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Abstract Sufficient conditions have been given for the convergence in norm
and a.e. of the ergodic Hilbert transform ([13], [6], [7]). Here we apply these
conditions to the rotated ergodic Hilbert transform

∑∞
n=1

λn

n T
nf , where λ is

a complex number of modulus 1. When T is a contraction in a Hilbert space,
we show that the logarithmic Hausdorff dimension of the set of λ’s for which
this series does not converge is at most 2 and give examples where this bound
is attained.
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IRMAR, UMR CNRS 6625, Université de Rennes I, Campus de Beaulieu, 35042 Rennes
Cedex, France.
E-mail: conze@univ-rennes1.fr



2

3.1 Moving averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Examples with an uncountable set of λ’s of non-convergence . . . . . . . . . . 11

4 Appendix: Hausdorff dimension of a set of divergence . . . . . . . . . . . . . . . . . 14
4.1 h-Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 h-Hausdorff dimension of the set of divergence of the potential . . . . . . . . 15

1 Introduction

Let T be a normal contraction on a Hilbert space H. Let D be the unit
disk and, for f ∈ H, denote the spectral measure of f with respect to T by
σf . In [6] (see also [3] for earlier results) it was proved that the one-sided

ergodic Hilbert transform (EHT)
∑∞
n=1

Tnf
n converges in H if and only if∫

D
log2 |1− z| dσf <∞. It is proved in [6] that when T is a contraction (even

not normal) on H = L2(m) of a σ-finite measure, then for f ∈ L2(m) the con-

vergence of
∑∞
n=3

〈Tnf,f〉 logn(log log logn)2

n ensuresm-a.e. and norm convergence

of
∑∞
n=1

Tnf
n . Convergence of the EHT is a strengthening of the convergence

of the ergodic means given by the ergodic theorems.

Denote by Γ the unit circle and take λ ∈ Γ . By the mean ergodic theo-
rem we know that for every contraction T on H the averages 1

n

∑n
k=1 λ

kT kf
converge in norm. When T is induced by a measure-preserving transformation
on a probability space (Ω,m), the Wiener-Wintner theorem [20] says that for
f ∈ L1(Ω,m) and for m-a.e. ω ∈ Ω, the averages 1

n

∑n
k=1 λ

kT kf(ω) converge
for every λ ∈ Γ .

It is then natural to consider the convergence for λ ∈ Γ of the rotated EHT

∞∑
n=1

λnTnf

n
. (1)

For the two-sided rotated ergodic Hilbert transform
∑∞
n=1

λnTnf−λnT∗nf
n ,

for every contraction T (not necessarily normal) on H and for every f ∈ H,
convergence in norm holds for every λ ∈ Γ (Campbell [4]). Lacey and Terwil-
leger proved recently that if T is induced by an invertible measure preserving
transformation on a probability space, then for every f ∈ Lp(m), p > 1, m-
a.e. the two-sided rotated ergodic Hilbert transform converges for every λ ∈ Γ
([17], Corollary 7.2).

For the one-sided rotated ergodic Hilbert transform, by Theorem 4.2 in
[6] applied to λT for a contraction T and Carleson’s theorem, convergence
in norm holds in (1) for Lebesgue a.e. λ. The aim of this paper is to answer
the following question: For a given f ∈ H, what is the size of the set of λ’s
such that the series in (1) does not converge in norm ? We will show that
the logarithmic Hausdorff dimension of this set is at most 2, and construct
examples where it can be 2. We consider also a.e. convergence when H is the
space L2(m) of a σ-finite measure m.
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In some cases there is norm convergence in (1) for every λ ∈ Γ . If {Tnf}
are centered i.i.d. with finite variance the convergence holds by orthogonality.
Furthermore, by Theorem 1(iv) of Cuzick and Lai [9] if

∫
|f | log+ |f |dm <∞,

then m-a.e. the series (1) converges uniformly in λ.

Remark that, unlike the two-sided rotated ergodic Hilbert transform, there
are examples where there is norm-convergence in (1) for every λ ∈ Γ , but the
set of points where convergence holds for every λ is empty. As an example
consider the map : (x, y)→ (x, y+x) on the 2-torus. The spectrum is continu-
ous on the subspace orthogonal to the functions depending only on x. For the
function f(x, y) := e2πiy there is convergence in norm in (1) for every λ ∈ Γ ,
but the set of points (x, y) such that pointwise convergence holds for every
λ is empty. By elementary Fourier analysis, for every fixed λ the series (1)
converges a.e., (note that this is a particular case of the general result of [7]),
but the null-set of non-convergence depends on λ.

2 Ergodic Hilbert transform and rotated ergodic Hilbert transform

2.1 A lemma on Fourier series

We begin with some preliminaries which slightly extend results of [6].

Let b : u → b(u) be a positive slowly varying function defined for u ≥ 1
(i.e. for every δ > 0, uδb(u) is increasing and u−δb(u) is decreasing for u large

enough). Write B(t) :=
∫ t
1
b(u)
u du.

It is known that, if
∑∞
n=1

b(n)
n = ∞, then, as t → ∞, B(t) ∼=

∑
n≤t

b(n)
n and

b(t) = o(B(t)) (see [21], Ch. V, p. 188).

Lemma 2.1.1 Let ν be a finite measure on the interval [−π, π[. For a positive

slowly varying function b such that
∑∞
n=1

b(n)
n = ∞, the following conditions

are equivalent: ∫ π

−π
B(

1

|t|
) ν(dt) <∞; (2)

∞∑
k=1

∫ π

−π

eikt b(k)

k
ν(dt) converges; (3)

lim inf
n→+∞

n∑
k=1

∫ π

−π

cos(kt) b(k)

k
ν(dt) < +∞. (4)

Proof Clearly (3)⇒ (4). The proof of (2)⇒ (3) is similar to that of (i)⇒ (ii)
of Theorem 3.3 given in [6] for the special case b(k) = log k. We prove the
general result for the sake of completeness.

Assume that (2) holds.
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For every n ≥ 1 and t ∈ [−π, π] \ {0}, we have |
∑n
k=1 eikt| ≤ π

|t| . Since

b(u) is slowly varying, the sequence {b(n)/n}n≥1 decreases to zero and Abel’s

summation by parts yields that the series
∑∞
n=1

eintb(n)
n converges for every

t ∈ [−π, π] \ {0}, and that the partial sums are uniformly bounded on the set
{t ∈ [−π, π] : |t| ≥ ε > 0} for every ε > 0.

As ν({0}) = 0 by (2),
∑∞
k=1

eiktb(k)
k converges ν-a.e. To prove (3), by the

Lebesgue dominated convergence theorem and by (2), it suffices to prove that,

for t in a neighborhood of 0, supn≥1 |
∑n
k=1

eiktb(k)
k | is dominated by B(|t|−1).

We will bound supn≥1 |
∑n
k=1

eiktb(k)
k | for 0 < |t| ≤ 1

3 . Let nt := [|t|−1].

For n ≤ nt, we have:∣∣∣ n∑
k=1

eiktb(k)

k

∣∣∣ ≤ n∑
k=1

b(k)

k
≤ CB(n) ≤ CB(|t|−1).

For n > nt, we use the decomposition

n∑
k=1

eiktb(k)

k
=

nt∑
k=1

eiktb(k)

k
+

n∑
k=nt+1

eiktb(k)

k
= P1 + P2,

with P1 estimated above. Let Sj :=
∑j
k=1 eikt, for j ≥ 1. Since n ≥ nt + 1 >

|t|−1 and {b(n)/n} is decreasing, using Abel’s summation, we obtain

|P2| ≤
b(n)

n
|Sn|+

n−1∑
k=nt+1

(b(k)

k
− b(k + 1)

k + 1

)
|Sk|+

b(nt + 1)

nt + 1
|Snt |

≤ b(n)

n

π

|t|
+ 2

b(nt + 1)

nt + 1

π

|t|
≤ 3π

b(|t|−1)

|t|−1
1

|t|
= 3πb(|t|−1).

The two cases together give

sup
n≥1

∣∣∣ n∑
k=1

eiktb(k)

k

∣∣∣ ≤ C ′b(|t|−1) + CB(|t|−1), ∀t ∈ [−π, π] \ {0}.

This prove our claim, since b(u) = o(B(u)) as u→∞.

Now we prove (4) ⇒ (2). For α ∈]0, 1[, the partial sums
∑n
k=1

cos(kt)
kα are

uniformly bounded from below (see Zygmund ([21], Ch. V, Th. 2.29)). Hence,
by Abel’s summation by parts (using the fact that {b(n)/n1−α} decreases) the

partial sums
∑n
k=1

cos(kt) b(k)
k are uniformly bounded from below, say by −C.

We have ν({0}) = 0, since (4) implies

0 ≤ lim inf
n→∞

∫ π

−π

(
C +

n∑
k=1

cos(kt)b(k)

k

)
ν(dt) <∞.
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Using again that the sequence {b(k)/k} decreases to zero, and Abel’s sum-

mation by parts, we have the convergence of the series
∑∞
k=1

cos(kt) b(k)
k for

every 0 6= t ∈ [−π, π], hence its convergence ν-a.e., and by Fatou’s lemma∫ π

−π
lim
n→∞

(
C +

n∑
k=1

cos(kt)b(k)

k

)
ν(dt) ≤ lim inf

n→∞

∫ π

−π

(
C +

n∑
k=1

cos(kt)b(k)

k

)
ν(dt) .

The integrand in (2) is bounded for |t| ≥ ε > 0. Since
∑∞
k=1

cos(kt) b(k)
k

behaves like B(|t|−1) as t→ 0 (see Zygmund ([21], Ch. V, Th. 2.15)), condition
(2) is satisfied.

Note that although we only assume that the lim inf in (4) is not +∞, the
proof shows that it can not be −∞, and that in fact the series converges. ut

2.2 The one-sided ergodic Hilbert transform

Let T be a contraction of a Hilbert space H. Define Tn := Tn for n ≥ 0 and
Tn := (T ∗)|n| for n < 0. Then {〈Tnf, f〉} is a positive semi-definite sequence
([19], Appendix, §9) and therefore by Herglotz’s theorem it is the sequence of
the Fourier coefficients of a positive finite measure νf on the unit circle Γ . We
will still denote by νf the representation of the measure νf as a measure on
the interval I = [−π, π[ and use both representations.

By the unitary dilation theorem of B. Sz. Nagy ([19], Theorem III, p. 469),
there exist a larger Hilbert space H′, an orthogonal projection PH from H′
onto H, and an unitary operator U on H′ such that

TnPHg = PHU
ng,∀g ∈ H′,∀n ∈ Z.

For f ∈ H, the above identity yields

〈Tnf, f〉 = 〈PHUnf, f〉 = 〈Unf, P ∗Hf〉 = 〈Unf, PHf〉 = 〈Unf, f〉.

By the spectral representation theorem for unitary operators, νf is the spectral
measure of f with respect to U , with Fourier coefficients {ν̂f (n) = 〈T−nf, f〉}.

Definition 2.2.1 For a contraction T onH and f ∈ H, νf is called the unitary
spectral measure of f (with respect to T ). When νf is absolutely continuous
with respect to the Lebesgue measure, we say that f has a spectral density.

Let b(u) be a positive slowly varying function such that
∑∞
n=1

b(n)
n = ∞.

With the previous notations, the equivalence given by Lemma 2.1.1 yields
immediately the equivalence between the following conditions:∫ π

−π
B(

1

|t|
) νf (dt) <∞; (5)

∞∑
k=1

∫ π

−π

eikt b(k)

k
νf (dt) =

∞∑
k=1

b(k)

k
ν̂f (−k) converges. (6)
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If T is a normal contraction, then the previous conditions are equivalent
to

∞∑
n=1

‖
∑n
k=1 T

kf‖2b(n)

n3
<∞. (7)

Indeed the proof of the equivalence between (5), (6) and (7) for the special
case b(n) = log n (and hence B(u) = log2 u) was given in [6], Theorem 3.3, for
T a normal contraction and can be adapted for a more general b(n).

Let us also mention Cuny ([8], Lemma 2.1) for the equivalence (5) ⇔ (7)
and, for the case b(n) = log n(log log log n)2, Gaposhkin ([13], conditions (33)
and (34)) who has indicated that in the unitary case, with this choice of b(n),
(5) and (7) are equivalent and both are implied by (6). Here we see that these
three conditions are equivalent.

Theorem 2.2.1 1) Let T be a contraction on a Hilbert space H and f ∈ H
with unitary spectral measure νf . Then the following conditions are equivalent:∫ π

−π
log2 |t| νf (dt) <∞, (8)

∞∑
n=1

〈Tnf, f〉 log n

n
converges. (9)

These conditions imply

∞∑
n=1

Tnf

n
converges in norm. (10)

2) If T is a normal contraction, then (8), (9), (10) and (11) below (where
σf is the spectral measure of f) are equivalent∫

D

log2 |1− z|σf (dz) <∞. (11)

Proof The theorem is essentially in [6], except that it is shown here that all
the information about the convergence of the one-sided EHT is contained in
the unitary spectral measure, since the equivalence (8) ⇔ (9) is a particular
case of (5)⇔ (6).

The implication (9)⇒ (10) is Theorem 4.2 in [6], where also the equivalence
(11)⇔ (9)⇔ (10) is shown for a normal contraction. ut

Remarks 1) If T is a normal contraction and U its unitary dilation, then∑∞
n=1

Unf
n converges if and only if

∑∞
n=1

Tnf
n converges. Indeed, the “only if”

follows by the continuity of the projection PH. For the “if” condition we apply
the theorem to the unitary operator U , since (9) holds for U .
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2) As mentioned in [6], if T is an isometry and U its unitary dilation, then
Tnf = Unf for every f ∈ H. Hence, when T is an isometry, (8)⇔ (9)⇔ (10).

3) If T is a contraction of L2(m) of a σ-finite measure space and f is in

L2(m), the convergence of the series

∞∑
n=1

〈Tnf, f〉 log n(log log log n)2

n
implies

the convergence in norm and m-a.e. of

∞∑
n=1

Tnf

n
by Theorem 4.3 in [6].

4) Gaposhkin [13] has shown that in the family of all unitary operators T ,

the condition
∫ π
−π b(t) νf (dt) <∞ with b(t) :=

(
log(|t|−1) log log | log(|t|−1)|

)2
is sharp. As well, by the equivalence (2) ⇔ (3) in Lemma 2.1.1, the factor
log n(log log log n)2 in claim 3) of Theorem 2.2.1 can not be replaced by any

slowly varying function b(u) with
∫∞
1

b(u)
u du =∞ and b(n) = o

(
log n(log log log n)2

)
for the class of unitary operators.

2.3 The rotated one-sided ergodic Hilbert transform
∑∞
n=1

λn

n T
nf

Let T be a contraction on H and let f ∈ H. Let νf be the unitary spectral
measure of f with respect to T . For λ ∈ Γ we have (λT )n = λnTn, for every
n ∈ Z. Hence the unitary spectral measure of f with respect to λT is νf (λ−1·)
(denoted by δλ ∗ νf ).

Similarly, if T is a normal contraction on H and if σf is the spectral mea-
sure of f with respect to T , then the spectral measure of f with respect to
λT is σf (λ−1·). Therefore the following proposition results immediately from
Theorem 2.2.1 and Theorem 4.3 in [6].

Proposition 2.3.1 Let T be a contraction on a Hilbert space H, let f be in
H with unitary spectral measure νf , and let λ ∈ Γ .

1) Then the following conditions are equivalent:∫
Γ

log2 |1− z| δλ ∗ νf (dz) <∞, (12)

∞∑
n=1

λn〈Tnf, f〉 log n

n
converges. (13)

These conditions imply

∞∑
n=1

λnTnf

n
converges in norm. (14)

2) If T is a normal contraction, then (12), (13), (14) and (15) below are
equivalent ∫

D

log2 |1− z| δλ ∗ σf (dz) <∞. (15)
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3) Assume that T is contraction of the space L2(m) of a σ-finite measure
space and f ∈ L2(m).

Then the convergence of the series

∞∑
n=1

λn〈Tnf, f〉 log n (log log log n)2

n
im-

plies that

∞∑
n=1

λnTnf

n
converges in norm and m− a.e. (16)

Remarks 1) If T be a positive contraction on L2(m) of a σ-finite measure m,

or if T is a Dunford-Schwartz operator, then

∞∑
n=1

λnTnf

n
converges m-a.e. for

λ ∈ Γ such that (14) holds. Since the modulus of λT is T in the first case, the
linear modulus of T in the second case, this results from Theorem 2.1 in Cuny
[7] applied to λT .

2) Let the measure νf be an absolutely continuous with dνf/dt ∈ Lp(dt), for
some p > 1. Put B(1/|t|) := (log(1/|t|))2(log log | log(1/|t|)|)2. Since B(1/|t|)
is in Lq([−π, π[, dt) for every 1 ≤ q < ∞, Hölder’s inequality implies that∫ π
−π B(1/(t− s))dνfdt (s)ds <∞. So, a rotated version of the equivalence (5) ⇔

(6) yields (16) for every eis ∈ Γ . Another approach for proving this result is as
follow. We may assume 1 < p ≤ 2. Since dνf/dt ∈ Lp(dt), by the Hausdorff-
Young theorem {ν̂f (k)} ∈ `q, so {λk〈T kf, f〉} ∈ `q and Hölder’s inequality
yields (16).

3) Let T be induced by an ergodic dynamical system defined on a proba-
bility space (Ω,m). By a result of Halmos [14], (for non-atomic spaces) there

is always f ∈ L0
2(m) such that

∑∞
n=1

Tnf
n does not converge in norm. Assume

that T has Lebesgue spectrum. Then there is a dense set of functions in the
space L0

2(m) of functions in L2(m) with zero integral such that (16) holds for
every λ ∈ Γ (for K-automorphisms, see Theorems 5 and 10 of Assani [1]).

Indeed, when T has Lebesgue spectrum, there is an orthogonal decompo-
sition

⊕
j∈J Hj of the space L0

2(m), where J is the spectral multiplicity, and

Hj , j ∈ J , is the closed subspace of L0
2(m) spanned by {T kfj , k ∈ Z} for some

function fj ∈ L0
2(m) such that 〈fj , T kfj〉 = 0, for every k 6= 0. The finite linear

combinations of {T kfj , j ∈ J, k ∈ Z} are dense in L0
2(m) and these functions

have a polynomial spectral density. The result then follows from Remark 2).

4) If (14) holds for some λ, then it holds for the orthogonal projection
of f on any T -invariant subspace, hence f is orthogonal to the eigenspace
corresponding to the eigenvalue λ (if there is a λ-eigenfunction) and σf ({λ}) =
0.

Proposition 2.3.1 shows that, for a normal contraction, if for f ∈ H we
have norm convergence of

∑∞
n=1

λnTnf
n for every λ ∈ Γ , then it is not only
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that σf is a continuous measure but it has a rate in its modulus of continuity.
For every subset B ⊂ D containing λ, with 0 < δ = supz∈B |z − λ| ≤ 1, we
have

σf (B) =

∫
B

dσf ≤
1

log2 δ

∫
D

log2 |1− λz| dσf (z) ≤ Cλ

log2 δ
.

5) For any aperiodic dynamical system and any λ ∈ Γ , there is a dense
Gδ set of functions f ∈ L0

2(m) such that (16) does not hold (del Junco and
Rosenblatt, see Remark following Corollary 3.3 in [15]).

We construct in Section 3 a stationary process such that the set of λ’s for
which (16) does not hold is “big” in some sense. The same construction can
be performed for any dynamical system with Lebesgue spectrum and provides
functions f such that the set of λ ∈ Γ for which (16) does not hold has a
logarithmic Hausdorff dimension 2.

In the opposite direction, for every contraction, 2 is always a bound for
logarithmic Hausdorff dimension of the set of such λ’s:

Theorem 2.3.1 Let T be a contraction on a Hilbert space H and f ∈ H.
The set of λ ∈ Γ such that

∑∞
n=1

λnTnf
n does not converge in norm has a

logarithmic Hausdorff dimension at most 2.

Proof By Proposition 2.3.1 the set of non-convergence is included in the set
{λ :

∫
Γ

log2 |1− z| δλ ∗ νf (dz) = +∞}. The result then follows from Theorem
4.2.1 on h-Hausdorff dimensions (see Appendix), with h defined by h(0) = 0,
h(x) = 1/| log x| for 0 < x ≤ 1/2, and h(x) = 1/ log 2, for x > 1/2. ut

3 Examples

3.1 Moving averages

Let {ξk} be a sequence of centered i.i.d. complex random variables on a prob-
ability space (Ω,m) with E|ξ1|2dm = 1. Let {ck}k∈Z be a sequence in `2(Z)
and put c(t) :=

∑∞
k=−∞ ckeikt.

For n ∈ Z, we define the moving averages fn :=
∑∞
k=−∞ ckξn+k. This series

converges in L2(m) by the Riesz-Fischer theorem, and almost everywhere by
the Khintchine-Kolmogorov theorem. Clearly fn = Tnf0, where T is induced
by the two-sided shift that generates {ξk}. The spectral measure ν of f0 with
respect to T is absolutely continuous and dν

dt (t) = |c(t)|2. Conversely, for any
function c ∈ L2([−π, π[, dt), |c(t)|2 is the spectral density of a moving average
(see Doob [10, Ch. X, §8]). Therefore, for any nonnegative function g with∫ π
−π g dt = 1, there is a stationary moving average model with g as spectral

density. If we choose {ξk} to be Gaussian, then the resulting stationary process
{fn} is also Gaussian.
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In terms of the function c which generates the moving averages, the con-
dition for the convergence (14) (condition (12) of Proposition 2.3.1) reads, for
λ = eis,

∫ π
−π |c(t)|

2 log2 |s− t| dt <∞. Since T in the examples of this section
is unitary, (12) is equivalent to the convergence in norm of the rotated EHT.

The next proposition shows that, for this class of examples, the set of
λ’s where

∑∞
n=1

λnfn
n does not converge is the same for the convergence in

probability, in norm, and a.e. That is, in general, we can not reduce the size
of this set by weakening the mode of convergence.

Proposition 3.1.1 Assume that the random variables {ξk} are in L4(Ω,m).
Then, for any sequence of complex numbers {an}, the convergence in proba-
bility and the convergence in L2-norm of

∑∞
n=1 anfn are equivalent.

When an = λn/n, convergence in probability, convergence in norm, and
a.e. convergence are equivalent.

Proof For k ∈ Z and N ≥ 1, let bNk :=
∑N
n=1 anck−n. Since {ck} is in `2(Z),

for every N ≥ 1 we have bN := {bNk }k∈Z ∈ `2(Z), and

N∑
n=1

anfn =

∞∑
k=−∞

ξk

N∑
n=1

anck−n =

∞∑
k=−∞

ξk b
N
k . (17)

Assume convergence in probability of the sequence (
∑N
n=1 anfn)N≥1. By (17)

we conclude that for every ε > 0,

lim
N,M→∞

m
(
|
∞∑

k=−∞

ξk(bNk − bMk )| > ε
)

= 0 .

Now we prove that {bN}N≥1 is a Cauchy sequence in `2(Z). Otherwise,
there would exist ε0 > 0 and a sequence of integers Nj ↑ ∞, such that ‖bNj+1−
bNj‖2 ≥ ε0. Since ξk ∈ L4, by the Paley-Zygmund inequality (cf. [16], p. 31,
Theorem 3), for a fixed κ ∈]0, 1[ there exists η > 0, such that

m
(∣∣ ∞∑

k=−∞

ξk(b
Nj+1

k − bNjk )
∣∣ > κε0‖ξ0‖2

)
≥

m
(∣∣ ∞∑

k=−∞

ξk(b
Nj+1

k − bNjk )
∣∣ > κ‖ξ0‖2

∥∥bNj+1 − bNj
∥∥
2

)
> η.

Since the left hand side of the above inequality tends to zero as j → ∞,
we have a contradiction.

Hence {bN}N≥1 is a Cauchy sequence and therefore converges to some
sequence b = {bk} ∈ `2(Z). Using (17) we obtain∥∥∥ M∑

n=N+1

anfn

∥∥∥2 =
∥∥∥ ∞∑
k=−∞

ξk (bMk − bNk )
∥∥∥2 = ‖bM − bN‖2‖ξ0‖2 −→ 0.
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This implies that
∑N
n=1 anfn converges in norm to

∑∞
k=−∞ bkξk, with bk =∑∞

n=1 anck−n.

When an = λn/n, the equivalence with a.e. convergence follows from the
result of Cuny [7, Theorem 2.1] mentioned in the remarks of Section 2.3. ut

3.2 Examples with an uncountable set of λ’s of non-convergence

We construct now by a different method stationary Gaussian processes,
first with a countable set of non-convergence, then with an uncountable one.

Proposition 3.2.1 There is a Gaussian stationary process {Xn} with a spec-
tral density such that the series

∑∞
n=1

λnXn
n does not converge in norm only

for λ in an infinite countable subset of Γ .

Proof The computations are done on the interval [−π, π[. Let {sk} be a se-
quence in [0, e−1) converging to a limit s∞. Let {ck} ∈ `1 be a positive se-

quence. On [−π, π] define gk(t) :=
1[sk,e

−1](t)

(t−sk) log2(t−sk) . Since the integral on [−π, π]

of gk is less than
∫ e−1

0
dt

t log2(t)
= 1, the series g(t) :=

∑∞
k=1 ckgk(t) is a.e. con-

vergent and defines an integrable function g such that ‖g‖1 ≤
∑∞
k=1 ck.

By Doob [10, Th. 3.1, p. 72], there is a stationary Gaussian process {Xn}
with spectral density g. Let T be the transformation such that Xn = TnX0.
The spectral density of X0 with respect to T is g. As the series is positive:∫ π

−π
log2 |t− s| g(t) dt =

∞∑
k=1

∫ e−1

sk

log2 |t− s| ck

(t− sk) log2(t− sk)
dt.

Hence, the integral on the left hand side is infinite for every s ∈ {sk}. If s 6∈
{sk}∪ s∞, then, in a neighborhood of s, 1

(t−sk) log2(t−sk) is bounded uniformly

with respect to k and log2 |t− s| is integrable; so the integral converges. ut

Now we modify this example to get a set of nonconvergence of positive
logarithmic Hausdorff dimension. (See Assani [2] for a related question).

Proposition 3.2.2 For every α < 2, there exists a non-empty perfect nowhere
dense subset P ⊂ Γ , with logarithmic Hausdorff dimension ≥ α, and a Gaus-
sian stationary process {Xn}, with a spectral density, such that the series∑∞
n=1

λnXn
n does not converge in norm for every λ ∈ P .

Proof The construction of {Xn} is like in the previous example, but we change
the definition of {sk} and gk. We build a sequence {sk} ⊂ [0, e−e] whose ele-
ments are the endpoints of intervals in the construction of a Cantor type set
of a non-constant ratio of dissection. The closure of {sk} will be a uncount-
able perfect nowhere dense set. Observe that each of the end points appears
infinitely often in the sequence {sk}.
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For any interval [x, x+ l] and η ∈]0, 1/2[, let us consider the closed disjoint
intervals [x, x + lη] and [x + l(1 − η), x + l]. These intervals are called ’end
intervals’ and the complementary open interval with respect to [x, x+ l], called
’middle interval’, is removed. This dissection of [x, x + l] will be said of type
[2; η].

Let ε > 0. Let η1 := 1/3(2+ε)
1
2 , and for k ≥ 2

ηk = [ηk−1 · ηk−2 · · · η1]−13−(2+ε)
k
2 =

3(2+ε)
k−1
2

3(2+ε)
k
2

. (18)

Starting from [0, e−e], we perform a dissection of type [2; η1] and remove
the middle interval. On each remaining end interval we perform a dissection of
type [2; η2], and remove the middle intervals – and so on. After n operations we
have 2n end intervals, each of length e−eηnηn−1 · · · η1. As n→∞ we obtain a
non-empty perfect nowhere dense set P (necessarily uncountable) of Lebesgue
measure zero.

The sequence {sk} is defined as follows. At the first dissection we have
two end intervals [s1, s2] and [s3, s4]. At the second dissection we have 4 end
intervals. Let s5, . . . , s12 be their endpoints (in increasing order) – and so on.
One easily sees that the closure of {sk} is the same Cantor type set P obtained
in the dissection process above.

LetBn be the set of indices k such that sk belongs to the n-th operation. Let
ck := 1

(2+ε)n , for k ∈ Bn. Since Bn contains 2n+1 elements, clearly {ck} ∈ `1.

The functions gk are defined by:

gk(t) :=
1[sk,e−e](t)

(t− sk)| log(t− sk)|(log | log(t− sk)|)2
.

The function g(t) :=
∑∞
k=1 ckgk(t) is integrable with ‖g‖1 =

∑∞
k=1 ck

∫ π
−π gk(t)dt ≤∑∞

k=1 ck, and we have the following lower bound for every s ∈ [0, e−e]:

∫ π

−π
log2 |t− s| g(t)dt ≥

∑
k: sk<s

ck

∫ 1
2 (s+sk)

sk

log2 |t− s| dt
(t− sk)| log(t− sk)|(log | log(t− sk)|)2

≥
∑

k: sk<s

ck log2(s− sk)

∫ 1
2 (s+sk)

sk

dt

(t− sk)| log(t− sk)|(log | log(t− sk)|)2

=
∑

k: sk<s

ck
log2(s− sk)∣∣ log | log( 1

2 (s− sk))|
∣∣ .

From the construction it follows that, for any s ∈ P and any integer n ≥ 1,
there exists an interval endpoint s(n), such that s(n) < s with s − s(n) ≤
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e−eηn · · · η1 < 3−(2+ε)
n
2 , and s(n) belongs to the n-th operation. Hence, for

s ∈ P :

∫ π

−π
log2 |t− s| g(t)dt ≥

∑
k: sk<s

ck
log2(s− sk)∣∣ log | log( 1

2 (s− sk))|
∣∣

=

∞∑
n=1

∑
k∈Bn,sk<s

ck
log2(s− sk)∣∣ log | log( 1

2 (s− sk))|
∣∣ ≥ ∞∑

n=1

1

(2 + ε)n
log2(s− s(n))∣∣ log | log( 1

2 (s− s(n)))|
∣∣

≥
∞∑
n=1

1

(2 + ε)n
[(2 + ε)

n
2 log 3]2

| log[(2 + ε)
n
2 log 3− log 2]|

= +∞.

Define the function K(x) = (log(1/x)+)α, α > 0. Using Carleson [5, §IV,
Theorem 3], we conclude that P has a positive K-capacity if and only if the se-
ries

∑∞
k=1 2−kK(ηk) converges. According to (18), we have

∑∞
k=2 2−kK(ηk) =

logα(3)
∑∞
k=2 2−k[(2 + ε)

k
2 − (2 + ε)

k−1
2 ]α and the series converges if and only

if α < 2 log(2)/ log(2 + ε). Theorem 1 in [5, §IV] implies that the logarithmic
Hausdorff dimension is ≥ α. As ε is arbitrary the assertion follows. ut

The bound 2 of the logarithmic Hausdorff dimension of the set of λ ∈ Γ
such that

∑∞
n=1

λnTnf
n does not converge in norm can be attained:

Theorem 3.2.1 There exist an uncountable subset P ⊂ Γ with logarithmic
Hausdorff dimension 2 and a Gaussian stationary process {Xn} with a spectral
density, such that the series

∑∞
n=1

λnXn
n does not converge in norm for every

λ ∈ P . The closure of P is a perfect set.

Proof Take αj ↑ 2 and for every j ≥ 1 build the associated function gj and
and set Pj as in Proposition 3.2.2. We can assume that ‖gj‖1 = 1 for every
j ≥ 1. Now, define P = ∪∞j=1Pj and put g =

∑∞
j=1 βjgj , where {βj} is a

summable sequence of positive numbers. Clearly, g is an integrable function
and there is a Gaussian stationary process {Xn} with spectral density g. For
j ≥ 1 we have

∫ π
−π log2 |t − s| g(t)dt ≥ βj

∫ π
−π log2 |t − s| gj(t)dt. Hence, for

every j ≥ 1 and for every s ∈ Pj , we have
∫ π
−π log2 |t − s| g(t)dt = ∞. We

conclude that for every s ∈ P the series
∑∞
n=1

einsXn
n does not converge in

norm.

Since each set Pj is perfect, so is the closure of P . Furthermore, the loga-
rithmic Hausdorff dimension of P is not less than the dimension of any Pj . So,
the logarithmic dimension of P is ≥ 2. Using Theorem 2.3.1 we obtain that
the logarithmic dimension of P is 2. ut
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4 Appendix: Hausdorff dimension of a set of divergence

4.1 h-Hausdorff dimension

We prove in this appendix the result used in Theorem 2.3.1 (Theorem 4.2.1).
It is likely to belong to the “folklore” of Hausdorff dimension theory, but for
the sake of completeness we prove the result which fits exactly to our need.
First we recall general notions and results on the construction of Hausdorff
measures on a metric space (X, d). For our purpose it suffices to take X = R.

Let F be a family of subsets of X and ζ be a map from F to [0,∞]. A
generalized Hausdorff measure φ on (X, d) is associated to (F , ζ) in a standard
way: For every δ > 0, we define the set function φδ by

φδ(A) = inf{
∑
i∈N

ζ(Ui)}, A ⊂ X,

where the infimum is taken over all countable families (Ui)i∈N of elements of
F such that A ⊂ ∪i∈NUi and diamUi ≤ δ for all i. The Hausdorff measure of
a subset A is φ(A) = limδ→0 φδ(A) = supδ>0 φδ(A).

We will use the following result on approximation by compact sets (which
holds for any Suslin subset, cf. [Fe], p. 186, Corollary 2.10.23).

Theorem 4.1.1 Let X be a metric space such that all bounded closed subsets
are compact and F be the family of all compact subsets of X. Suppose that the
map ζ is continuous for the Hausdorff distance and that ζ(C) > 0 whenever
diamC > 0. Then every Borel subset S of X satisfies

φ(S) = sup{φ(C) : C ∈ F , C ⊂ S}.

Let G : X × X → [0,∞] be a LSC (lower semi-continuous) kernel. For a
positive measure µ on X, for x ∈ X the potential associated with µ and G,
and the potential associated with µ and the dual kernel G∗(x, y) = G(y, x) are
defined by

Gµ(x) :=

∫
G(x, y)µ(dy), G∗µ(x) :=

∫
G(y, x)µ(dy).

Since G is LSC, Fatou’s lemma implies that Gµ and G∗µ are also LSC. The
energy of µ for the kernel G is

IG(µ) :=

∫ ∫
G(x, y)µ(dx)µ(dy) =

∫
Gµ(x)µ(dx) =

∫
G∗µ(y)µ(dy).

We will consider functions ζ of the following form: let h : [0,∞[→ [0,∞[
be an increasing continuous function with h(0) = 0 and let F be the family of
all bounded subsets of R. For each s > 0, we can take as ζ the map

ζs : F → [0,∞[, A→ hs(diamA).
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The corresponding set functions are denoted by φsδ and φs.

Using the continuity at 0 and the monotonicity of h, it is easy to see that
if φs(A) < ∞ for some s > 0, then φt(A) = 0 for all t > s. The generalized
h-Hausdorff dimension of A is defined by

dimh(A) := inf{s > 0 : φs(A) = 0}.

4.2 h-Hausdorff dimension of the set of divergence of the potential

We are interested by the size of the set where the potential of a measure µ
is infinite for the kernels Gs, s > 0, defined (with the convention 1

0 = +∞) by

Gs : (x, y) ∈ R×R→ 1

hs(|x− y|)
. (19)

For a positive measure µ on R with finite mass and a parameter s0 > 0,
we consider the following set

Fµ,s0 := {x ∈ R: Gs0µ(x) =

∫
R

1

hs0(|x− y|)
µ(dy) = +∞}. (20)

Theorem 4.2.1 Let h : [0,+∞[→ [0,+∞[ be a continuous increasing func-
tion with h(0) = 0, continuously differentiable outside a discrete subset of
[0,+∞[. Assume that there exists a constant C such that h(2x) ≤ Ch(x),∀x ≥
0. Then for any µ with finite mass and s0 > 0, we have dimh(Fµ,s0) ≤ s0.

Theorem 4.2.1 is a kind of generalization of the relation of Hausdorff di-
mension to capacity, e.g., see [18, Ch. 8] or [11, Ch. 4]. The proof is based on
the proposition and the lemma below. Some details are straightforward exten-
sions of proofs which can be found in standard books on Hausdorff measures
([5], [11], [12], [18]) and are omitted.

Proposition 4.2.1 Let G be a LSC kernel such that, for some positive con-
stant C1,

∀x, y, z ∈ X, d(y, z) ≤ 3d(x, z)⇒ G(z, x) ≤ C1G(z, y).

Let µ be a finite positive measure on X and let F = {x ∈ X : Gµ(x) = +∞}.
Then the energy IG(ν) of any non zero positive measure ν with support in F
is infinite.

Proof Let λ be a positive measure and E = suppλ. For all x ∈ X, there
exists y ∈ E such that d(x, y) ≤ 2d(x,E). For all z ∈ E, we have d(y, x) ≤
2d(x,E) ≤ 2d(x, z), therefore d(y, z) ≤ d(y, x) + d(x, z) ≤ 3d(x, z). Hence
G(z, x) ≤ C1G(z, y) and

G∗λ(x) =

∫
G(z, x)λ(dz) ≤

∫
C1G(z, y)λ(dz) = C1G

∗λ(y).
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Therefore

sup
x∈X

G∗λ(x) ≤ C1 sup
y∈E

G∗λ(y).

Moreover suppose that E = suppλ ⊂ F, then

+∞ =

∫
Gµ(y)λ(dy) =

∫
G∗λ(x)µ(dx).

Since µ is finite, it follows that supx∈X G
∗λ(x) = +∞. Hence supy∈E G

∗λ(y) =
+∞.

Now let ν be a non zero positive measure positive with supp ν ⊂ F, and
assume that the energy of ν is finite,

∫
G∗ν(x) ν(dx) = IG(ν) < +∞. We will

apply the first part of the proof to a measure λ deduced from ν and get a
contradiction.

For all a > 0, we have ν({x ∈ X : G∗ν(x) > a}) ≤ IG(ν)/a. Hence, if a
is large enough, the set A = {x ∈ X : G∗ν(x) ≤ a} has a positive measure.
Choose such a number a. The set A is closed, since G∗ν is LSC.

Consider the measure λ defined by λ(B) = ν(A ∩ B) for all Borel subsets
B of X. On the one hand, the choice of a ensures that λ is not zero. On the
other hand, λ ≤ ν and therefore G∗λ ≤ G∗ν ≤ a on the set A since A contains
E = suppλ. This contradicts supy∈E G

∗λ(y) = +∞, and therefore the energy
of ν cannot be finite. ut

Lemma 4.2.1 If φs(Fµ,s0) > 0 for some s > 0, there exists a finite positive
measure ν0 with support in Fµ,s0 such that, for all 0 < t < s,

IGt(ν0) =

∫ ∫
1

ht(|x− y|)
ν0(dx) ν0(dy) < +∞.

Proof The measure ν0 is constructed by restricting φs to a suitable compact
subset K0 of Fµ,s0 .

1) The continuity of the kernel Gs : (x, y) ∈ R×R→ 1
hs(|x−y|) ∈ [0,+∞]

implies that Fµ,s0 is a Gδ and hence a Borel subset of R. Theorem 4.1.1 with
S = Fµ,s0 and φ = φs provides a compact setK1 ⊂ Fµ,s0 such that φs(K1) > 0.

Now there is a compact subset K2 ⊂ K1 such that 0 < φs(K2) < +∞. The
proof of this assertion can be easily adapted from [11] p. 62, Theorem 4.10,
where the same result is proved for the usual Hausdorff measure.

2) Using the inequality h(2x) ≤ Ch(x) and standard arguments (covering
lemma and Egoroff’s theorem (cf. [11] Proposition 4.9 p. 61 and Proposition
4.11 p. 63)) one can show that there exists a compact subset K0 ⊂ K2 and a
finite constant b such that φs(K0) > 0 and

φs(K0 ∩B(x, r)) ≤ bhs(r),∀x ∈ R, r > 0. (21)
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Let ν0 be the measure defined by ν0(A) = φs(K0 ∩ A). For 0 < t < s, let

Gtν0(x) :=
∫
R

ν0(dy)
ht(|x−y|) . For all x ∈ R and r ≥ 0, set mx(r) = ν0(B(x, r)). We

have mx(0) = 0 since hs(r) tends to 0 as r → 0, and mx(r) ≤ bhs(r) by (21).
By the same computation as in [11, p. 65-66], we obtain:

Gtν0(x) =

∫
B(x,1)

ν0(dy)

ht(|x− y|)
+

∫
B(x,1)C

ν0(dy)

ht(|x− y|)
≤∫ 1

0

h−t(r) dmx(r) + ν0(R)h−t(1)

= [h−t(r)mx(r)]10 +

∫ 1

0

th−t−1(r)h′(r)mx(r)dr + ν0(R)h−t(1)

≤ h−t(1) b hs(1) +

∫ 1

0

th−t−1(r)h′(r) bhs(r) dr + ν0(R)h−t(1)

≤ b+ ν0(R)h−t(1) + b t

[
hs−t(r)

s− t

]1
0

.

Therefore, Gtν0 is bounded on R and IGt(ν0) < +∞. ut

Proof of Theorem 4.2.1 Let µ be a positive finite measure on R and
let s0 > 0. Suppose that there exists s > s0 such that φs(Fµ,s0) > 0, where
Fµ,s0 is defined by (20). It follows from Proposition 4.2.1 that for all positive
measures ν with support in Fµ,s0 , IGs0 (ν) = +∞. But this contradicts the
existence of a measure ν0 with support in Fµ,s0 , such that IGs0 (ν) < +∞, as
asserted by Lemma 4.2.1. �
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