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ABSTRACT. Let (2, F, 1) be a probability space and let T'= Py Py - - - Py
be a finite product of conditional expectations with respect to the sub
o-algebras Fi, Fa, ..., Fq. We show that for every f € L,(u), 1 <p < 2,
the sequence {T" f} converges u-a.e., with

lim TanE[f|f1ﬂf2ﬂ-"mfd] M- a.e.

1. INTRODUCTION

Let (Q,F,u) be a probability space and let T' = PyP,---P; be a fi-
nite product of conditional expectations with respect to the sub o-algebras
Fi,Fa, ..., Fa. Since conditional expectations are contractions of all L, ()
spaces, p € [1,00],s0is T

When d = 2, Burkholder and Chow [2] proved that for every f € La(p)
the iterates T f converge a.s. (and thus also in Ly-norm) to the conditional
expectation with respect to F; N Fy. The Ls-norm convergence had been
proved by von-Neumann [5, Lemma 22]. The main property of 7" when d = 2
is that T™ = (P, Py P,)" ' P, with P, P, P, self-adjoint in Ly, so from the work
of Stein [9] it follows that the a.e. convergence of {1™f} holds also for any
f € L,(i),p > 1 (oneneeds to show only for p < 2). Rota’s work [7] yields a
different proof, which in fact proves the a.e. convergence of {T™ f} when f €
L log" L (see [1]). Ornstein [6] showed that for f € L;(u) almost everywhere
convergence need not hold (although L;-norm convergence does).

For arbitrary d, the Ly-norm convergence of T"f, f € Ly(p), was proved
by Halperin [4] (and the limit is the conditional expectation with respect to
FiNFyn---NFy). Zaharopol [12] proved that the iterates 7™ f converge
in L,-norm for f € L,(u), p > 1 (for p < 2 this follows from [4]). Delyon
and Delyon [3] proved that T™ f converges a.e. for any f € Lo(p).

In this note we show that for every f € L,(u), p > 1, the sequence {T" f}
converges p-a.e., with

ImT"f =E[f|FinFan---NFyg p-ae.
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2. POINTWISE CONVERGENCE

Since [3] gives a.e. convergence of T"f for f € Ly(u), we have the con-
vergence for f € L,, p > 2. For 1 < p < 2, a maximal inequality in L, will
prove our result. We will combine techniques from [9] and [3].

Theorem 2.1 (Delyon-Delyon [3]). Let V' be an operator on a Hilbert space
and let o be a closed bounded convex subset of C containing the numerical
range of V, i.e., containing O(V) = {(f,V f) : ||[f|| = 1}. Then there exists
a constant K, which depends only on o, such that for any finite sequence

of rational functions Uy, . .., u; with poles outside o we have
l
| Zul (V)| < K2sup 3 =)
z€o i=1

Remark. For any 0 < a < 1, denote by D, the closed disk of radius
1 — « centered at (a,0). For any real €, denote by H, the closed half-plane,
containing (0,0) and having (1,0) on its boundary, defined by

He={z: R{(1+ie)(1 —2)} > 0}.

As was noted in [3, §6], when we consider our specific operator T' in The-
orem 2.1, there exist a, e > 0, such that the set ¢ = D, N H. N H_, sat-

isfies the conditions of Theorem 2.1. It is then possible to check that

[1=2|
SUD,cq T3] < OO

Notations.
Put M, = =5 > T" and M(f) = sup,,>o |M,(f)]. Also put

AT =T" AT =T =T AT =T" =27+ T2,

ATT" = ANV = T N(T — ) = i(—w C) ",

We agree that A"T™ =0 for n < r.

The next proposition refines and extends the inequalities of [3], and is
crucial to the use of Stein’s method [9] in the non-symmetric case d > 2 (for
d = 2 it follows from [9, Lemma 2]).

Proposition 2.2. Let T be the product of d conditional expectations. For
every integer r = 0,1,2,---, there exists a positive constant B,., such that
for every f € Lo(p) we have

I supn|AT"f| [ < Bl

Proof. By Delyon-Delyon [3] (see the proof in §6), for some absolute con-
stant By > 0, we have || sup,,>o [T"f| |l2 < Bol[f||2 — this is the case r = 0.

By two successive applications of Abel’s summation by parts we obtain

1 an+DAT"  Kk(k—1) o
—§:7AT .
n—i—l[ 2 2

T’n
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Hence, in order to estimate the norm || sup,,»o n|AT™ f|[|2 it is enough to es-

timate || sup,izq (77 f] [l2s | M (f)2, and [[sup,,sy |7 Yoy S5 ATE £,
so only the last quantity should be estimated.
Using the Cauchy-Schwarz inequality we have

1 =k(k—1 2 1 1 — -
’n—i_lz ( 5 )A2ka‘ < gzk3|A2ka‘2:§Zk3|Tk Q(T—I)Qf‘Q.
k=2 k=2 k=2

Hence, using Beppo Levi’s theorem and Theorem 2.1,

/

n

1 k(k—1 2 - _
ol B Dt aus [ S wrHr - 0 =
=2 k=2

n>2 N+ 1

mnE:H ([TF=2(T — D T2T - 1)%f, f) <

n—oo

Kol Bsup 3o K421z = 17 <
zco k=2

—24 — Z
R sup 2 < en s () < o

zEeo ( | ‘ )4 - ]- ‘Z|
So, combining all facts we obtain that | sup,>on|AT™f| |2 < Bl f||2 for
some absolute constant B;.

By successive applications of Abel’s summation by parts, it is possible to
show that in order to estimate the norm || sup,,~,n"|A™T" f|||2, one needs
to estimate all || sup,=on/|AT"f|||a, j = 0,...,r — 1, and ||M(f)|2, and
also || D52, 1 K> HHA™IT fI2]l5. Hence, we use Theorem 2.1 to estimate

/ S EATE Pl < K, 1713 sup S RHE TR o <

k=r+1 7 k=r+1
CRAAfBsup A2 < ok g sup (K227 <
o sup ——-—— < sup 00.
o (1= [o]?)2r+2 ’ 1—|z]
By combining all the above estimates the result follows. ([l

In order to use Stein’s complex interpolation [8] as in [9], we need to define
C(N)-Cesaro sums of a complex order X\, (See [13, §III.1] for the standard
notations and Stein and Weiss [11, §3] for extensibility to complex orders).
Denote A} =1 and

A+1)-(A+2) - (A+k)
K

Here A7 is the k'"-coefficient of the Taylor expansion of T)l*)" —-l<zxz<l.

Ay = for an integer k > 0.

{A} are also called generalized binomial coefficients.

The following estimate is known (e.g., see Zygmund [13, §III.1]):
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Lemma 2.3. Ifa € R\{—-1,-2,...}, then A2 = F(Z—il) Hence there exists
a positive constant b,, which depends only on «, such that for every n > 0
we have

(n4+1)%/by < A% < by(n+ 1)%.

The next lemma extends [11, Lemma 6], with similar computations.

Lemma 2.4. If a« € R\{—1,-2,...} and § € R, then there exist positive
constants c,, and C,, which depend only on o, such that for everyn > 0 we
have

1< AP /A% < cpe®  and AT < CLe® (n+ 1),

Proof. For a > —1 this is Lemma 6 in [11] and application of Lemma 2.3.
Let o < —1 be non-integer, and put r = [|a|] + 1, so —r < a < —r + 1. For
n > r by definition

2

) Aa-{—z,@

QI
E<”ﬂw>'kﬂl(l+ﬂw)-

Using % < 3% 41 for j < r in majorizing the polynomial given by left
hand product (which dominates |A2+%/A%|2 when n < r), we obtain

E 2<Cg(1+§_jr)g<1+§j)

A
Using the estimates 1 + % < e and 1+ 22 < e“”Q, we obtain

2

AaJﬂﬂ 2 oo 2 2 72 52 2
’n— < cieﬁ ,e<zk:1 n2) < cieﬁ e6h < Cie4ﬁ )

n

The second inequality follows from Lemma 2.3, with C, = b,c,. O

For a (formal) series of numbers 3 7% a;, the Cesaro sums of order A are
defined by

SMSaj) ZAn w0k

It is known [11] that for every two complex numbers A and § one has
Spt(Say) = ) ANTLSH(Zay).
k=0

Notations. For an integer n > 0 and a complex number A we define the
Cesaro sums operators Sy := > ,_, AN ,T% so S} f)(z) = Sp(ST7 f(z));
for n < 0 put S) = 0.

For f € Li(p) put S2(f) = sup|(n + 1)~+DSA(f)], and f7 = S 7V(f)

n>0

for non-negative integers r.
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Note that

(i): S+ T (T — I)" = A"T™, for any integers r > 0 and n > r.

(ii): Syt =1" for n >0, and S;'f = sup,> [T"f| =

(iil): Sp = Dop_o T, and SY(f) = sup,q [M,(f)] = M(f).

For any non-negative integer r we have S) = > ¢ AX7 S, (1),
Proposition 2.5. Let A = o + i3 be a complex number with o > 0. Then

there exists a positive constant C.,, which depends only on «, such that for
every f € Ln(u),

SX(f) < CLe*” M(f).
Consequently, for every f € L,(n), 1 < p < oo, we have

b ’ 2
152 (Hllp < ]:Ca | £l -

Proof. By the above properties of Cesaro sums we have S;) = >",_, A;\l iS 0
By the maximal ergodic theorem, |SP(f)] < (k+1)M(f) < oo p-a.e. Using
Lemma 2.4 with a — 1 > —1 we obtain

n

IS0 (f)] < Z JAATIS2)] < Cama@® M) (n+1— k) (k +1) <
k=0
Co 1 M(f)(n + 1)1,
So,

[S2(f)] = sup|(n+1)" M VSR(f)| = sup (1)~ “TVSR(f)] < Coe® M(f),

n>0 n>0
with C!, = C,—1. The second part follows from the first by the maximal
ergodic theorem, since [|[M(f)|l, < p/(p— D) fll,- O

Proposition 2.6. Let A = a + i be a complex number with o < 0 and
a # —1,-2,.... Then there exist positive constants D, and D!, which
depend only on a, such that for every f € La(u)

SNF) < Dae® (f5+ f7 4+ fiap):
Consequently,

1S2M )2 < DLe™ || £l

Proof. By Proposition 2.2, for every integer r > 0 we have ||f*]|s < oo,
since, by property (i),

17 = (swp ltn+ 17 AT 1) v ((max |0+ 1), 7).

n>r 0<n<r

Hence f* < oo a.e.; by the definitions, \S,;(r+1)(f)| < (k+1)""fx for k > 0.

In the case —1 < a < 0, using Lemma 2.4 we have

n

1SH(fF)| < Z AN IS )] < Ca® fo Y " (n1—k)™ < Coe®™ fi(n+1)H

k=0
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Hence we have,

S(f)
(n + 1)(a+1)

S (f)

262 px
7(n+1)()‘+1) S Cae fO‘

S2(f) = sup

n>0

= sup
n>0

This proves the first part of the proposition for —1 < o < 0, with D, =
C,. The second part follows by taking the Ls-norm and application of
Proposition 2.2, where D!, depends on C, and By.

Now, let —2 < o < —1. This time we use the identity S) = >_p_, A "5, 2.
First we assume that n is even. We have

n/2 n
SM(f <)2A”1S ] S ARSI = S+ S
k=n/2+1

First we estimate ;7. Using Lemma 2.4 for « + 1 > —1, we obtain

n

1
Y < Ca+1€2’82ff Z (n+1- k>a+lk——i—1 <
k=n/2+1

n 2 20a+162ﬁ f* a+2 2

-kt = <
Cane®™ i an/Q+1(n+ ) n = nla+2)  a+2

2
Coi€® finott,

In order to estimate ¥; we apply Abel’s summation by parts. Note that
AS =57 and A} = AN — AN = AAML Also for two sequences {a, }
and {b,}, with b_; = 0, we use the identity

n n—1
Z CLkAbk = anbn - Z bkAak+1.
k=0 k=0

Hence using Lemma 2.4 we obtain,

n/2 n/2—1
X = \ZAzfiAS?(f)\ = \Ai/*isn/g )+ D AS (] <
k=0 k=0
n/2—1

AL S, () + Z A5 il1Se ()] <

n/2—1
Conr€® fin® T+ Coe® f5 3 (n4+1- k)" <

k=0

Ca
(Oa+1 + a+1

) 2,6’ f* a—l—l

Combining >; and Y;; we obtain

1SM(f)] < Da® (fg + f1)nt,
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where D, depends on C, and Cqy1- This inequality holds for n even. For

odd n, we split ), _, = Zk ot Zn+1+1 and make the same computations
as above. Hence we have,

S| S2()
(n + 1)+ (n+ 1)+
This proves the first inequality of the proposition in the case —2 < a < —1.

The second inequality follows by taking the Ls-norm and using Proposi-
tion 2.2, where D!, depends on C,, C,11, By, and Bj.

Similarly, one can prove the case —3 < a < —2. We first assume that
n > 4 is even and we start with

< D™ (f5 4+ 1)

S2(f) = sup

n>0

n>0

n/2 n
A A2 A2 _
S <’ZA+AS (f)’ k%ﬂ‘AJFHS () =2+ 30

Using Lemma 2.4 for a + 2 > —1, we obtain
. 1

i < Capae® [y 3 (n+ 1= k)™ <
k=n/2+1 k+1
- 24 40 +2625 fonot? 232 +1
a 1-k @ - Oa “r
+20" f; Z (n+1-k) n2 - n?(a + 3) a+3 ot 2n

k=n/2+1
In order to estimate >; we apply Abel’s summation by parts twice suc-
cessively. Hence we obtain

n/2—1
S RS AN+ | X ANAST ()| <
k=0

n/2—2

Ai}? n/2( )|+ 1A /2+1H n/2 (N + Z 14 4l1S ()] <

2Ca+262ﬂ2n°‘+2f—1 + Caﬂewgnaﬂf{f + C, e f* atl
n
Combining >; and Y;; we obtain
2 e * *\,
‘sz\(f)’ < Daem (fo + i+ fa)n +1>

where now D, depends on C,,, C,1, and C, 5. Similar considerations yield
the same for n odd. Hence we have,

SMF) < Da® (fo + f7 + 1)

By taking the Lo-norm in the above inequality and using Proposition 2.2,
we obtain the second inequality (the second assertion of the proposition)
for the case —3 < a < —2, where D! depends on C,.; and B, j =0, 1, 2.

Consequently, if —(r+1) < a < —r, for some non-negative integer r, then
after r-successive applications of Abel’s summation by parts, we obtain

SMf) < Da® (f5 + f7 4+ f1),
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for D, depends on C,4;, 7 = 0,1,...,r. By taking the Ly-norm in the
above inequality and using Proposition 2.2, we obtain the second inequality
for the case —(r + 1) < o < —r, where D! depends on Cy,4; and Bj,
7=0,1,...,r. O

Remark. In the general context of T" a self-adjoint Dunford-Schwartz
contraction (i.e., T' is a contraction of each L,, 1 < p < 00), Proposition 2.5
and Proposition 2.6 are Lemma 4 and Lemma 3 in [9], respectively. Only
short indications of proofs were given in [9]. Also a continuous version of
these propositions (for the analogous problem of a.e. convergence for a
semigroup {7; : t > 0}) was addressed in [9]. In Stein’s book [10] proofs
were given for the continuous version. In this case, Cesaro summability of
complex order is replaced by fractional integration and fractional derivation.
Since the proofs of Proposition 2.5 and Proposition 2.6 are not immediate
consequences of their continuous analogues, the proofs are given here for
the sake of completeness. While Proposition 2.5 holds for any Dunford-
Schwartz contraction, the more complicated Proposition 2.6 relies on specific
estimates and inequalities in Lo, provided in our case by [3].

For the reader’s convenience we now describe Stein’s complex interpola-
tion method [8] (see also [13, Theorem XII.1.39]).

Let (X,v) and (Y,n) be two measure spaces and let {T, : z € C} be
a family of linear transformations from the simple functions on (X, v) to
measurable functions on (Y 7). Such a family is called an analytic family
of opemtors if for any simple functions f and g on X and Y, respectively,

f T f)gdn is analytic in the strip 0 < £(z) < 1 and continuous in

O < §R(

The analytlc family {7} is said to have an admissible growth if for f and
g as above there exist two positive constants A and a < 7, which depend
only on f and g, such that for every z = a 4+ i3, with 0 < a < 1, we have
log |®(a +i3)| < Aelbl.

Stein’s complex interpolation theorem. Let {T,} be an analytic family
of operators with admissible growth. Suppose that 1 < p1,p2, q1, g2 < 00, and
that 1/p = (1 —t)/p1 +t/p2 and 1/q= (1 —t)/q1 + t/q2, where 0 <t < 1.
Also suppose that for every simple function f on X,

1 Toy (Nllar < Ao@) 1 Nl and [ Taiy (g, < As(@)1S lps-

We also assume that for some absolute positive constants A and a < 7
log |A4;(y)| < A", i=0,1

Then |T:(f)llq < Aell fllp for some positive constant A; depending only on t
and the functions Ao(y) and Ai(y). Consequently, T, may be extended to a
bounded linear operator from all of L,(X,v) into L,(Y,n).

Theorem 2.7. Let (2, F,p) be a probability space, let F;, 1 < j < d, be
sub o-algebras of F with corresponding conditional expectations P;, and put
T =P P,---P;. Then for every 1 < p < oo there exists a positive constant



ITERATES OF A PRODUCT OF CONDITIONAL EXPECTATION OPERATORS 9

A, such that for every f € L,(u) we have
[[sup [T f1 |, < Apll.flp-
n>0

Consequently, the sequence {T, f} converges p-a.e. with
lim T"f =E[f|[FinFn---NFy.

Proof. For the pointwise convergence we have to prove only when 1 < p < 2
(the case p = 2 was proved by [3]). The maximal inequality when 2 < p < co
can be proved similarly.

Take 1 < p < 2and fix 1 < pg < p < 2. Find 0 < t* < 1, such that
1/p=(1-t*)/24t*/py. For K > 1/(1—t*) > 0 define ap := —1-Kt* < —1
and a; = —1 4+ K(1 —t*) > 0. We may and do choose K such that
Q) 7& —2, —3,

Let N(w) be any bounded N-valued F-measurable function. For A € C
and any simple function f define

Ron(f)(w) = (N(w) 4 1)~ (corrermeoth) . gueallea=eo(f) (),
Now fix the bounded function N(w). Since for z € C,

SZ ( maxN n )
/g(w)(N( )+1 ZH - Z Z n+1 z+1/ 9(W)T" f(w)dp,

n=0 k=0 {N(w)=n}

it follows that for any simple function g, the function [ gR, y(f)dp is con-
tinuous in 0 < R(A) < 1 and analytic in 0 < R(A) < 1. Using Proposi-
tion 2.5 or Proposition 2.6 and Holder’s inequality we conclude that {Ry n}
is an analytic family with admissible growth in the strip 0 < R(\) < 1.
Furthermore, using both propositions and |Ry v (f)| < [S20P ) (£)] we
conclude that

| Rign ()2 < HS:toJriﬁ(arao)(f)HQ < D&0e2[ﬁ(arao)]2HfH2

a1 +iB(a1 —o Po a1 —ag)]?
1 Ricio.n(F)llpo < ISP ()], < - - Co @7 g,

where D) ~and Cj, are absolute constants, which are independent of f
or of the choice of N(w). By the interpolation theorem we obtain that
| Res n(f)lp < ALl fll, for f € L,(u), with A, a positive constant which is
independent of N(w) and f (but may depend on p, py, ap, a1, and d).

Given f € L,(p), let Ni(w) be the first integer where Iax, |T" f(w)] is
attained. Then |Re- v, (f)| =[Sy (f)] = TN f| = max [T"f] .

1<n<k
Now, by Lebesgue’s monotone convergence theorem, we obtain the as-

serted maximal inequality.

The p-a.e. convergence of {T™f} follows from the already known con-
vergence for functions in Ly(p) (by [3]) and by the Banach principle. The
identification of the limit follows from [4] or [12].

The maximal inequality for the case 2 < p < oo is achieved by a similar
interpolation procedure, now between 2 to co. 0
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