

∣

∣

2

= r2
1− 2rn cos(2πnθ) + r2n

1− 2r cos(2πθ) + r2
≥

1

4

(1 − rn)2 + 4rn sin2(πnθ)

(1 − r)2 + 4r sin2(πθ)
≥ n2

36
.

So, by the spectral theorem we obtain

σf (Dn) ≤
36

n2

∫

Dn

|
n
∑

k=1

zk|2σf (dz) ≤
36

n2

∥

∥

∥

n
∑

k=1

T kf
∥

∥

∥

2

(7)

For j ≥ 2 and z ∈ Dj − Dj+1 we have j
4 ≤ 1

|1−z| ≤ j + 1, so
∫

D log2 |1 −
z|σf (dz) <∞ if and only if

∑∞
n=1(σf (Dn)− σf (Dn+1)) log

2 n <∞.

Assume that
∑∞

n=1
‖
∑n

k=1
Tkf‖2 logn

n3 <∞. Then (7) yields

∞
∑

n=1

lognσf (Dn)

n
≤ 36

∞
∑

n=1

log n‖∑n
k=1 T

kf‖2
n3

<∞.

Abel’s summation by parts yields

N−1
∑

n=1

(σf (Dn)− σf (Dn+1)) log
2 n ≤ C′

N
∑

n=1

lognσf (Dn)

n

So
∫

D
log2 |1− z|σf (dz) <∞. �

Remarks. 1. The proposition, suggested by Christophe Cuny, leads (see be-
low) to a characterization of the convergence of the transform by a condition on
the norms of the sums (or of the averages).

2. The computations leading to (7) (and (10) below) were made in [CL], and
are included for the sake of completeness. Computations of this type on the unit
circle (for unitary operators) appear in [G2] and [G3].

Theorem 3.3. Let T be a normal contraction on H and let 0 6= f ∈ H. Then the
following are equivalent:

(i):

∫

D

log2 |1− z|σf (dz) <∞
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(ii):

∞
∑

n=1

〈T nf, f〉 logn
n

converges.

(iii):

∞
∑

n=1

‖∑n
k=1 T

kf‖2 logn
n3

<∞ .

Proof. Proposition 3.2 shows (iii) =⇒ (i).

(i) =⇒ (ii): Assume

∫

D

log2 |1− z|σf(dz) <∞. By the spectral theorem,

n
∑

k=1

〈T kf, f〉 log k
k

=

∫

D

n
∑

k=1

zk log k

k
σf (dz). (8)

We continue to denote D̃ = {z : |z| ≤ 1, z 6= 1}. For every n ≥ 1 and

z ∈ D̃ we have |∑n
k=1 z

k| ≤ 2/|1 − z|. Since the sequence {logn/n}n>2 is de-

creasing to zero, Abel’s summation by parts yields that the series
∑∞

n=1
zn log n

n

converges for every z ∈ D̃. Actually, the partial sums are uniformly bounded

on {z ∈ D : |1− z| ≥ ε > 0}. By our assumption σf ({1}) = 0, so
∑∞

n=1
zn log n

n
converges σf -a.e. To prove convergence in (8), we will prove σf -integrability of

supn≥1 |
∑n

k=1
zk log k

k |.
Recall that using (3) and (6) we have already shown in the proof of Theo-

rem 3.1 that for every z ∈ D̃,

sup
n≥1

∣

∣

∣

n
∑

k=1

zk

k

∣

∣

∣
≤ C +

∣

∣

∣
log

1

|1− z|
∣

∣

∣
.

Now, we majorize supn≥1 |
∑n

k=1
zk log k

k | for z ∈ D̃ with 0 < |1− z| ≤ 1
3 . We

fix z and put n′ = [1/|1− z|]. For n > n′ write

n
∑

k=1

zk log k

k
=

n′

∑

k=1

zk log k

k
+

n
∑

k=n′+1

zk log k

k
= P1 + P2

We deal with two cases: (i) n ≤ n′ and (ii) n > n′.

Case (i): put Sj =
∑j

k=1
zk

k . Since logn ≤ logn′ ≤ log(1/|1− z|), we have

∣

∣

∣

n
∑

k=1

zk log k

k

∣

∣

∣
≤

n
∑

k=1

log k

k
≤ C log2 n ≤ C log2(1/|1− z|).

Case (ii): put S′
j =

∑j
k=1 z

k. We use the decomposition P1 + P2, with P1

estimated in case (i). Using Abel’s summation, we obtain

∣

∣

∣

n
∑

k=n′+1

zk log k

k

∣

∣

∣
≤
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logn

n
|S′

n|+
n−1
∑

k=n′+1

( log(k)

k
− log(k + 1)

k + 1

)

|S′
k|+

log(n′ + 1)

n′ + 1
|S′

n′ |.

Since n ≥ n′ + 1 > 1/|1− z| and log x/x is decreasing, we obtain

|P2| ≤
logn

n

2

|1− z| + 2
log(n′ + 1)

n′ + 1

2

|1− z| ≤

3
log(1/|1− z|)

1/|1− z|
2

|1− z| = 6 log
( 1

|1− z|
)

Putting the two cases together, for z ∈ D̃ we obtain

sup
n≥1

∣

∣

∣

n
∑

k=1

zk log k

k

∣

∣

∣
≤ C′| log(1/|1− z|)|+ C log2(1/|1− z|) (∗)

Now we prove our claim. For z close to 1, the dominant part in (*) is

log2(1/|1 − z|). Hence by our assumption, the convergence in (8) follows from
the Lebesgue bounded convergence theorem.

(ii) implies (iii): We first prove the implication for T unitary. In this case, it
follows from the general Lemma 3 of [G2] (see also [V], [G4]), but the proof of its
applicability to our case is omitted; for the sake of completeness we give the full
proof.

N
∑

n=1

logn
∥

∥

∥

∑n
k=1 T

kf
∥

∥

∥

2

n3
=

N
∑

n=1

logn
(

n‖f‖2 + 2<
∑n−1

k=1 (n− k)〈T kf, f〉
)

n3
=

N
∑

n=1

logn‖f‖2
n2

+ 2<
N
∑

n=1

logn

n3

n
∑

k=1

(n− k)〈T kf, f〉.

The first series converges, and we show convergence of the second. Write

N
∑

n=1

logn

n3

n
∑

k=1

(n− k)〈T kf, f〉 =
N
∑

k=1

〈T kf, f〉
[

N
∑

n=k

logn

n2
− k

N
∑

n=k

logn

n3

]

.

For h(x) > 0 non-increasing we have

∫ N+1

N

h(x)dx ≤
N
∑

n=k

h(k)−
∫ N

k

h(x)dx ≤
∫ k

k−1

h(x)dx ≤ h(k − 1).

We fix K large, and approximating sums by integrals we obtain

N
∑

k=K

〈T kf, f〉
N
∑

n=k

logn

n2
=

N
∑

k=K

〈T kf, f〉
( log k

k
+

1

k
− logN

N
− 1

N
+O(

log k

k2
)
)

.

N
∑

k=K

〈T kf, f〉k
N
∑

n=k

logn

n3
=

N
∑

k=K

〈T kf, f〉k
( log k

2k2
+

1

4k2
− logN

2N2
− 1

4N2
+O(

log k

k3
)
)

.
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By Abel’s summation (ii) implies convergence of
∑∞

k=2
〈Tkf,f〉

k , and by Kronecker’s
lemma, (ii) implies

logN

N

N
∑

k=K

〈T kf, f〉 → 0 and
logN

N2

N
∑

k=K

k〈T kf, f〉 → 0.

Letting N → ∞ we obtain (iii) for T unitary.
Now let T be a contraction, and let U be its unitary dilation, defined on

a larger space H1. Since 〈Unf, f〉 = 〈T nf, f〉 for f ∈ H , condition (ii) for T

implies the same for U , so by the above we have that
∑∞

n=1
‖
∑n

k=1
Ukf‖2 log n

n3

converges. Continuity of the projection from H1 onto H yields convergence of
∑∞

n=1
‖
∑n

k=1
Tkf‖2 log n

n3 . �

Remarks. 1. The proof shows that the implication (ii) =⇒ (iii) is in fact true
for any contraction.

2. It follows from Theorems 3.1 and 3.3 that, when T is normal, a suffi-
cient condition for the convergence of the one-sided ergodic Hilbert transform is
‖ 1
n

∑n
k=1 T

kf‖ = O
(

1/ logn(log logn)δ
)

for some δ > 1
2 ; this is weaker than the

general assumption in [AL, remark to Corollary 2.2] (for arbitrary contractions in
Banach spaces), which requires δ > 1.

3. For T a normal contraction, the equality ‖T nf‖ = ‖T ∗nf‖ yields that the
series in (ii) converges absolutely when

∞
∑

n=1

‖T nf‖2 logn
n

<∞

(by separating the series in (ii) to summations on odd and even integers).
When T is self-adjoint non-negative definite, the converse implication also

holds.

Proposition 3.4. Let T be a normal contraction in H. If
∑∞

k=1
Tkf
k converges, then

∥

∥

∥

1

n

n
∑

k=1

T kf
∥

∥

∥
= O

( 1

log n

)

. (9)

Proof. For z ∈ Dj −Dj+1 we have 1− |z| ≥ 1
j+1 or |1− z| ≥ |z| sin π

j+1 ≥ 2|z|
j+1 , so

|
n
∑

k=1

zk| ≤
∞
∑

k=0

|z|k =
1

1− |z| ≤ j + 1 or |
n
∑

k=1

zk| ≤ 2|z|
|1− z| ≤ j + 1 .

For n ≥ 2 we obtain
∥

∥

∥

n
∑

k=1

T kf
∥

∥

∥

2

=

∫

D

|
n
∑

k=1

zk|2σf (dz) =

∫

Dn

|
n
∑

k=1

zk|2σf (dz) +
n−1
∑

j=1

∫

Dj−Dj+1

|
n
∑

k=1

zk|2σf (dz) ≤
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n2σf (Dn) +

n−1
∑

j=1

(j + 1)2(σf (Dj)− σf (Dj+1)) ≤

n2σf (Dn) +

n−1
∑

j=2

σf (Dj)((j + 1)2 − j2)− n2σf (Dn) + 4σf (D1)

Hence, for n ≥ 2, we have

∥

∥

∥

n
∑

k=1

T kf
∥

∥

∥

2

≤ 4

n−1
∑

j=1

jσf (Dj) . (10)

Since for z ∈ Dn we have |1 − z| ≤ 4
n , condition (iv) of Theorem 3.1 yields

supn σf (Dn) log
2 n <∞. Using (10) we obtain

∥

∥

∥

n
∑

k=1

T kf
∥

∥

∥

2

≤ 4

n−1
∑

j=1

jσf (Dj) ≤ K

n−1
∑

j=1

j

log2 j
∼ K ′ n2

log2 n
.

�

Remarks. 1. For unitary operators the proposition is proved in [AL].
2. Assani [A] has constructed a unitary operator T , induced on L2 by an

ergodic probability preserving transformation, and a function f satisfying (9) for

which
∑n

k=1
Tkf
k does not converge.

Theorem 3.5. Let T be a normal contraction on H and let 0 6= f ∈ H. The
following assertions are equivalent

(i):

∞
∑

n=1

T nf

n
converges strongly

(ii): lim
α→0+

∞
∑

n=1

T nf

n1+α
converges strongly

(iii): lim
α→0+

∞
∑

n=1

T nf

n1+α
converges weakly

(iv): sup0<α<1/2

∥

∥

∥

∥

∑∞
j=1

T jf
jα+1

∥

∥

∥

∥

<∞.

If either condition holds, then f ∈ (I − T )H and

lim
α→0+

∞
∑

n=1

T nf

n1+α
=

∞
∑

n=1

T nf

n
strongly.

Proof. (i) ⇒ (ii) follows from Corollary 2.4. Clearly, (ii) ⇒ (iii). The uniform
boundedness principle yields (iii) ⇒ (iv).

Now we prove (iv) ⇒ (i). By (iv) we have

sup
0<α<1/2

∥

∥

∥

∥

∞
∑

j=1

T jf

jα+1

∥

∥

∥

∥

≤M <∞,
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so by the spectral theorem we have

sup
0<α<1/2

∫

D̃

(

<
{

∞
∑

k=1

zk

k1+α

}

)2

σf (dz) ≤M2 <∞.

Corollary 2.3 and Fatou’s lemma yield
∫

D̃

log2 |1− z|σf (dz) =
∫

D̃

(

<
{

∞
∑

k=1

zk

k

}

)2

σf (dz) =

∫

D̃

lim inf
α→0+

(

<
{

∞
∑

k=1

zk

k1+α

}

)2

σf (dz) ≤M2 <∞ .

This proves (i) via Theorem 3.1.

Clearly if either condition holds, then f ∈ (I − T )H. The last assertion fol-
lows from Corollary 2.4. �

Theorem 3.6. Let T be a normal contraction or an isometry on H with (I − T )H =
H. For 0 6= f ∈ H the following assertions are equivalent:

(i):
∞
∑

n=1

T nf

n
converges strongly

(ii):
∞
∑

n=1

T nf

n
converges weakly

(iii):

∞
∑

n=1

‖∑n
k=1 T

kf‖2 logn
n3

<∞ .

(iv):

∞
∑

n=1

〈T nf, f〉 logn
n

converges.

(v): f is in the domain of G, the infinitesimal generator of the semi-group
{(I − T )r : r ≥ 0}.

If either condition holds, then Gf = −
∞
∑

n=1

T nf

n
.

Proof. Assume first that T is a normal contraction. We already know by Theo-
rem 3.1 and Theorem 3.3 that the first four conditions are equivalent. By Theo-

rem 3.5 (i) is equivalent to the convergence of lim
α→0+

∑∞
n=1

Tnf
n1+α and by Corollary

4.5 in [AL] this last convergence is equivalent to (v).
When either condition holds, we apply [AL, Proposition 4.1] (or [DL, Theo-

rem 2.22(ii)]) to obtain Gf = −
∞
∑

n=1

T nf

n
.

Assume now that T is an isometry, and let U be its unitary dilation (on a
larger space H1). By the construction, T nf = EUnf for f ∈ H and n > 0, where
E is the orthogonal projection from H1 onto H , and since T is an isometry we
have T nf = Unf . An application of Theorem 3.5 to U yields that it is in fact valid
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also for the isometry T . Similarly, by Theorem 3.1 and Theorem 3.3, the first four
conditions of the theorem are equivalent for the isometry T . Now the first part of
the proof yields the result. �

Corollary 3.7. Let T be a contraction on H such that T ∗ is an isometry. Then
∞
∑

n=1

T nf

n
converges weakly if and only if it converges strongly.

Proof. We may restrict ourselves to (I − T )H = (I − T ∗)H . If

∞
∑

n=1

T nf

n
converges

weakly, then by Proposition 1.2 and the previous theorem applied to T ∗ we have
strong convergence. �

Remark. Similarly, if T ∗ is an isometry,
∑∞

n=1
Tnf
n converges if and only if

∞
∑

n=1

〈T nf, f〉 logn
n

converges.

Corollary 3.8. Let T be a normal contraction on H such that (I − T )H = H (so

also (I − T ∗)H = H). Then the infinitesimal generators of {(I −T )r : r ≥ 0} and
{(I − T ∗)r : r ≥ 0} have the same domain of definition.

Proof. Use Proposition 1.2 and the characterization of the domain of the generator
given by Theorem 3.6. �

4. The ergodic Hilbert transform for general contractions

For any contraction T on H , weak convergence of
∑∞

k=1
Tkf
k implies convergence

of the series
∞
∑

k=1

〈T kf, f〉
k

(11)

Convergence of (11) yields ‖ 1
n

∑n
k=1 T

kf‖ → 0, by Kronecker’s lemma and the
next proposition.

Proposition 4.1. Let T be a contraction on a Hilbert space H and f ∈ H. If
1
n

∑n
k=1〈T kf, f〉 → 0, then ‖ 1

n

∑n
k=1 T

kf‖ → 0.

Proof. By the mean ergodic theorem, 1
n

∑n
k=1 T

kf converges to some g ∈ H , and
Tg = g, so also T ∗g = g [RN, §144]. Hence the assumption yields

‖g‖2 = lim
n→∞

〈g, 1
n

n
∑

k=1

T kf〉 = lim
n→∞

〈 1
n

n
∑

k=1

T ∗kg, f〉 = 〈g, f〉 = 0.

�
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Remark. Foguel [F] proved that if 〈T nf, f〉 → 0, then T nf → 0 weakly. As
mentioned above, for the averages weak and strong convergence are the same.

Since the condition of Theorem 3.3(ii) is stronger than convergence of the se-

ries (11), the latter convergence is not expected to imply convergence of
∑∞

k=1
Tkf
k .

This will be exhibited in the examples below.

Theorem 4.2. Let T be a contraction on a complex Hilbert space H and f ∈ H. If
∞
∑

k=1

〈T kf, f〉 log k
k

converges, then
∞
∑

k=1

T kf

k
converges strongly.

Proof. For T unitary the assertion follows from theorem 3.6.

Now let T be a contraction, and let U be its unitary dilation, defined on a
larger space H1. Since 〈Unf, f〉 = 〈T nf, f〉 for f ∈ H , by Theorem 3.6 applied to

U the assumption yields strong convergence of
∑∞

k=1
Ukf
k , and continuity of the

projection from H1 onto H yields convergence of
∑∞

k=1
Tkf
k . �

When H = L2(S,Σ,m) of a σ-finite measure space, it is of interest to in-
vestigate also the almost everywhere (a.e.) convergence of the one-sided ergodic
Hilbert transform of a contraction T . For T unitary there are extensive studies
by Gaposhkin ([G2], [G3], [G4]). Gaposhkin assumes m to be a probability, but
this is not a restriction, since (e.g., [Kr, p. 189]) when m is not finite we take
an equivalent probability m′ and the map V f := f/

√
ψ, with ψ = dm′/dm, is

an order-preserving linear isometry of L2(m) onto L2(m
′) which preserves also

pointwise convergence.

Theorem 4.3. Let T be a contraction of L2(S,m) of a σ-finite measure space, and
f ∈ L2(m). If

∞
∑

n=1

〈T nf, f〉 logn(log log logn)2
n

converges (12)

then
∑∞

k=1
Tkf
k converges a.e. (and in norm).

Proof. The norm convergence follows from Theorem 4.2.

If T is unitary, this is Theorem 3a of [G4] (see also [G2, Theorem 7]).

Now let T be a contraction of L2(S,m). We may assume that m is a proba-
bility. We will use Schäffer’s construction of the unitary dilation [Sc]: Let (Sn,mn)
be disjoint copies (S,m), put Ω =

⋃

n∈Z
Sn with the obvious σ-algebra, and define

µ(A) =
∑

n∈Z
mn(A ∩ Sn). Then L2(Ω, µ) =

∑

n ⊕L2(Sn,mn), and the unitary
dilation U is defined on L2(µ). The orthogonal projection on L2(S0,m0) is in fact

multiplication by the indicator function 1S0
. If (12) is satisfied, then also f̃ , the

extension by zero to Ω of f on S0, satisfies (12) with T replaced by U . Now we

apply Gaposhkin’s result to obtain µ-a.e. convergence of
∑∞

n=1
Unf̃
n on Ω, which

yields m0-a.e. convergence on S0 of
∑∞

n=1
Tnf
n . �
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Note that there are contractions on L2 for which even the averages may fail
to converge a.e. ([B, p. 128]; for examples of unitary operators see [G1] or [Kr, p.
191]). The proof of [Kr, Lemma 5.2.1] can be adapted to show that if T is power-
bounded on L2 and f ∈ (I − T )αL2 with α > 1

2 , then
1
n

∑n
k=1 T

kf → 0 a.e. The
next proposition shows that for contractions we can do better.

Proposition 4.4. Let T be a contraction of L2(S,m) of a σ-finite measure space,

and f ∈ L2(m). If the series (11) converges, in particular if
∑∞

k=1
Tkf
k converges

weakly, then 1
n

∑n
k=1 T

kf → 0 a.e.

Proof. For T unitary, this is due to Gaposhkin [G1, Theorem 2]. In the general
case, we use the unitary dilation of [Sc] as in the previous proof. �

Theorem 4.5. Let T be a contraction of L2(S,m) of a σ-finite measure space, and
f ∈ L2(m). If

∞
∑

n=1

‖ 1
n

∑n
k=1 T

kf‖
n

converges (13)

then
∑∞

k=1
Tkf
k converges a.e. (and in norm).

Proof. We may assume that m is a probability. Denote Snf :=
∑n

k=1 T
kf . The

mean ergodic theorem, (13), and the identity

n
∑

k=1

T kf

k
=
Snf

n
+

n−1
∑

k=1

1

k(k + 1)
Skf

yield that
∑n

k=1
Tkf
k converges strongly in L2. By Proposition 4.4, 1

nSnf → 0 a.e.;
since ‖Snf‖1 ≤ ‖Snf‖2 in a probability space, by (13) and Beppo Levi’s theorem
∑∞

k=1
1

k(k+1)Skf converges a.e. Thus
∑n

k=1
Tkf
k converges a.e. �

Remark. The previous theorem is true also for isometries or order-preserving
contractions of Lp, 1 < p < ∞. The proof is the same, except that instead of
Proposition 4.4, we use Kan’s pointwise ergodic theorem [Kn, Corollary 5.1] for
isometries of Lp, p 6= 2, and Akcoglu’s pointwise ergodic theorem (e.g., [Kr, p.
190]) for order-preserving contractions.

For T unitary on L2, Gaposhkin [G4] proved that
∞
∑

n=1

‖ 1
n

∑n
k=1 T

kf‖2 logn(log log logn)2
n

<∞ (14)

is sufficient for a.e. (and norm) convergence of the ergodic Hilbert transform, and
showed that (12) implies (14). We do not know if this latter condition implies
a.e. convergence of the transform for general contractions on L2. We even do not
know if

∥

∥

1
n

∑n
k=1 T

kf
∥

∥ = O
(

1
logn(log log n)δ

)

for some δ > 1
2 , which implies (14), is

sufficient for a.e. convergence of the transform for general contractions in L2.

Example 1. U unitary on L2, with f ∈ L2 satisfying (14), but not (13).
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Put H = L2([0, 1), dt) and for h ∈ H define Uh(t) = e2πith(t) (the operator
induced by the shift). Denote log2 x := log(log x), and for k ≥ 4 > e + 1 put

ck := (
√

k log3 k log2 k)
−1 , ck = 0 for k < 4. Let f :=

∑∞
k=1 cke

2πikt. Clearly,

∥

∥

∥

∥

n
∑

j=1

U jf

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∞
∑

k=1

e2πikt
n
∑

j=1

ck−j

∥

∥

∥

∥

2

=

∞
∑

l=0

(l+1)n
∑

k=ln+1

(

n
∑

j=1

ck−j

)2
=

n
∑

k=1

(

n
∑

j=1

ck−j

)2
+

2n
∑

k=n+1

(

n
∑

j=1

ck−j

)2
+

∞
∑

l=2

(l+1)n
∑

k=ln+1

(

n
∑

j=1

ck−j

)2
= ΣI +ΣII +ΣIII .

We start with ΣIII . For n ≥ 4, the monotonicity of {ck}k≥4 yields

ΣIII ≤
∞
∑

l=2

(l+1)n
∑

k=ln+1

(n · c(l−1)n)
2 =

∞
∑

l=2

n3(c(l−1)n)
2 =

n2
∞
∑

l=1

1

l log3(ln) log22(ln)
≤ n2 C

∫ ∞

n−1

dx

x log3 x log22 x
≤ C1n

2

(logn log2 n)
2
.

For ΣII we have, using monotonicity,

ΣII ≤ n

( n+3
∑

k=4

ck

)2

≤ nC
(

∫ n+3

3

dx
√

x log3 x log2 x

)2

≤ C2n
2

log3 n(log2 n)
2
.

The same estimate holds for ΣI , since ΣI ≤ n
(
∑n−1

k=4 ck
)2 ≤ n

(

∑n+3
k=4 ck

)2

.

On the other hand,
∥

∥

∑n
j=1 U

jf
∥

∥

2 ≥ ΣIII ≥ C′′n2

(logn log2 n)2 , by a similar com-

putation. Hence

C′′n2

(log n log2 n)
2
≤

∥

∥

∥

∥

n
∑

j=1

U jf

∥

∥

∥

∥

2

≤ C′n2

(logn log2 n)
2

and the assertion clearly follows. In fact, also (12) holds, since for n ≥ 4

〈Unf, f〉 =
∞
∑

l=0

(l+1)n
∑

k=ln+1

ckck+n ≤ cn

n
∑

k=1

ck +

∞
∑

l=1

n(cln)
2.

Definition. A Dunford-Schwartz operator is a contraction T of L1(S,m) which
is also a contraction of L∞ (if m is σ-finite infinite, T is extended to L∞ from
L1∩L∞). By the Riesz-Thorin theorem (see also [Kr, p. 65]), T is also (extendable
to) a contraction of L2(S,m).

Measure preserving transformations, and more generally Markov operators
with a subinvariant measure, induce order-preserving Dunford-Schwartz operators.
If T is a Dunford-Schwartz operator, then 1

n

∑n
k=1 T

kf converges a.e. for any
f ∈ Lp, 1 ≤ p <∞ (e.g., [DuS, p. 675]).
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Example 2. A self-adjoint Dunford-Schwartz operator T , f ∈ L2 with (11) conver-

gent,
∑∞

k=1
Tkf
k converges a.e. but not weakly in L2.

Let m be the finite measure on the Borel sets of [0, 1) with density dm
dt =

1/(1 − t)| log(1 − t)|3 for t > 1
2 and dm

dt = c for 0 ≤ t ≤ 1
2 . On L1([0, 1),m)

define the operator Th(t) = th(t), which is obviously Dunford-Schwartz. Since
〈T nh, h〉 =

∫

tn|h|2dm for h ∈ H = L2([0, 1),m), the function f ≡ 1 has the
spectral measure σf = m, and by Beppo Levi

∞
∑

k=1

〈T kf, f〉
k

=

∞
∑

k=1

∫

[0,1) t
kdm

k
=

∫

[0,1)

| log(1− t)|dm <∞.

However, the one-sided ergodic Hilbert transform does not converge weakly by
Theorem 3.1, since

∫

[0,1)

| log(1 − t)|2dm ≥
∫ 1

1/2

1

(1 − t) | log(1− t)|dt = ∞ .

Remark. In this example H = (I − T )H, and
∑∞

k=1
Tkh
k converges a.e. for

every h ∈ H , although (I − T )H is not closed. Note that T is order-preserving.

Example 3. U unitary on L2, f ∈ L2 with
∑∞

k=1
Ukf
k convergent a.e., but not

weakly in L2.

Let T be the operator on L2([0, 1),m) described in the previous example,
and let U be the unitary dilation constructed by Schäffer [Sc], which is defined
on L2(R, µ) (see the proof of Theorem 4.3). For f of the previous example we

define f̃ on R by f̃(x) = f(x) for 0 ≤ x < 1 and f̃(x) = 0 otherwise. Schäffer’s

definition of U yields that Unf̃ is zero on [1,∞) and on (−∞,−n), on the interval

[−j,−j+1) (1 ≤ j ≤ n) we have Unf̃(x) =
√

1− (x+ j)2(x+ j)n−jf(x+ j), and

Unf̃(x) = xnf(x) on [0, 1). This yields that
∑∞

n=1
Unf̃
n converges a.e. However,

L2-weak convergence of
∑∞

k=1
Uk f̃
k would imply that of

∑∞
k=1

Tkf
k , a contradiction.

Note that since 〈Unf̃ , f̃〉 = 〈T nf, f〉, the series
∑∞

n=1
〈Unf̃ ,f̃〉

k converges.

Remarks. 1. In the example convergence a.e. of the transform does not imply
weak (norm) convergence, which shows that for unitary operators, Gaposhkin’s
sufficient condition (14) for a.e. convergence of the transform is not necessary;
neither is condition (13), as either condition implies also norm convergence.

2. Gaposhkin [G4, pp. 253-254] constructed an example of U unitary on

L2[0, 1] and a function f such that
∑∞

k=1
Ukf
k converges in norm, but not a.e.

Thus, for unitary operators on L2, a.e. and norm convergence of the series are not
comparable in general. It is worth to mention that in his example the weighted
averages do converge a.e. to 0, since the sufficient conditions of Theorem 3A in
[G3] are satisfied, and also the two sided Hilbert transform converges a.e.

3. Almost everywhere convergence of the transform for every function (for
which the averages converge to 0), as in Example 2, cannot occur for U induced
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by an invertible ergodic measure preserving transformation of a separable non-
atomic probability space: Kakutani and Petersen [KP] proved that there always
exists a bounded function of zero integral for which the one-sided ergodic Hilbert
transform is a.e. non-convergent; for references to earlier related results see [AL].

Let T be a contraction in H such that (I−T )H is not closed. By Theorem 1.1

there exists f ∈ (I − T )H such that
∑∞

n=1
Tnf
n does not converge. A natural

question (raised in the context of Fourier series – see [Z, Theorem V(8.12)] with
remarks and references on [Z, p. 380]), is the convergence of the one-sided ergodic
Hilbert transform for almost every random choice of signs, i.e. the convergence

of
∑∞

n=1 ±Tnf
n for every f ∈ (I − T )H . This is made precise in the following

theorem, when we take for {ξn} the Rademacher functions.

Theorem 4.6. Let {ξn} be independent identically distributed random variables on
a probability space (Ω,F ,P) such that E(|ξ1| log+ |ξ1|) < ∞ and Eξ1 = 0. Then
there exists a set Ω1 ∈ F with P(Ω1) = 1 such that when ω ∈ Ω1, for every
contraction T on a Hilbert space H and any f ∈ H the ”modulated” transform
∑∞

n=1 ξn(ω)
Tnf
n converges in norm.

Proof. Cuzick and Lai [CuLa, Theorem 1(iv)] proved that for {ξn} as in the the-
orem there exists Ω1 ∈ F with P(Ω1) = 1 such that for ω ∈ Ω1 the ”random
Fourier series”

∞
∑

n=1

ξn(ω)

n
λn

converges uniformly for complex |λ| = 1. We fix ω ∈ Ω1.

For a unitary operator U on H and f ∈ H the spectral theorem yields

∥

∥

∥

k
∑

n=j

ξn(ω)U
nf

n

∥

∥

∥

2

=

∫

{|λ|=1}

∣

∣

∣

k
∑

n=j

ξn(ω)λ
n

n

∣

∣

∣

2

dσf ≤ ‖f‖2 sup
|λ|=1

∣

∣

∣

k
∑

n=j

ξn(ω)λ
n

n

∣

∣

∣

2

which converges to 0 as k > j → ∞ by the choice of ω. Hence
∑∞

n=1 ξn(ω)
Unf
n

converges in norm.

For T a contraction on H let U be its unitary dilation on H1 containing H .
Then

∥

∥

∥

k
∑

n=j

ξn(ω)T
nf

n

∥

∥

∥

2

≤
∥

∥

∥

k
∑

n=j

ξn(ω)U
nf

n

∥

∥

∥

2

−→
k>j→∞

0

so
∑∞

n=1 ξn(ω)
Tnf
n converges in norm. �
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