
ITERATES OF A PRODUCT OF CONDITIONAL

EXPECTATION OPERATORS

GUY COHEN

Abstract. Let (Ω,F , µ) be a probability space and let T = P1P2 · · ·Pd

be a finite product of conditional expectations with respect to the sub
σ-algebras F1,F2, . . . ,Fd. We show that for every f ∈ Lp(µ), 1 < p ≤ 2,
the sequence {T nf} converges µ-a.e., with

lim
n→∞

T nf = E[f |F1 ∩ F2 ∩ · · · ∩ Fd] µ - a.e.

1. Introduction

Let (Ω,F , µ) be a probability space and let T = P1P2 · · ·Pd be a fi-
nite product of conditional expectations with respect to the sub σ-algebras
F1,F2, . . . ,Fd. Since conditional expectations are contractions of all Lp(µ)
spaces, p ∈ [1,∞], so is T .

When d = 2, Burkholder and Chow [2] proved that for every f ∈ L2(µ)
the iterates T nf converge a.s. (and thus also in L2-norm) to the conditional
expectation with respect to F1 ∩ F2. The L2-norm convergence had been
proved by von-Neumann [5, Lemma 22]. The main property of T when d = 2
is that T n = (P1P2P1)

n−1P2 with P1P2P1 self-adjoint in L2, so from the work
of Stein [9] it follows that the a.e. convergence of {T nf} holds also for any
f ∈ Lp(µ), p > 1 (one needs to show only for p < 2). Rota’s work [7] yields a
different proof, which in fact proves the a.e. convergence of {T nf} when f ∈
L log+ L (see [1]). Ornstein [6] showed that for f ∈ L1(µ) almost everywhere
convergence need not hold (although L1-norm convergence does).

For arbitrary d, the L2-norm convergence of T nf , f ∈ L2(µ), was proved
by Halperin [4] (and the limit is the conditional expectation with respect to
F1 ∩ F2 ∩ · · · ∩ Fd). Zaharopol [12] proved that the iterates T nf converge
in Lp-norm for f ∈ Lp(µ), p ≥ 1 (for p ≤ 2 this follows from [4]). Delyon
and Delyon [3] proved that T nf converges a.e. for any f ∈ L2(µ).

In this note we show that for every f ∈ Lp(µ), p > 1, the sequence {T nf}
converges µ-a.e., with

lim
n→∞

T nf = E[f |F1 ∩ F2 ∩ · · · ∩ Fd] µ - a.e.
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2. Pointwise convergence

Since [3] gives a.e. convergence of T nf for f ∈ L2(µ), we have the con-
vergence for f ∈ Lp, p > 2. For 1 < p < 2, a maximal inequality in Lp will
prove our result. We will combine techniques from [9] and [3].

Theorem 2.1 (Delyon-Delyon [3]). Let V be an operator on a Hilbert space

and let σ be a closed bounded convex subset of C containing the numerical

range of V , i.e., containing Θ(V ) = {〈f, V f〉 : ‖f‖ = 1}. Then there exists

a constant Kσ, which depends only on σ, such that for any finite sequence

of rational functions u1, . . . , ul with poles outside σ we have

∥

∥

∥

l
∑

i=1

ui(V )∗ui(V )
∥

∥

∥
≤ K2

σ sup
z∈σ

l
∑

i=1

|ui(z)|2.

Remark. For any 0 ≤ α ≤ 1, denote by Dα the closed disk of radius
1 − α centered at (α, 0). For any real ε, denote by Hε the closed half-plane,
containing (0, 0) and having (1, 0) on its boundary, defined by

Hε =
{

z : <{(1 + iε)(1 − z)} ≥ 0
}

.

As was noted in [3, §6], when we consider our specific operator T in The-
orem 2.1, there exist α, ε > 0, such that the set σ = Dα ∩ Hε ∩ H−ε sat-
isfies the conditions of Theorem 2.1. It is then possible to check that

supz∈σ
|1−z|
1−|z|

< ∞.

Notations.

Put Mn = 1
n+1

∑n
k=0 T k and M(f) = supn≥0 |Mn(f)|. Also put

∆0T n = T n, ∆T n = T n − T n−1, ∆2T n = T n − 2T n−1 + T n−2, . . .

∆rT n = ∆(∆r−1T n) = T n−r(T − I)r =
r

∑

j=0

(−1)j

(

r

j

)

T n−j.

We agree that ∆rT n = 0 for n < r.

The next proposition refines and extends the inequalities of [3], and is
crucial to the use of Stein’s method [9] in the non-symmetric case d > 2 (for
d = 2 it follows from [9, Lemma 2]).

Proposition 2.2. Let T be the product of d conditional expectations. For

every integer r = 0, 1, 2, · · · , there exists a positive constant Br, such that

for every f ∈ L2(µ) we have

‖ sup
n≥r

nr|∆rT nf | ‖2 ≤ Br‖f‖2.

Proof. By Delyon-Delyon [3] (see the proof in §6), for some absolute con-
stant B0 > 0, we have ‖ supn≥0 |T

nf | ‖2 ≤ B0‖f‖2 – this is the case r = 0.

By two successive applications of Abel’s summation by parts we obtain

T n − Mn =
1

n + 1

n
∑

k=1

k∆T k =
1

n + 1

[n(n + 1)∆T n

2
−

n
∑

k=2

k(k − 1)

2
∆2T k

]

.



ITERATES OF A PRODUCT OF CONDITIONAL EXPECTATION OPERATORS 3

Hence, in order to estimate the norm ‖ supn≥0 n|∆T nf | ‖2 it is enough to es-

timate ‖ supn≥0 |T
nf | ‖2, ‖M(f)‖2, and

∥

∥ supn≥2 |
1

n+1

∑n
k=2

k(k−1)
2

∆2T kf |
∥

∥

2
,

so only the last quantity should be estimated.
Using the Cauchy-Schwarz inequality we have

∣

∣

∣

1

n + 1

n
∑

k=2

k(k − 1)

2
∆2T kf

∣

∣

∣

2

≤
1

8

∞
∑

k=2

k3|∆2T kf |2 =
1

8

∞
∑

k=2

k3|T k−2(T−I)2f |2.

Hence, using Beppo Levi’s theorem and Theorem 2.1,
∫

∣

∣

∣
sup
n≥2

|
1

n + 1

n
∑

k=2

k(k − 1)

2
∆2T kf |

∣

∣

∣

2

dµ ≤

∫ ∞
∑

k=2

k3|T k−2(T − I)2f |2dµ =

lim
n→∞

n
∑

k=2

k3〈[T k−2(T − I)2]∗T k−2(T − I)2f, f〉 ≤

Kσ‖f‖
2
2 sup

z∈σ

∞
∑

k=2

k3|zk−2|2|(z − 1)2|2 ≤

CKσ‖f‖
2
2 sup

z∈σ

|1 − z|4

(1 − |z|2)4
≤ CKσ‖f‖

2
2 sup

z∈σ

( |1 − z|

1 − |z|

)4

< ∞.

So, combining all facts we obtain that ‖ supn≥0 n|∆T nf | ‖2 ≤ B1‖f‖2 for
some absolute constant B1.

By successive applications of Abel’s summation by parts, it is possible to
show that in order to estimate the norm ‖ supn≥0 nr|∆rT nf | ‖2, one needs
to estimate all ‖ supn≥0 nj |∆jT nf | ‖2, j = 0, . . . , r − 1, and ‖M(f)‖2, and

also ‖
∑∞

k=r+1 k2r+1|∆r+1T kf |2‖2. Hence, we use Theorem 2.1 to estimate

∫ ∞
∑

k=r+1

k2r+1|∆r+1T kf |2dµ ≤ Kσ‖f‖
2
2 sup

z∈σ

∞
∑

k=r+1

k2r+1|zk−r−1|2|(z−1)r+1|2 ≤

CKσ‖f‖
2
2 sup

z∈σ

|1 − z|2r+2

(1 − |z|2)2r+2
≤ CKσ‖f‖

2
2 sup

z∈σ

( |1 − z|

1 − |z|

)2r+2

< ∞.

By combining all the above estimates the result follows. �

In order to use Stein’s complex interpolation [8] as in [9], we need to define
C(λ)-Cesàro sums of a complex order λ, (See [13, §III.1] for the standard
notations and Stein and Weiss [11, §3] for extensibility to complex orders).
Denote Aλ

0 = 1 and

Aλ
k =

(λ + 1) · (λ + 2) · · · (λ + k)

k!
for an integer k > 0.

Here Aλ
k is the kth-coefficient of the Taylor expansion of 1

(1−x)1+λ , −1 < x < 1.

{Aλ
k} are also called generalized binomial coefficients.

The following estimate is known (e.g., see Zygmund [13, §III.1]):
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Lemma 2.3. If α ∈ R\{−1,−2, . . . }, then Aα
n
∼= nα

Γ(α+1)
. Hence there exists

a positive constant bα, which depends only on α, such that for every n ≥ 0
we have

(n + 1)α/bα ≤ Aα
n ≤ bα(n + 1)α.

The next lemma extends [11, Lemma 6], with similar computations.

Lemma 2.4. If α ∈ R\{−1,−2, . . .} and β ∈ R, then there exist positive

constants cα and Cα, which depend only on α, such that for every n ≥ 0 we

have

1 ≤ |Aα+iβ
n /Aα

n| ≤ cαe2β2

and |Aα+iβ
n | ≤ Cαe2β2

(n + 1)α.

Proof. For α > −1 this is Lemma 6 in [11] and application of Lemma 2.3.
Let α < −1 be non-integer, and put r = [|α|] + 1, so −r < α < −r + 1. For
n > r by definition

∣

∣

∣

Aα+iβ
n

Aα
n

∣

∣

∣

2

=

n
∏

k=1

∣

∣

∣
1 +

iβ

k + α

∣

∣

∣

2

=

n
∏

k=1

(

1 +
β2

(k + α)2

)

=

r
∏

k=1

(

1 +
β2

(k + α)2

)

·
n

∏

k=r+1

(

1 +
β2

(k + α)2

)

.

Using β2j ≤ β2r + 1 for j < r in majorizing the polynomial given by left
hand product (which dominates |Aα+iβ

n /Aα
n|

2 when n ≤ r), we obtain

∣

∣

∣

Aα+iβ
n

Aα
n

∣

∣

∣

2

≤ c2
α

(

1 +
β2r

r!

)

∞
∏

k=1

(

1 +
β2

k2

)

.

Using the estimates 1 + x2r

r!
≤ ex2

and 1 + x2 ≤ ex2

, we obtain
∣

∣

∣

Aα+iβ
n

Aα
n

∣

∣

∣

2

≤ c2
αeβ2

· e

(

∑

∞

k=1

β2

n2

)

≤ c2
αeβ2

e
π2

6
β2

≤ c2
αe4β2

.

The second inequality follows from Lemma 2.3, with Cα = bαcα. �

For a (formal) series of numbers
∑∞

j=0 aj, the Cesàro sums of order λ are
defined by

Sλ
n(Σaj) =

n
∑

k=0

Aλ
n−kak

It is known [11] that for every two complex numbers λ and δ one has

Sλ+δ
n (Σaj) =

n
∑

k=0

Aλ−1
n−kS

δ
k(Σaj).

Notations. For an integer n ≥ 0 and a complex number λ we define the
Cesàro sums operators Sλ

n :=
∑n

k=0 Aλ
n−kT

k, so Sλ
n(f)(x) = Sλ

n(ΣT jf(x));
for n < 0 put Sλ

n = 0.

For f ∈ L1(µ) put Sλ
∗ (f) = sup

n≥0
|(n + 1)−(λ+1)Sλ

n(f)|, and f ∗
r = S

−(r+1)
∗ (f)

for non-negative integers r.
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Note that
(i): S

−(r+1)
n = T n−r(T − I)r = ∆rT n, for any integers r ≥ 0 and n ≥ r.

(ii): S−1
n = T n for n ≥ 0, and S−1

∗ f = supn≥0 |T
nf | = f ∗

0 .

(iii): S0
n =

∑n
k=0 T k, and S0

∗(f) = supn≥0 |Mn(f)| = M(f).

For any non-negative integer r we have Sλ
n =

∑n
k=0 Aλ+r

n−kS
−(r+1)
k .

Proposition 2.5. Let λ = α + iβ be a complex number with α > 0. Then

there exists a positive constant C ′
α, which depends only on α, such that for

every f ∈ L1(µ),

Sλ
∗ (f) ≤ C ′

αe2β2

M(f).

Consequently, for every f ∈ Lp(µ), 1 < p ≤ ∞, we have

‖Sλ
∗ (f)‖p ≤

p

p − 1
C ′

α e2β2

‖f‖p .

Proof. By the above properties of Cesàro sums we have Sλ
n =

∑n
k=0 Aλ−1

n−kS
0
k .

By the maximal ergodic theorem, |S0
k(f)| ≤ (k + 1)M(f) < ∞ µ-a.e. Using

Lemma 2.4 with α − 1 > −1 we obtain

|Sλ
n(f)| ≤

n
∑

k=0

|Aλ−1
n−k||S

0
k(f)| ≤ Cα−1e

2β2

M(f)

n
∑

k=0

(n + 1 − k)α−1(k + 1) ≤

Cα−1e
2β2

M(f)(n + 1)α+1.

So,

|Sλ
∗ (f)| = sup

n≥0
|(n+1)−(λ+1)Sλ

n(f)| = sup
n≥0

|(n+1)−(α+1)Sλ
n(f)| ≤ C ′

αe2β2

M(f) ,

with C ′
α = Cα−1. The second part follows from the first by the maximal

ergodic theorem, since ‖M(f)‖p ≤ p/(p − 1)‖f‖p. �

Proposition 2.6. Let λ = α + iβ be a complex number with α ≤ 0 and

α 6= −1,−2, . . .. Then there exist positive constants Dα and D′
α, which

depend only on α, such that for every f ∈ L2(µ)

Sλ
∗ (f) ≤ Dαe2β2

(f ∗
0 + f ∗

1 + · · ·+ f ∗
[|α|]).

Consequently,

‖Sλ
∗ (f)‖2 ≤ D′

αe2β2

‖f‖2 .

Proof. By Proposition 2.2, for every integer r ≥ 0 we have ‖f ∗
r ‖2 < ∞,

since, by property (i),

f ∗
r =

(

sup
n≥r

|(n + 1)r∆rT nf |
)

∨
(

max
0≤n<r

|(n + 1)rS−(r+1)
n f |

)

.

Hence f ∗
r < ∞ a.e.; by the definitions, |S

−(r+1)
k (f)| ≤ (k + 1)−rf ∗

r for k ≥ 0.

In the case −1 < α ≤ 0, using Lemma 2.4 we have

|Sλ
n(f)| ≤

n
∑

k=0

|Aλ
n−k||S

−1
k (f)| ≤ Cαe2β2

f ∗
0

n
∑

k=0

(n+1−k)α ≤ Cαe2β2

f ∗
0 (n+1)α+1
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Hence we have,

Sλ
∗ (f) = sup

n≥0

∣

∣

∣

Sλ
n(f)

(n + 1)(λ+1)

∣

∣

∣
= sup

n≥0

∣

∣

∣

Sλ
n(f)

(n + 1)(α+1)

∣

∣

∣
≤ Cαe2β2

f ∗
0 .

This proves the first part of the proposition for −1 < α ≤ 0, with Dα =
Cα. The second part follows by taking the L2-norm and application of
Proposition 2.2, where D′

α depends on Cα and B0.

Now, let −2 < α < −1. This time we use the identity Sλ
n =

∑n
k=0 Aλ+1

n−kS
−2
k .

First we assume that n is even. We have

Sλ
n(f) ≤

∣

∣

∣

n/2
∑

k=0

Aλ+1
n−kS

−2
k (f)

∣

∣

∣
+

n
∑

k=n/2+1

|Aλ+1
n−k||S

−2
k (f)| = ΣI + ΣII .

First we estimate ΣII . Using Lemma 2.4 for α + 1 > −1, we obtain

ΣII ≤ Cα+1e
2β2

f ∗
1

n
∑

k=n/2+1

(n + 1 − k)α+1 1

k + 1
≤

Cα+1e
2β2

f ∗
1

n
∑

k=n/2+1

(n+1−k)α+1 2

n
≤

2Cα+1e
2β2

f ∗
1 nα+2

n(α + 2)

2

α + 2
Cα+1e

2β2

f ∗
1 nα+1.

In order to estimate ΣI we apply Abel’s summation by parts. Note that
∆S−1

k = S−2
k and Aλ

n = Aλ+1
n −Aλ+1

n−1 = ∆Aλ+1
n . Also for two sequences {an}

and {bn}, with b−1 = 0, we use the identity

n
∑

k=0

ak∆bk = anbn −
n−1
∑

k=0

bk∆ak+1.

Hence using Lemma 2.4 we obtain,

ΣI =
∣

∣

∣

n/2
∑

k=0

Aλ+1
n−k∆S−1

k (f)
∣

∣

∣
=

∣

∣

∣
Aλ+1

n/2 S−1
n/2(f) +

n/2−1
∑

k=0

Aλ
n−kS

−1
k (f)

∣

∣

∣
≤

|Aλ+1
n/2 S−1

n/2(f)| +

n/2−1
∑

k=0

|Aλ
n−k||S

−1
k (f)| ≤

Cα+1e
2β2

f ∗
0 nα+1 + Cαe2β2

f ∗
0

n/2−1
∑

k=0

(n + 1 − k)α ≤

(Cα+1 +
Cα

α + 1
)e2β2

f ∗
0 nα+1.

Combining ΣI and ΣII we obtain

|Sλ
n(f)| ≤ Dαe2β2

(f ∗
0 + f ∗

1 )nα+1,
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where Dα depends on Cα and Cα+1. This inequality holds for n even. For

odd n, we split
∑n

k=0 =
∑

n+1

2

k=0 +
∑n

n+1

2
+1 and make the same computations

as above. Hence we have,

Sλ
∗ (f) = sup

n≥0

∣

∣

∣

Sλ
n(f)

(n + 1)(λ+1)

∣

∣

∣
= sup

n≥0

∣

∣

∣

Sλ
n(f)

(n + 1)(α+1)

∣

∣

∣
≤ Dαe2β2

(f ∗
0 + f ∗

1 ).

This proves the first inequality of the proposition in the case −2 < α < −1.
The second inequality follows by taking the L2-norm and using Proposi-
tion 2.2, where D′

α depends on Cα, Cα+1, B0, and B1.

Similarly, one can prove the case −3 < α < −2. We first assume that
n ≥ 4 is even and we start with

Sλ
n(f) ≤

∣

∣

∣

n/2
∑

k=0

Aλ+2
n−k∆S−2

k (f)
∣

∣

∣
+

n
∑

k=n/2+1

|Aλ+2
n−k||S

−3
k (f)| = ΣI + ΣII .

Using Lemma 2.4 for α + 2 > −1, we obtain

ΣII ≤ Cα+2e
2β2

f ∗
2

n
∑

k=n/2+1

(n + 1 − k)α+2 1

k + 12 ≤

Cα+2e
2β2

f ∗
2

n
∑

k=n/2+1

(n+1−k)α+2 4

n2
≤

4Cα+2e
2β2

f ∗
2 nα+3

n2(α + 3)
=

4

α + 3
Cα+2e

2β2

f ∗
2 nα+1.

In order to estimate ΣI we apply Abel’s summation by parts twice suc-
cessively. Hence we obtain

ΣI ≤ |Aλ+2
n/2 S−2

n/2(f)| +
∣

∣

∣

n/2−1
∑

k=0

Aλ+1
n−k∆S−1

k (f)
∣

∣

∣
≤

Aλ+2
n/2 |S

−2
n/2(f)| + |Aλ+1

n/2+1||S
−1
n/2−1(f)| +

n/2−2
∑

k=0

|Aλ
n−k||S

−1
k (f)| ≤

2Cα+2e
2β2

nα+2 f ∗
1

n
+ Cα+1e

2β2

nα+1f ∗
0 + Cαe2β2

f ∗
0 nα+1.

Combining ΣI and ΣII we obtain

|Sλ
n(f)| ≤ Dαe2β2

(f ∗
0 + f ∗

1 + f ∗
2 )nα+1,

where now Dα depends on Cα, Cα+1, and Cα+2. Similar considerations yield
the same for n odd. Hence we have,

Sλ
∗ (f) ≤ Dαe2β2

(f ∗
0 + f ∗

1 + f ∗
2 ).

By taking the L2-norm in the above inequality and using Proposition 2.2,
we obtain the second inequality (the second assertion of the proposition)
for the case −3 < α < −2, where D′

α depends on Cα+j and Bj, j = 0, 1, 2.

Consequently, if −(r+1) < α < −r, for some non-negative integer r, then
after r-successive applications of Abel’s summation by parts, we obtain

Sλ
∗ (f) ≤ Dαe2β2

(f ∗
0 + f ∗

1 + · · ·+ f ∗
r ),
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for Dα depends on Cα+j , j = 0, 1, . . . , r. By taking the L2-norm in the
above inequality and using Proposition 2.2, we obtain the second inequality
for the case −(r + 1) < α < −r, where D′

α depends on Cα+j and Bj,
j = 0, 1, . . . , r. �

Remark. In the general context of T a self-adjoint Dunford-Schwartz
contraction (i.e., T is a contraction of each Lp, 1 ≤ p ≤ ∞), Proposition 2.5
and Proposition 2.6 are Lemma 4 and Lemma 3 in [9], respectively. Only
short indications of proofs were given in [9]. Also a continuous version of
these propositions (for the analogous problem of a.e. convergence for a
semigroup {Tt : t ≥ 0}) was addressed in [9]. In Stein’s book [10] proofs
were given for the continuous version. In this case, Cesàro summability of
complex order is replaced by fractional integration and fractional derivation.
Since the proofs of Proposition 2.5 and Proposition 2.6 are not immediate
consequences of their continuous analogues, the proofs are given here for
the sake of completeness. While Proposition 2.5 holds for any Dunford-
Schwartz contraction, the more complicated Proposition 2.6 relies on specific
estimates and inequalities in L2, provided in our case by [3].

For the reader’s convenience we now describe Stein’s complex interpola-
tion method [8] (see also [13, Theorem XII.1.39]).

Let (X, ν) and (Y, η) be two measure spaces and let {Tz : z ∈ C} be
a family of linear transformations from the simple functions on (X, ν) to
measurable functions on (Y, η). Such a family is called an analytic family

of operators if for any simple functions f and g on X and Y , respectively,
Φ(z) :=

∫

Tz(f)g dη is analytic in the strip 0 < <(z) < 1 and continuous in
0 ≤ <(z) ≤ 1.

The analytic family {Tz} is said to have an admissible growth if for f and
g as above there exist two positive constants A and a < π, which depend
only on f and g, such that for every z = α + iβ, with 0 ≤ α ≤ 1, we have
log |Φ(α + iβ)| ≤ Aea|β|.

Stein’s complex interpolation theorem. Let {Tz} be an analytic family

of operators with admissible growth. Suppose that 1 ≤ p1, p2, q1, q2 ≤ ∞, and

that 1/p = (1 − t)/p1 + t/p2 and 1/q = (1 − t)/q1 + t/q2, where 0 ≤ t ≤ 1.
Also suppose that for every simple function f on X,

‖Tiy(f)‖q1
≤ A0(y)‖f‖p1

and ‖T1+iy(f)‖q2
≤ A1(y)‖f‖p2

.

We also assume that for some absolute positive constants A and a < π

log |Ai(y)| ≤ Aea|y|, i = 0, 1.

Then ‖Tt(f)‖q ≤ At‖f‖p for some positive constant At depending only on t
and the functions A0(y) and A1(y). Consequently, Tt may be extended to a

bounded linear operator from all of Lp(X, ν) into Lq(Y, η).

Theorem 2.7. Let (Ω,F , µ) be a probability space, let Fj, 1 ≤ j ≤ d, be

sub σ-algebras of F with corresponding conditional expectations Pj, and put

T = P1P2 · · ·Pd. Then for every 1 < p ≤ ∞ there exists a positive constant
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Ap, such that for every f ∈ Lp(µ) we have

‖ sup
n≥0

|T nf | ‖p ≤ Ap‖f‖p .

Consequently, the sequence {Tnf} converges µ-a.e. with

lim
n→∞

T nf = E[f |F1 ∩ F2 ∩ · · · ∩ Fd].

Proof. For the pointwise convergence we have to prove only when 1 < p < 2
(the case p = 2 was proved by [3]). The maximal inequality when 2 < p < ∞
can be proved similarly.

Take 1 < p < 2 and fix 1 < p0 < p < 2. Find 0 < t∗ < 1, such that
1/p = (1−t∗)/2+t∗/p0. For K > 1/(1−t∗) > 0 define α0 := −1−Kt∗ < −1
and α1 := −1 + K(1 − t∗) > 0. We may and do choose K such that
α0 6= −2,−3, . . ..

Let N(ω) be any bounded N-valued F -measurable function. For λ ∈ C

and any simple function f define

Rλ,N (f)(ω) = (N(ω) + 1)−(α0+λ(α1−α0)+1) · S
α0+λ(α1−α0)
N(ω) (f)(ω).

Now fix the bounded function N(ω). Since for z ∈ C,

∫

g(ω)
Sz

N(ω)(f)(ω)

(N(ω) + 1)z+1
dµ =

max N
∑

n=0

n
∑

k=0

Az
n−k

(n + 1)z+1

∫

{N(ω)=n}

g(ω)T kf(ω)dµ,

it follows that for any simple function g, the function
∫

gRλ,N(f) dµ is con-
tinuous in 0 ≤ <(λ) ≤ 1 and analytic in 0 < <(λ) < 1. Using Proposi-
tion 2.5 or Proposition 2.6 and Hölder’s inequality we conclude that {Rλ,N}
is an analytic family with admissible growth in the strip 0 ≤ <(λ) ≤ 1.

Furthermore, using both propositions and |Rλ,N(f)| ≤ |S
α0+λ(α1−α0)
∗ (f)| we

conclude that

‖Riβ,N(f)‖2 ≤ ‖Sα0+iβ(α1−α0)(f)
∗ ‖2 ≤ D′

α0
e2[β(α1−α0)]2‖f‖2

‖R1+iβ,N(f)‖p0
≤ ‖Sα1+iβ(α1−α0)

∗ (f)‖p0
≤

p0

p0 − 1
C ′

α1
e2[β(α1−α0)]2‖f‖p0

,

where D′
α0

and C ′
α1

are absolute constants, which are independent of f
or of the choice of N(ω). By the interpolation theorem we obtain that
‖Rt∗,N(f)‖p ≤ Ap‖f‖p for f ∈ Lp(µ), with Ap a positive constant which is
independent of N(ω) and f (but may depend on p, p0, α0, α1, and d).

Given f ∈ Lp(µ), let Nk(ω) be the first integer where max
1≤n≤k

|T nf(ω)| is

attained. Then |Rt∗,Nk
(f)| = |S−1

Nk
(f)| = |TNkf | = max

1≤n≤k
|T nf | .

Now, by Lebesgue’s monotone convergence theorem, we obtain the as-
serted maximal inequality.

The µ-a.e. convergence of {T nf} follows from the already known con-
vergence for functions in L2(µ) (by [3]) and by the Banach principle. The
identification of the limit follows from [4] or [12].

The maximal inequality for the case 2 < p ≤ ∞ is achieved by a similar
interpolation procedure, now between 2 to ∞. �
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