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On strong laws of large numbers with rates

Guy Cohen, Roger L. Jones, and Michael Lin

Abstract. Let {fn} ⊂ Lp(µ), 1 < p < ∞, be a sequence of functions
with supn ||fn||p < ∞. We prove that if for some 0 < β ≤ 1 we have

sup
n

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

p
< ∞, then for δ <

p − 1

p
β the sequence {

1

n1−δ

n
∑

k=1

fk}

has a.e. bounded p-variation, hence converges, and the p-variation norm func-
tion is in Lp(µ). If we replace supn ||fn||p < ∞ by supn ||fn||∞ < ∞, then the
a.e. convergence holds for δ < p

p+1
β. Furthermore, in each case we also have

a.e. convergence of the series
∞
∑

k=1

fk

k1−δ
for the corresponding values of δ, and

in the first case we even have that the sequence of partial sums has bounded
p-variation.

Some applications are given. In particular, we show that if {gn} are
centered independent (not necessarily identically distributed) random variables
with supn ||gn||q < ∞ for some q ≥ 2, then almost every realization an = gn(y)
has the property that for every Dunford-Schwartz operator T on a probability

space (Ω, µ) and f ∈ Lp(µ), p >
q

q−1
the series

∞
∑

k=1

akT kf

k
converges a.e. The

same result holds for 1 < q < 2 if in addition the random varaibles {gn} are
all symmetric. When the {gn} are i.i.d. the symmetry is not needed, and a.e.
convergence of the above series holds also for f ∈ L q

q−1
(µ).

1. Introduction

It is known that there is no general speed of convergence in the pointwise ergodic
theorem for ergodic measure preserving transformations; Krengel [Kr1] has shown
that for every measure preserving transformation θ of the unit circle with Lebesgue
measure and for every sequence {an} of positive numbers converging to 0 there exists
a continuous function f with integral 0 such that lim supn | 1n

∑n
k=1 f ◦ θk|/an = ∞

a.e. For further discussion see pp. 14-15 of [Kr2].
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2 COHEN, JONES, AND LIN

Derriennic and Lin [DL] have used a rate of convergence in the mean to obtain
pointwise rates of convergence: Let T be a Dunford-Schwartz operator on L1(µ) of
a probability space, and let f ∈ Lp for some (fixed) p > 1. Assume that for some
0 < β ≤ 1 we have

(1) sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

T kf

∥

∥

∥

∥

∥

p

< ∞.

(i) If β > 1 − 1/p, then the series
∑∞

k=1 T kf/k1/p converges a.e. and thus

(1/n1/p)
∑n

k=1 T kf → 0 a.e.

(ii) If β ≤ 1− 1/p, then for every γ > 1−β the series
∑∞

k=1 T kf/kγ converges

a.e. and (1/nγ)
∑n

k=1 T kf → 0 a.e.
Condition (1) had been previously used by Loève [Lo] (see [Do], p. 492) for T

unitary on L2 to obtain the strong law of large numbers. Rates of convergence in
this case were obtained by Gaposhkin [G].

For T induced by an ergodic probability preserving transformation on (Ω, µ)
and f ∈ L1(µ) orthogonal to the eigenfunctions of T , the Wiener-Wintner the-
orem [WW] yields that for a.e. x we have limn

1
n

∑n
k=1 λkT kf(x) = 0 for ev-

ery λ on the unit circle; in fact, the convergence (for fixed x) is uniform in λ
(see [A1] for f ∈ L2, and [CL] for the extension to f ∈ L1). This yields [CL]
∥

∥max|λ|=1

∣

∣

1
n

∑n
k=1 λkT kf

∣

∣

∥

∥

p
→ 0 when f ∈ Lp, p > 1. Independently of [DL],

Assani [A3] studied the rate of convergence in the Wiener-Wintner theorem, and
considered functions f ∈ L2 which for some β > 0 satisfy

sup
n

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−β

n
∑

k=1

λkT kf

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

< ∞.

He showed the existence of such functions for K-automorphisms and other inter-
esting systems, and proved that for x in a set of full measure the Fourier series
∑∞

k=1 λkT kf(x)/k converges for every λ on the unit circle. When f ∈ Lp with
p ≥ 2 and β > 1

p , Assani and Nicolaou [AN] strenghtened the result, proving the

uniform convergence of
∑∞

k=1 λkT kf(x)/kγ for any γ > 1 − (β
2 − 1

2p ).

A different method of measuring the speed of convergence of a numerical se-
quence xn → x is to check whether

∑∞
k=1 |xn − x|p < ∞ (i.e., {xn − x} ∈ `p) for

some p ≥ 1. Note that if for ε > 0 we define the ε-deviation of the convergent
sequence by D({xn}, ε) := |{n : |xn − x| > ε}|, we obtain

D({xn}, ε) ≤
∑

{k:|xk−x|>ε}

( |xk − x|
ε

)p

≤ 1

εp
||{xn − x}||p`p

.

The condition {xn − x} ∈ `p is obviously very strong, and implies

sup
{nk}↗

[

∞
∑

k=1

|xnk+1
− xnk

|p
]1/p

≤ 2||{xn − x}||p < ∞.

A sequence {xn} of complex numbers is said to have bounded p-variation if it

satisfies ||{xn}||Vp := sup{nk}↗

[

∑∞
k=1 |xnk+1

−xnk
|p
]1/p

< ∞. For fixed p ≥ 1 the
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sequences of bounded p-variation are a vector space, with ||{xn}||Vp a semi-norm.

Since |xnk+1
− xnk

| ≤
∑nk+1−1

j=nk
|xj+1 − xj |, we have ||{xn}||V1

=
∑∞

j=1 |xj+1 − xj |.

Lemma. Every complex sequence of bounded p-variation converges.

Proof. For p = 1 this is immediate, since xn = x1 +
∑n−1

k=1 (xk+1 − xk).
Fix j > 1, and take n1 = 1, n2 = j, and nk = k + j for k > 2. Then

|xj | ≤ |xj − x1| + |x1| ≤ ||{xn}||Vp + |x1|. Hence {xn} is bounded. Assume {xn}
has two different limit points a and b. Then we can find an increasing subsequence
{nk} with a = limxn2k

and b = limxn2k+1
, so |xn2k+1

− xn2k
| ≥ |b − a|/2 > 0 for

large k, contradicting the convergence of the series of p-powers. �

The Lemma (which should be well-known) shows that ||{xn}||Vp is a norm

(the p-variation norm) on the space BV 0
p of all sequences of bounded p-variation

converging to 0, which contains `p.

Definition. The ε-jump of a sequence {xk} is defined for ε > 0 by

J(ε) = max{n : ∃ s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn with |xtj − xsj | > ε, 1 ≤ j ≤ n}.

Note that J(ε) = J({xk}, ε) is finite for every ε > 0 if (and only if) {xk}
converges; it counts the number of jumps of size ε that are observed along the
sequence {xk}. It is easy to check that D({xn}, ε/2) ≥ J({xn}, ε)/2.

Let {xn} have bounded p-variation. If J({xn}, ε) = n and the jumps occur at
the n pairs sj < tj , 1 ≤ j ≤ n, as in the definition, then

J({xn}, ε) ≤
n
∑

j=1

( |xtj − xsj |
ε

)p

≤ 1

εp
||{xn}||pVp

.

Bourgain [B] showed that for a probability preserving transformation θ on
(Ω, µ) and f ∈ L2 the sequence of ergodic averages Anf(x) := 1

n

∑n
k=1 f(θkx)

satisfies ‖ ||Anf(x)||Vρ‖2 ≤ c(ρ)||f ||2 for every ρ > 2. This was generalized to Lp,
1 < p < ∞, by Jones, Kaufman, Rosenblatt, and Wierdl [JKRW], who proved for
ρ > 2 the weak (1,1) inequality

µ
{

x : ||Anf(x)||Vρ > ε
}

≤ c(ρ)

ε
||f ||1.

For further discussion and additional references, see [CJRW].

2. Strong laws of large numbers with rates

Our main results give more precise information on the SLLN with rate obtained
in Cohen and Lin [CL]. Throughout this section we assume that(Ω, µ) is a σ-finite
measure space. We start with a rather simple result.

Theorem 1. Let 1 < p < ∞. Let {fn} ⊂ Lp(µ), and assume that for some
1
p < β ≤ 1 we have

(2) sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

= B < ∞.
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Then for 0 ≤ δ < β − 1
p we have { 1

n1−δ

∑n
k=1 fk(x)} ∈ `p a.e. Moreover, the series

∞
∑

k=1

fk(x)

k1−δ
converges a.e.,

{ ∞
∑

k=n

fk(x)

k1−δ

}

∈ `p a.e., and

∥

∥

∥

∥

∥

∞
∑

k=n

fk(x)

k1−δ

∥

∥

∥

∥

∥

`p

is in Lp(µ).

Proof. Denote sn =
∑n

k=1 fk. Then

(3)

∫ ∞
∑

n=1

∣

∣

∣

sn

n1−δ

∣

∣

∣

p

dµ =

∞
∑

n=1

∫

∣

∣

∣

sn

n1−β

∣

∣

∣

p 1

n(β−δ)p
dµ ≤ Bp

∞
∑

n=1

1

n(β−δ)p
< ∞.

Hence
∑∞

n=1

∣

∣

∣

sn

n1−δ

∣

∣

∣

p

< ∞ a.e.

Denote γ = 1 − δ. For 1 ≤ n < m, Abel’s summation by parts (with s0 = 0)
yields

(4)

m
∑

k=n

fk

kγ
=

m
∑

k=n

sk − sk−1

kγ
=

sm

mγ
− sn−1

nγ
+

m−1
∑

k=n

(

1

kγ
− 1

(k + 1)γ

)

sk.

The a.e. convergence of
∞
∑

k=1

fk(x)

k1−δ
is proved as in Theorem 1 of [CL], where the

boundedness of {||fn||p} is not used for the a.e. convergence of the series on the
right hand side of (4), so letting m → ∞ in (4) we obtain

(5)
∞
∑

k=n

fk

kγ
= −sn−1

nγ
+

∞
∑

k=n

(

1

kγ
− 1

(k + 1)γ

)

sk.

By the first part, for a.e. x the sequence
{

sn(x)
nγ

}

is in `p. Since
∑∞

k=n
1

kβ+γ =

O(nδ−β), and p(β − δ) > 1 by assumption, Minkowski’s inequality yields

∫ ∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=n

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

∣

∣

p

dµ ≤
∞
∑

n=1

∫

(

γ

∞
∑

k=n

1

kβ+γ

∣

∣

∣

∣

1

k1−β
sk

∣

∣

∣

∣

)p

dµ

≤
∞
∑

n=1

γp

( ∞
∑

k=n

1

kβ+γ

∥

∥

∥

∥

1

k1−β
sk

∥

∥

∥

∥

p

)p

≤ γpBp
∞
∑

n=1

c

np(β−δ)
< ∞.

Hence

∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=n

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

∣

∣

p

< ∞ a.e., so by (5)

{ ∞
∑

k=n

fk(x)

k1−δ

}

∈ `p for

a.e. x, and
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞
∑

k=n

fk(x)

k1−δ

∥

∥

∥

∥

∥

`p

∥

∥

∥

∥

∥

∥

Lp(µ)

≤ C(p, β, δ)B. �

Remarks. 1. Unlike the result of [CL], Theorem 1 does not require that
supn ||fn||p be finite. This is due to the restriction on β and the small range for δ.

2. For δ = β − 1
p the above result is no longer valid. Fix 1 < p < ∞ and

1
p < β ≤ 1. Put fk = k1−β − (k − 1)1−β , so (2) is satisfied, but for δ = β − 1

p we

have { 1
n1−δ

∑n
k=1 fk} = { 1

n1/p } which is not in `p.
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Definition. The ε-deviation function of a sequence of functions {gn} is defined
for ε > 0 by D({gn}, ε)(x) = D({gn(x)}, ε), i.e., for each point x we look at the
ε-deviation of the sequence of values {gn(x)}.

Corollary. Under the hypothesis of Theorem 1 we have
∥

∥

∥

∥

∥

D

({

1

n1−δ

n
∑

k=1

fk

}

, ε

)∥

∥

∥

∥

∥

1
p

1

≤ c

ε
sup

n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

.

proof. For every point x we have (see the introduction)

D

({

1

n1−δ

n
∑

k=1

fk(x)

}

, ε

)

≤ 1

εp

∥

∥

∥

∥

∥

{

1

n1−δ

n
∑

k=1

fk(x)

}∥

∥

∥

∥

∥

p

`p

,

and the result follows by integrating and applying (3).

Theorem 2. Let 1 < p < ∞. Let {fn} ⊂ Lp such that supn ‖fn‖p < ∞, and
assume that (2) holds for some 0 < β ≤ 1. For fixed 0 ≤ δ < β(p− 1)/p, define the
“averages”

A(1−δ)
n :=

1

n1−δ

n
∑

k=1

fk.

Then for a.e x the sequence {A(1−δ)
n (x)} has bounded p-variation and converges

to 0. Moreover, the p-variation norm of {A(1−δ)
n (x)} is in Lp, and satisfies the

p-variational inequality
∥

∥

∥

∥

∥

∥

sup
{nk}↗

( ∞
∑

k=1

∣

∣

∣A(1−δ)
nk

− A(1−δ)
nk+1

∣

∣

∣

p
)

1
p

∥

∥

∥

∥

∥

∥

p

≤ c



sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

+ sup
n

‖fn‖p



 ,

and thus supn |A(1−δ)
n | ∈ Lp.

proof. In view of Theorem 1 and (3), we have to prove the theorem only when
either β ≤ 1

p , or β > 1
p and δ ≥ β − 1

p , which will be assumed henceforth.

The measurability of the variation norm that occurs in the left hand side of
the p-variational inequality above is handled by first restricting the supremum to
all finite increasing sequences of length N (and then the series are summed for k ≤
N); this supremum is clearly measurable. These restricted suprema are monotone
increasing in N , and hence the limit will also be measurable.

Throughout the arguments, c and C will denote constants that may depend
on α, β, δ and p, but will not depend on x, nor even on {fn}. The values of these
constants may vary from one occurance to the next. We put q = p/(p − 1), the
dual index of p.

Fix δ < β(p−1)/p; this is equivalent to
δ

p(β − δ)
<

1

q
, so for ε > 0 small enough

we have
(1 + ε)δ

p(β − δ)
<

1

q
. For such ε > 0 fixed, put α = 1+ε

p(β−δ) , so αδ < 1
q . Note that

if β ≤ 1
p then α > 1

pβ ≥ 1, and if β > 1
p and δ ≥ β − 1

p , then p(β − δ) ≤ 1; thus in

any case α > 1. Let mk = [kα] + 1, which is strictly increasing since α > 1. We
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first prove that
∑∞

k=1

∣

∣

∣A
(1−δ)
mk (x)

∣

∣

∣

p

converges a.e. to an integrable function. Since

mk ≥ kα, we have

∥

∥

∥A(1−δ)
mk

∥

∥

∥

p

p
=

∥

∥

∥

∥

∥

∥

1

m1−δ
k

mk
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

p

≤
(

m1−β
k

m1−δ
k

)p

sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

p

= Bp

(

m1−β
k

m1−δ
k

)p

≤ Bp c

kpα(β−δ)
= Bp c

k1+ε
,

which yields

(6)

∫ ∞
∑

k=1

∣

∣

∣A(1−δ)
mk

(x)
∣

∣

∣

p

dµ =

∞
∑

k=1

∥

∥

∥A(1−δ)
mk

∥

∥

∥

p

p
≤ Bp

∞
∑

k=1

c

k1+ε
< CBp.

Hence the series
∑∞

k=1

∣

∣

∣A
(1−δ)
mk (x)

∣

∣

∣

p

converges a.e.

As is now standard in such arguments, we break the variation along any given
strictly increasing sequence {nj} into two parts, the “long variation” and the “short
variation”, described below. For the “long variation” we will later use the variation
at times from the above sequence {mk}. First note that for each x we have

(7)

( ∞
∑

k=1

∣

∣

∣A(1−δ)
mnk

(x) − A(1−δ)
mnk+1

(x)
∣

∣

∣

p
)

1
p

≤ 2

( ∞
∑

k=1

∣

∣

∣A(1−δ)
mnk

(x)
∣

∣

∣

p
)

1
p

≤ 2

( ∞
∑

k=1

∣

∣

∣A(1−δ)
mk

(x)
∣

∣

∣

p
)

1
p

.

In order to handle the short variation, for each k we put Ik = [mk, mk+1]. For
the given subsequence {nj}, let Jk denote the set of j such that [nj , nj+1] ⊂ Ik,
and let L be the set of j such that for some i we have nj < mi < nj+1. Of course,

Jk and L depend on {nj}. In the series
∑∞

j=1

∣

∣

∣A
(1−δ)
nj (x) − A

(1−δ)
nj+1

(x)
∣

∣

∣

p

, the long

variation is the sum over the indices in L, and the short variation is the sum over
the indices in J :=

⋃

k≥1 Jk. In order to estimate the short variation, define

Sk(x) :=





∑

j∈Jk

∣

∣

∣A(1−δ)
nj

(x) − A(1−δ)
nj+1

(x)
∣

∣

∣

p





1
p

.

Clearly, Sk depends on {nj}. Using the inequality |a+b+c|p ≤ 3p−1(|a|p+|b|p+|c|p),
we obtain

Sp
k =

∑

j∈Jk

∣

∣

∣A(1−δ)
nj

− A(1−δ)
nj+1

∣

∣

∣

p

=
∑

j∈Jk

∣

∣

∣

∣

∣

1

n1−δ
j

nj
∑

i=1

fi −
1

n1−δ
j+1

nj+1
∑

i=1

fi

∣

∣

∣

∣

∣

p

=

∑

j∈Jk

∣

∣

∣

∣

∣

∣

(

1

n1−δ
j

− 1

n1−δ
j+1

)

mk
∑

i=1

fi +

(

1

n1−δ
j

− 1

n1−δ
j+1

) nj
∑

i=mk+1

fi −
1

n1−δ
j+1

nj+1
∑

i=nj+1

fi

∣

∣

∣

∣

∣

∣

p

≤ 3p−1(Up
k + V p

k + W p
k )
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where

Up
k (x) =

∑

j∈Jk

∣

∣

∣

∣

∣

(

1

n1−δ
j

− 1

n1−δ
j+1

)

mk
∑

i=1

fi(x)

∣

∣

∣

∣

∣

p

,

V p
k (x) =

∑

j∈Jk

∣

∣

∣

∣

∣

(

1

n1−δ
j

− 1

n1−δ
j+1

) nj
∑

i=mk+1

fi(x)

∣

∣

∣

∣

∣

p

,

and

W p
k (x) =

∑

j∈Jk

∣

∣

∣

∣

∣

∣

1

n1−δ
j+1

nj+1
∑

i=nj+1

fi(x)

∣

∣

∣

∣

∣

∣

p

.

Using the fact that ‖ · ‖`p ≤ ‖ · ‖`1 , we obtain

Uk(x) =





∑

j∈Jk

∣

∣

∣

∣

∣

(

1

n1−δ
j

− 1

n1−δ
j+1

)

mk
∑

i=1

fi(x)

∣

∣

∣

∣

∣

p




1
p

≤
∑

j∈Jk

∣

∣

∣

∣

∣

(

1

n1−δ
j

− 1

n1−δ
j+1

)

mk
∑

i=1

fi(x)

∣

∣

∣

∣

∣

=
∑

j∈Jk

(

1

n1−δ
j

− 1

n1−δ
j+1

)

m1−β
k

∣

∣

∣

∣

∣

1

m1−β
k

mk
∑

i=1

fi(x)

∣

∣

∣

∣

∣

=
∑

j∈Jk

(

1

n1−δ
j

− 1

n1−δ
j+1

)

m1−β
k

∣

∣

∣A(1−β)
mk

(x)
∣

∣

∣

≤ m1−β
k

∣

∣

∣
A(1−β)

mk
(x)
∣

∣

∣

(

1

mk
1−δ

− 1

m1−δ
k+1

)

≤
∣

∣

∣
A(1−β)

mk
(x)
∣

∣

∣

(

m1−δ
k+1 − m1−δ

k

mk
2−2δ

)

m1−β
k .

Since 1 + tα ≤ (1 + t)α for t ≥ 0 and α ≥ 1, the definition of mk yields

m1−δ
k+1 − m1−δ

k ≤ ((k + 2)α)
1−δ − (kα)1−δ ≤ ckα(1−δ)−1,

and we obtain

(8)
m1−δ

k+1 − m1−δ
k

mk
2−2δ

m1−β
k ≤ c

kα(1−δ)−1

kα(2−2δ)
kα(1−β) ≤ c

kα(β−δ)+1
≤ c

k
.

Hence Uk(x) ≤ c
k

∣

∣

∣A
(1−β)
mk (x)

∣

∣

∣.

Using again the fact that ‖ · ‖`p ≤ ‖ · ‖`1 , we see that

Vk(x) ≤
∑

j∈Jk

(

1

n1−δ
j

− 1

n1−δ
j+1

) ∣

∣

∣

∣

∣

nj
∑

i=mk+1

fi(x)

∣

∣

∣

∣

∣

≤
∑

j∈Jk

(

1

n1−δ
j

− 1

n1−δ
j+1

)

mk+1
∑

i=mk+1

|fi(x)|

≤
(

1

m1−δ
k

− 1

m1−δ
k+1

) mk+1
∑

i=mk+1

|fi(x)| ≤
m1−δ

k+1 − m1−δ
k

m2−2δ
k

mk+1
∑

i=mk+1

|fi(x)| .

The estimate of the first factor in (8) yields Vk(x) ≤ c
k1+α−αδ

∑mk+1

i=mk+1 |fi(x)| .
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For the third term in Sp
k(x), we use || · ||`p ≤ || · ||`1 and Hölder’s inequality,

and obtain

W p
k (x) =

∑

j∈Jk

∣

∣

∣

∣

∣

∣

1

n1−δ
j+1

nj+1
∑

i=nj+1

fi(x)

∣

∣

∣

∣

∣

∣

p

≤
(

1

m1−δ
k

)p
∑

j∈Jk





nj+1
∑

i=nj+1

|fi(x)|





p

≤
(

1

m1−δ
k

)p




∑

j∈Jk

∣

∣

∣

∣

∣

∣

nj+1
∑

i=nj+1

|fi(x)|

∣

∣

∣

∣

∣

∣





p

≤
(

1

m1−δ
k

)p( mk+1
∑

i=mk+1

|fi(x)|
)p

≤
(

1

kα(1−δ)

)p

(mk+1 − mk)
p/q

mk+1
∑

i=mk+1

|fi(x)|p.

For fixed k define the following functions (which do not depend on {nj}):

Fk(x) :=
1

kp

∣

∣

∣A(1−β)
mk

(x)
∣

∣

∣

p

,

Gk(x) :=
1

k(1+α−αδ)p

(

mk+1
∑

i=mk+1

|fi(x)|
)p

,

and

Hk(x) :=
1

kα(1−δ)p
(mk+1 − mk)

p/q
mk+1
∑

i=mk+1

|fi(x)|p.

We have shown that Sp
k(x) ≤ c1Fk(x) + c2Gk(x) + Hk(x). Putting F =

∑∞
k=1 Fk,

G =
∑∞

k=1 Gk, and H =
∑∞

k=1 Hk, we conclude that
The ”short p-variation” relative to any increasing sequence {nj} satisfies

(9)
∑

j∈J

|A(1−δ)
nj

(x) − A(1−δ)
nj+1

(x)|p ≤ c1F (x) + c2G(x) + H(x).

In order to finally estimate the p-variation of a given sequence {nj}, fix j ∈ L,
and let i1 = i1(j) be the smallest i with nj < mi, and let i2 = i2(j) be the largest
i with mi < nj+1. We then have mi1−1 ≤ nj < mi1 ≤ mi2 < nj+1, and obtain

(10) |A(1−δ)
nj

− A(1−δ)
nj+1

|p

≤ 3p−1(|A(1−δ)
nj

− A(1−δ)
mi1

|p + |A(1−δ)
mi1

− A(1−δ)
mi2

|p + |A(1−δ)
mi2

− A(1−δ)
nj+1

|p).
We now define a new increasing sequence of integers {n′

j} which is the refinement
of {nj} by joining all the integers {mi1(j), mi2(j) : j ∈ L} (if i1(j) = i2(j) we add
only mi1(j)). Similarly to the definition of J and L for the original sequence {nj},
we define J ′

k := {j : [n′
j , n

′
j+1] ⊂ Ik}, J ′ :=

⋃

J ′
k, and L′ := {j : n′

j < mi <
n′

j+1 for some i}. Let j ∈ Jk; we have nj = n′
j′ for some j′, and the definition of

Jk yields that j′ ∈ J ′
k; hence {nj : j ∈ J} ⊂ {n′

j : j ∈ J ′}. When j ∈ L, there is

no element of {mk} between nj and mi1(j), while nj+1 > mi1(j) and mi1(j)−1 ≤ nj ,
so if nj = n′

j′ , then [n′
j′ , n

′
j′+1] ⊂ Ii1(j)−1, so j′ ∈ J ′. All this means that the

short variation of {n′
j} contains all the variation of the original {nj}. Furthermore,

for j ∈ L we always have mi2(j) ∈ {n′
j′ : j′ ∈ J ′}; if i2(j) = i1(j) + 1, then also

mi1(j) ∈ {n′
j′ : j′ ∈ J ′}; when i2(j) > i1(j) + 1, then mi1(j) is in {n′

j′ : j′ ∈ L′}, so
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{n′
j′ : j′ ∈ L′} = {mi1(j) : j ∈ L, i1(j)+1 < i2(j)}. Using (10), and then applying

(9) to the short variation of {n′
j} and (7) to the long one, we have

∞
∑

j=1

|A(1−δ)
nj

(x) − A(1−δ)
nj+1

(x)|p ≤ 3p−1
∞
∑

j=1

|A(1−δ)
n′

j
(x) − A

(1−δ)
n′

j+1

(x)|p

≤ 3p−1 [c1F (x) + c2G(x) + H(x)] + 3p−12p
∞
∑

k=1

|A(1−δ)
mk

(x)|p.

Since the estimate does not depend on the sequence {nj}, we have

(11) sup
{nj}↗

∞
∑

j=1

|A(1−δ)
nj

− A(1−δ)
nj+1

|p ≤ 3p−1(c1F + c2G + H) + 3p−12p
∞
∑

k=1

|A(1−δ)
mk

|p.

In order to prove the claimed p-variational inequality, we have to show the inte-
grability of the right-hand side of (11), with an appropriate estimate. For the last
term we use (6). For the integrals of F , G, and H we look at their summands.

∫ ∞
∑

k=1

Fk(x)dµ =
∞
∑

k=1

∫

1

kp

∣

∣

∣A(1−β)
mk

(x)
∣

∣

∣

p

dµ ≤ Bp
∞
∑

k=1

1

kp
< ∞.

With K := supn ||fn||p and using Minkowski’s inequality, we obtain

∫

Gkdµ =
1

k(1+α−αδ)p

∫

(

mk+1
∑

i=mk+1

|fi|)pdµ ≤ 1

k(1+α−αδ)p
(mk+1 − mk)pKp

≤ cKp k(α−1)p

k(1+α−αδ)p
=

cKp

kp(2−αδ)
.

Thus, G =
∑

k Gk will be integrable, with the desired estimate, if p(2 − αδ) > 1.

This is equivalent to 1 − αδ > 1
p − 1, or αδ < 1 + 1

q , which certainly holds, since

αδ < 1
q by the definition of α.

Using p/q = p − 1 and the estimate mk+1 − mk ≤ ckα−1, we obtain

∫

Hk(x) dµ ≤ 1

kα(1−δ)p
(mk+1 − mk)p/q+1 Kp ≤ CKp

kα(1−δ)p−(α−1)p
.

Thus, H =
∑

k Hk is integrable, with the desired estimate, since p(1 − αδ) > 1,
which is equivalent to αδ < 1

q , holds.

We therefore have the required p-variational inequality, by (11), which implies

the a.e convergence of {A(1−δ)
n }, and since (2) yields norm convergence to 0, the

limit in the a.e. convergence is 0. The inequality supj |xj | ≤ ||{xn}||Vp + |x1| proved

in the Lemma yields that supn{|A
(1−δ)
n |} is in Lp. �

Definition. The ε-jump function of a sequence of functions {gn} is defined
for ε > 0 by J({gn}, ε)(x) = J({gn(x)}, ε), i.e., for each point x we we look at the
ε-jump of the sequence of values {gn(x)}.
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Corollary. Under the hypothesis of Theorem 2 we have

∥

∥

∥
J({A(1−δ)

n }, ε)
∥

∥

∥

1
p

1
≤ c

ε



sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

+ sup
n

‖fn‖p



 .

proof. For every point x we have (see the introduction)

J({A(1−δ)
n (x)}, ε) 1

p ≤ ||{A(1−δ)
n (x)||Vp

ε
=

1

ε

(

sup
(nk)↗

∞
∑

k=1

∣

∣

∣A(1−δ)
nk

(x) − A(1−δ)
nk+1

(x)
∣

∣

∣

p
)

1
p

So the result follows by taking the Lp-norm of each side and applying Theorem 2.

Theorem 3. Let 1 < p < ∞. Let {fn} ⊂ Lp such that supn ‖fn‖p = K < ∞,
and assume that (2) holds for some 0 < β ≤ 1. Then for fixed 0 ≤ δ < β(p − 1)/p,

the sequence of finite sums

{

n
∑

k=1

fk(x)

k1−δ

}

has a.e. bounded p-variation, hence the

series converges. Moreover, we have
∥

∥

∥

∥

∥

∥

∥

sup
{nj}↗





∞
∑

j=1

∣

∣

∣

∣

∣

∣

nj+1
∑

k=nj+1

fk

k1−δ

∣

∣

∣

∣

∣

∣

p



1
p

∥

∥

∥

∥

∥

∥

∥

p

≤ C



sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

+ sup
n

‖fn‖p



 ,

Proof. As before, we use the notations sn :=
∑n

k=1 fk and A
(1−δ)
n := 1

n1−δ sn,
and put γ := 1 − δ. For every increasing sequence {nj} we use (4) with n = 1 and
m = nj, and after subtracting we obtain

nj+1
∑

k=nj+1

fk

kγ
=
(

A(1−δ)
nj+1

− A(1−δ)
nj

)

+

nj+1−1
∑

k=nj

(

1

kγ
− 1

(k + 1)γ

)

sk.

Together with Minkowski’s inequality in `p, this yields

(

∞
∑

j=1

∣

∣

∣

nj+1
∑

k=nj+1

fk

kγ

∣

∣

∣

p) 1
p

=





∞
∑

j=1

∣

∣

∣

(

A(1−δ)
nj+1

− A(1−δ)
nj

)

+

nj+1−1
∑

k=nj

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

p





1
p

≤





∞
∑

j=1

∣

∣

∣

(

A(1−δ)
nj+1

− A(1−δ)
nj

)

∣

∣

∣

p





1
p

+





∞
∑

j=1

∣

∣

∣

∣

∣

∣

nj+1−1
∑

k=nj

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

∣

∣

∣

p



1
p

.

Hence

(12) sup
{nj}↗





∞
∑

j=1

∣

∣

∣

∣

∣

∣

nj+1
∑

k=nj+1

fk

kγ

∣

∣

∣

∣

∣

∣

p



1
p

≤
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sup
{nj}↗

(

∞
∑

j=1

∣

∣

∣

(

A(1−δ)
nj+1

− A(1−δ)
nj

)

∣

∣

∣

p ) 1
p

+ sup
{nj}↗





∞
∑

j=1

∣

∣

∣

∣

∣

∣

nj+1−1
∑

k=nj

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

∣

∣

∣

p



1
p

with first term on the right in Lp(µ), with an appropriate estimate of the norm,
by Theorem 2. It remains to check the last term. For this put S({nj}) :=
(

∑∞
j=1

∣

∣

∣

∑nj+1−1
k=nj

(

1
kγ − 1

(k+1)γ

)

sk

∣

∣

∣

p) 1
p

. Then the norm inequality || · ||`p ≤ || · ||`1
and obvious estimations yield

S({nj}) ≤
∞
∑

j=1

∣

∣

∣

∣

∣

∣

nj+1−1
∑

k=nj

(

1

kγ
− 1

(k + 1)γ

)

sk

∣

∣

∣

∣

∣

∣

≤ c
∞
∑

j=1

nj+1−1
∑

k=nj

|sk|
k1−β

1

kβ+γ
= c

∞
∑

k=1

|sk|
k1−β

1

kβ+γ
.

Since the right hand side does not depend on {nj}, and β + γ > 1, we obtain

∥

∥

∥

∥

∥

sup
{nj}↗

S({nj}
∥

∥

∥

∥

∥

p

≤ c

∥

∥

∥

∥

∥

∞
∑

k=1

|sk|
k1−β

1

kβ+γ

∥

∥

∥

∥

∥

p

≤ cB

∞
∑

k=1

1

kβ+γ
= CB,

which shows that also the last term in (12) is in Lp(µ) with the desired estimate of
the norm, and the theorem is proved. �

Corollary. Under the hypothesis of Theorem 2 we have

∥

∥

∥

∥

∥

J

({

n
∑

k=1

fk

k(1−δ)

}

, ε

)∥

∥

∥

∥

∥

1
p

1

≤ c

ε



sup
n

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

∥

∥

p

+ sup
n

‖fn‖p



 .

Remarks. 1. The a.e. convergence obtained in Theorems 2 and 3 was first
proved in[CL].

2. The results of Theorems 2 and 3 (in fact, even the a.e. convergence proved
in [CL]) cannot be improved in general, as the following example shows.

Example 1. Under the assumptions of Theorem 2, the a.e. convergence of
{ 1

n1−δ

∑n
k=1 fk} can fail if δ ≥ β(p − 1)/p.

We will work on [0, 1) with Lebesgue measure, thought of as the unit circle.
Fix p > 1 and β < 1. Let nk = [kα] with α = 1

β . For each k, let Ik be a half open

interval of length 1
k , such that Ik+1 is adjacent to, and to the right of Ik, mod 1

(i.e., Ik corresponds to a half open arc). I1 is the whole space, and for k > 1 the
intervals (arcs) Ik and Ik+1 are clearly disjoint. Also note that each x ∈ [0, 1) will
be in infinitely many of the Ik.

Let f̃j(x) = k1/pχIk
(x) if nk < j ≤ nk+1. Note that ‖f̃j‖p = k1/p(1/k)1/p = 1

where nk < j ≤ nk+1. Also note that
∥

∥

∥

∥

∥

∥

nk+1
∑

j=nk+1

f̃j

∥

∥

∥

∥

∥

∥

p

=
∥

∥

∥(nk+1 − nk)k1/pχIk

∥

∥

∥

p
= nk+1 − nk ≈ kα−1.
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Since α > 1 we have {nk+1 − nk} increasing. Define fj(x) = f̃j(x) − f̃nk
(x) if

nk < j ≤ nk + (nk − nk−1) and fj = f̃j(x) when nk + (nk − nk−1) < j ≤ nk+1.
The idea is that for the first few terms of the k-th block, we both put positive

mass on the interval Ik and put negative mass on the interval Ik−1. We stop putting
negative mass on Ik−1 after we have cancelled all the previous positive masses on
it, but continue to put mass on Ik until we reach nk+1.

Thus ‖fj‖p ≤ 2 for each j, and by the definitions

nk+1
∑

j=1

fj =

nk+1
∑

j=nk+1

f̃j = (nk+1 − nk)k1/pχIk
(x).

Using our choice of nk, we see that

(13)

∥

∥

∥

∥

∥

∥

1

n1−β
k+1

nk+1
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

=
nk+1 − nk

n1−β
k+1

≈ kα−1

kα(1−β)
=

1

k1−αβ
.

For any n, let nk ≤ n < nk+1. Since ||fj||p ≤ 2, (13) yields
∥

∥

∥

∥

∥

∥

1

n1−β

n
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥

∥

1

n1−β
k

nk
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

+
2(nk+1 − nk)

n1−β
k

≈ 3

(k − 1)1−αβ
.

Since we selected α = 1
β , we have 1 − αβ = 0, so (2) is satisfied.

However, on Ik the height of the ”average” is

1

n1−δ
k+1

nk+1
∑

j=1

fj =
nk+1 − nk

n1−δ
k+1

k1/p ≈ kα−1k1/p

kα(1−δ)
=

1

k1−αδ−1/p
.

Hence on Ik we will have height greater than some fixed positive constant provided
1− δ/β − 1/p = 1−αδ − 1/p ≤ 0, which is δ ≥ β(p− 1)/p. Since every x ∈ [0, 1) is
in infinitely many Ik, we obtain lim supk

1

n1−δ
k+1

∑nk+1

j=1 fj(x) > 0 for every x. Since
∑nk+1

j=1 fj(x) = 0 for x /∈ Ik, and each x is outside infinitely many Ik, we have

lim infk
1

n1−δ
k+1

∑nk+1

j=1 fj(x) = 0 for every x. Hence { 1
n1−δ

∑n
j=1 fj(x)} is everywhere

divergent.

Theorem 4. Let 1 ≤ p < ∞ and 1 < q < ∞. Let {fn} ⊂ Lp(µ) ∩ Lq(µ) such
that supn ‖fn‖q < ∞, and assume that (2) holds for some 0 < β ≤ 1. Then for

0 ≤ δ < max{β − 1
p , (q−1)pβ

q+(q−1)p} the sequence { 1
n1−δ

∑n
k=1 fk} converges to 0 a.e.,

and the series

∞
∑

k=1

fk(x)

k1−δ
converges a.e.

Proof. If β > 1
p , we can apply Theorem 1. We first check when, in this

case, the assertion of the theorem enlarges the interval for δ; it turns out that

β − 1
p > (q−1)pβ

q+(q−1)p is equivalent to pqβ > q + (q − 1)p. Put r := q+(q−1)p
pqβ ; we have

to deal only with the case r ≥ 1 (which is obviously satisfied also when β ≤ 1
p ).

Fix δ ∈ [0, (q−1)pβ
q+(q−1)p ). We first prove that 1

n1−δ

∑n
k=1 fk(x) → 0 a.e., by modify-

ing the proof of Proposition 1 of [CL] (which treats the case q = p). The assumption
on δ yields
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(i) (β − δ)rp > 1 and (ii) (1 − rδ)q > 1

since we have equality for the above value of r when δ = (q−1)pβ
q+(q−1)p .

Define nm = [mr] + 1 (which is strictly increasing since r ≥ 1). Then (i) yields

(14)

∫ ∞
∑

m=1

∣

∣

∣

∣

∣

1

n1−δ
m

nm
∑

k=1

fk

∣

∣

∣

∣

∣

p

dµ =
∞
∑

m=1

∥

∥

∥

∥

∥

1

n1−δ
m

nm
∑

k=1

fk

∥

∥

∥

∥

∥

p

p

≤ Bp
∞
∑

m=1

1

mrp(β−δ)
< ∞ ,

so
∑∞

m=1

∣

∣

∣

1
n1−δ

m

∑nm

k=1 fk

∣

∣

∣

p

converges a.e., which implies 1
n1−δ

m

∑nm

k=1 fk(x) → 0 a.e.

For nm ≤ n < nm+1 we have [CL]

(15)

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

fk − 1

n1−δ

nm
∑

k=1

fk

∣

∣

∣

∣

∣

≤ 1

n1−δ
m

nm+1
∑

k=nm+1

|fk|.

With C := supn ||fn||q we obtain, as in [CL],

∫

max
nm≤n<nm+1

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

fk − 1

n1−δ

nm
∑

k=1

fk

∣

∣

∣

∣

∣

q

dµ ≤
∫

[

1

n1−δ
m

nm+1
∑

k=nm+1

|fk|
]q

dµ

≤
[

1

n1−δ
m

nm+1
∑

k=nm+1

||fk||q
]q

≤ Cq

(

nm+1 − nm

n1−δ
m

)q

≤ Cq

(

m + 2

m

)(r−1)q
(2r)q

m(1−rδ)q
.

Since (1 − rδ)q > 1 by (ii), we have a convergent series, which proves that

max
nm≤n<nm+1

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

fk − 1

n1−δ

nm
∑

k=1

fk

∣

∣

∣

∣

∣

q

−→
m→∞

0 a.s.

Since | 1
n1−δ

∑nm

k=1 fk| ≤ | 1
n1−δ

m

∑nm

k=1 fk| → 0 a.e., we have | 1
n1−δ

∑n
k=1 fk| → 0 a.e.

The a.e. convergence of the series

∞
∑

k=1

fk(x)

k1−δ
is proved, using (4) (with n = 1),

as in Theorem 1 of [CL]; see the proof of our Theorem 1. �

Remarks. 1. Note that we may have 1 < q < p, so when µ is finite no
convergence follows from Theorem 2.

2. When µ is finite and q > p, we obviously have also supn ||fn||p < ∞, the
assumption of Theorem 2; however, Theorem 4 yields a larger interval for δ. In any
case, for fixed p, the larger q is, the larger the interval for δ is.

3. When µ is finite, we can also prove (as in [CL]) that sup
n>0

∣

∣

∣

∣

∣

n
∑

k=1

fk

k1−δ

∣

∣

∣

∣

∣

is in

Lmin{p,q}.

When µ is finite and supn ||fn||∞ < ∞, we can apply the previous theorem,
and let q → ∞ to obtain the interval for δ, given in the case ak ≡ 1 of the next
theorem. However, when µ is not finite this cannot be done. For example, on [0,∞)
with Lebesgue’s measure let An := [0, n) and fn = (−1)nχAn ; then sup ||fn||q = ∞
for any 1 < q < ∞, while for 1 < p < ∞ (2) is satisfied with β = 1 − 1/p.
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Definition. Let {ak} be a sequence of (complex) numbers, and let 1 ≤ t < ∞;
we say that {ak} ∈ Wt if supn>0

1
n

∑n
k=1 |ak|t < ∞. If {ak} is bounded we say that

{ak} ∈ W∞.

Theorem 5. Let 1 ≤ p < ∞, and let {fn} ⊂ Lp(µ) such that supn ||fn||∞ <
∞. Let 1 < t ≤ ∞ with dual index s := t/(t − 1), and let {ak} ∈ Wt. If for some
0 < β ≤ 1 we have

sup
n>0

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

akfk

∥

∥

∥

∥

∥

p

< ∞,

then for 0 ≤ δ < max{ p
p+sβ, β − 1

p} the sequence { 1
n1−δ

∑n
k=1 akfk} converges to 0

a.e., and the series
∞
∑

k=1

akfk(x)

k1−δ
converges a.e. When µ is finite, for δ as above we

also have supn>0 | 1
n1−δ

∑n
k=1 akfk| ∈ Lp and sup

n>0

∣

∣

∣

∣

∣

n
∑

k=1

akfk(x)

k1−δ

∣

∣

∣

∣

∣

∈ Lp.

Proof. We want to check when the value of the upper limit for δ is β − 1
p .

This requires first that β > 1
p (in which case Theorem 1 applies to {akfk}). The

inequality β − 1
p > p

p+sβ is equivalent to psβ/(p + s) > 1. We therefore have to

prove the theorem only when r := p+s
psβ ≥ 1. Then for fixed δ with 0 ≤ δ < p

p+sβ

we have (since for δ = p
p+sβ = 1

rs equality holds)

(i) rp(β − δ) > 1 and (ii) 1 − rsδ > 0.

Let nm = [mr] + 1, which is strictly increasing since r ≥ 1. Replacing fk in

(14) by akfk we obtain by (i), as in the previous proof, that
1

n1−δ
m

nm
∑

k=1

akfk → 0 a.e.

Put K1 := supn ||fn||∞. Let K2 := supn( 1
n

∑n
k=1 |ak|t)1/t if t < ∞, and

K2 := supn |an| if t = ∞. For nm ≤ n < nm+1 we obtain, using (15) with fk

replaced by akfk, and then Hölder’s inequality in case t < ∞ (i.e., s > 1),
∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

akfk − 1

n1−δ

nm
∑

k=1

akfk

∣

∣

∣

∣

∣

≤ 1

n1−δ
m

nm+1
∑

k=nm+1

|akfk| ≤ K1
1

n1−δ
m

nm+1
∑

k=nm+1

|ak|

if s>1
≤ K1

1

n1−δ
m

(

nm+1
∑

k=nm+1

|ak|t
)

1
t

(nm+1 − nm)
1
s

≤ K1K2n
δ
m

(

nm+1

nm

)
1
t
(

nm+1 − nm

nm

)
1
s

≤ (2r + 1)
1
t K1K2

(

nm+1 − nm

n1−sδ
m

)
1
s

.

(If t = ∞ we take s = 1, and skip the middle line above). We now use r ≥ 1 and
the definiton of nm to obtain, as in [CL] (see proof of Theorem 4)

nm+1 − nm

n1−sδ
m

≤ 2r(m + 2)r−1

mr−1m1−rsδ
= 2r

(

m + 2

m

)r−1
1

m1−rsδ
.

Since 1 − rsδ > 0 by (ii), we conclude (with K := K1K2(2
r + 1)1/t(2r)1/s) that

(16)

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

akfk

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n1−δ
m

nm
∑

k=1

akfk

∣

∣

∣

∣

∣

+ K
(m + 2

m

)
r−1

s

(

1

m1−rsδ

)
1
s

−→
m→∞

0.
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The a.e. convergence of the series

∞
∑

k=1

akfk(x)

k1−δ
is proved as in [CL]; see the

proof of our Theorem 1.
When µ is finite, the constant functions are in Lp(µ); using (14) with {fk}

replaced by {akfk}, we obtain from (16)

sup
n>0

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

akfk

∣

∣

∣

∣

∣

≤ sup
m>0

∣

∣

∣

∣

∣

1

n1−δ
m

nm
∑

k=1

akfk

∣

∣

∣

∣

∣

+ K · 3(r−1)/s ∈ Lp(µ).

When µ is finite, sup
n>0

∣

∣

∣

n
∑

k=1

akfk(x)

k1−δ

∣

∣

∣ ∈ Lp is proved as in Theorem 1 of [CL]. �

Corollary. Let 1 ≤ p < ∞. Let {fn} ⊂ Lp(µ) such that (2) holds for some
0 < β ≤ 1. In addition, assume that supn ||fn||∞ < ∞. Then for 0 ≤ δ < βp/(p+1)

the sequence { 1
n1−δ

∑n
k=1 fk} converges to 0 a.e., and the series

∞
∑

k=1

fk(x)

k1−δ
converges

a.e. When µ is finite, for δ as above we also have supn>0 | 1
n1−δ

∑n
k=1 fk| ∈ Lp and

sup
n>0

∣

∣

∣

∣

∣

n
∑

k=1

fk(x)

k1−δ

∣

∣

∣

∣

∣

∈ Lp.

Proof. Note that p
p+1β > β − 1

p , and apply Theorem 5 with ak = 1. �

Remarks. 1. The proof of the a.e. convergence in the corollary does not
require that {||fn||p} be bounded, but when µ is finite this follows from the bound-
edness of the L∞-norms.

2. Note that Theorem 4 and the previous corollary hold also for p = 1, while
in general for p = 1 condition (2) does not imply a.e. convergence of 1

n

∑n
k=1 fk –

see Example 1 in [CL] (the condition 0 ≤ δ < β(p − 1)/p cannot be satisfied when
p = 1, so Theorems 1 and 2 are meaningless for p = 1).

3. The speed of convergence obtained in Theorem 2, namely the bounded
p-variation of { 1

n1−δ

∑n
k=1 fk(x)}, may fail in the corollary when δ ≥ β(p − 1)/p

(although the sequence converges), as shown by the following simple example: let
µ be finite and p > 1, and let fk = (−1)k+1 be constant functions. Then (2) is
satisfied with β = 1, but for δ ≥ (p − 1)/p we have

∞
∑

n=1

∣

∣

∣A(1−δ)
n − A

(1−δ)
n+1

∣

∣

∣

p

≥
∞
∑

n=1

1

(n + 1)p(1−δ)
= ∞.

Example 2. Under the assumptions of the corollary, the a.e. convergence of
{ 1

n1−δ

∑n
k=1 fk} can fail if δ ≥ βp/(p + 1).

We modify Example 1. We still work on [0, 1) and define the same sets {Ik},
but we now take nk = [kα] with α = (p+1)/pβ. Put f̃j = χIk

when nk < j ≤ nk+1,

and define {fj} as before: fj = f̃j − f̃nk
when nk < j ≤ nk + (nk − nk−1), and

fj = f̃j when nk + (nk − nk−1) < j ≤ nk+1. Thus ||fj ||∞ = 1 for every j, and by
the definitions

nk+1
∑

j=1

fj =

nk+1
∑

j=nk+1

f̃j = (nk+1 − nk)χIk
.
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Since ||χIk
||p = k−1/p, the definition of nk yields

(17)

∥

∥

∥

∥

∥

∥

1

n1−β
k+1

nk+1
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

=
nk+1 − nk

n1−β
k+1

k−1/p ≈ kα−1

kα(1−β)+1/p
=

1

k1−αβ+1/p
.

For any n, let nk ≤ n < nk+1. Since ||fj ||p ≤ ||χIk
||p + ||χIk−1

||p < 2(k − 1)−1/p

when nk < j ≤ nk+1, (17) yields

∥

∥

∥

∥

∥

∥

1

n1−β

n
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥

∥

1

n1−β
k

nk
∑

j=1

fj

∥

∥

∥

∥

∥

∥

p

+
(nk+1 − nk)

n1−β
k

2(k − 1)−1/p ≈ 3

(k − 1)1−αβ+1/p
.

By our choice of α we have 1 − αβ + 1/p = 0, so (2) is satisfied.
However, on Ik the height of the ”average” is

1

n1−δ
k+1

nk+1
∑

j=1

fj =
nk+1 − nk

n1−δ
k+1

≈ kα−1

kα(1−δ)
=

1

k1−αδ
.

Hence on Ik we will have height greater than some fixed positive constant provided
1−αδ ≤ 0, which is δ ≥ βp/(p+1). Since every x ∈ [0, 1) is in infinitely many Ik, we
obtain lim supk

1

n1−δ
k+1

∑nk+1

j=1 fj(x) > 0 for every x. Since
∑nk+1

j=1 fj(x) = 0 for x /∈ Ik,

and each x is outside infinitely many Ik, we have lim infk
1

n1−δ
k+1

∑nk+1

j=1 fj(x) = 0 for

every x. Hence { 1
n1−δ

∑n
j=1 fj(x)} is everywhere divergent.

3. Applications

In this section we apply our previous results, especially Theorems 4 and 5, to
obtain additional information in some special cases of the results of [CL].

Proposition 6. Let {nk} be a non-decreasing sequence of positive integers,
and let {ak} be a sequence of complex numbers such that for some 0 < β ≤ 1 we
have

(18) sup
n>0

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−β

n
∑

k=1

akλnk

∣

∣

∣

∣

∣

= K < ∞ .

(i) If {ak} is bounded, then for every Dunford-Schwartz operator T on L1(µ) of

a probability space and every f ∈ Lp(µ), 2 < p < ∞, the series
∑∞

k=1
akT nk f

k1−δ

converges a.e. for any 0 ≤ δ < 2p−2
3p−2β. If f ∈ L∞, then the convergence holds for

0 ≤ δ < 2
3β, and also supn |∑n

k=1
akT nk f

k1−δ | ∈ L2(µ).
(ii) If {ak} ∈ Wt for 1 < t < ∞ with dual index s, then for f ∈ L∞ the series

∑∞
k=1

akT nk f
k1−δ converges a.e. for every 0 ≤ δ < max{ 2

2+sβ, β − 1
2}.

(iii) If {ak} ∈ Wt and (18) holds for nk = k, then for any f ∈ Ls(µ) the series
∞
∑

k=1

akT kf

k
converges a.e., and thus

1

n

n
∑

k=1

akT kf −→
n→∞

0 a.e.
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Proof. As in [CL], we note that (18) implies (by applying the spectral theo-
rem for unitary operators and the unitary dilation theorem for contractions) that
for any contraction T on a Hilbert space we have

(19) sup
n>0

∥

∥

∥

∥

∥

1

n1−β

n
∑

k=1

akT nk

∥

∥

∥

∥

∥

≤ K.

(i): Putting fk = akT nkf , the sequence {fn} is in L2(µ) and satisfies (2). We now
apply Theorem 4 (with q replaced by p), noting that for p > 2 and β ≤ 1 we always

have 2p−2
3p−2β > β − 1

2 . For f ∈ L∞ apply the corollary to Theorem 5 (with p = 2).

(ii) follows from applying Theorem 5 with p = 2 to fk = T nkf .
(iii): By (ii) we have the a.e. convergence of 1

n

∑n
k=1 akT kf for bounded func-

tions, which are dense in Ls(µ). For any f ∈ Ls(µ), Hölder’s inequality yields

sup
n

∣

∣

∣

∣

∣

1

n

n
∑

k=1

akT kf

∣

∣

∣

∣

∣

≤ sup
n

1

n

n
∑

k=1

|akT kf | ≤ sup
n

{

( 1

n

n
∑

k=1

|ak|t
)

1
t
( 1

n

n
∑

k=1

|T kf |s
)

1
s

}

.

But |T |, the linear modulus of T , satisfies |T kf |s ≤ (|T |k|f |)s ≤ |T |k(|f |s) (e.g., p.
65 of [Kr2]). Since {ak} ∈ Wt, the pointwise ergodic theorem for |T | applied to
|f |s ∈ L1(µ) yields supn | 1n

∑n
k=1 akT kf | < ∞ a.e.; now the Banach principle yields

1
n

∑n
k=1 akT kf −→

n→∞
0 a.e. for every f ∈ Ls(µ).

For f ∈ Ls(µ), put Snf =
∑n

k=1 akT kf . Abel’s summation by parts yields
n
∑

k=1

akT kf

k
=

Snf

n
+

n−1
∑

k=1

1

k2
Skf . We have shown that Snf/n → 0 a.e., so it remains

to check the series. When s ≥ 2 (i.e., 1 < t ≤ 2), we have f ∈ L2(µ), and
||Snf ||2 ≤ Kn1−β||f ||2 by (19). Since µ is a probability, we obtain

∫ ∞
∑

k=1

|Skf |
k2

dµ =

∞
∑

k=1

||Skf ||1
k2

≤
∞
∑

k=1

||Skf ||2
k2

≤ K||f ||2
∞
∑

k=1

1

k1+β
< ∞,

showing that
∑∞

k=1
|Skf |

k2 converges a.e., which proves (iii) when s ≥ 2.

Assume now 1 < s < 2. The operator Sn =
∑n

k=1 akT k maps L2 into itself

with norm ||Sn||2 ≤ Kn1−β by (19), and it maps L1(µ) into itself with norm
||Sn||1 ≤

∑n
k=1 |ak|. Since 1 < s < 2, the Riesz-Thorin theorem ([Z], vol. II

p. 95) yields that Sn maps Ls(µ) into itself with norm ||Sn||s ≤ ||Sn||α2 ||Sn||1−α
1 ,

where 0 < α < 1 is defined by 1
s = α · 1

2 + (1 − α) · 1. Hölder’s inequality yields

||Sn||1 ≤ (
∑n

k=1 |ak|t)1/tn1/s. Hence

||Sn||s ≤ Kαn(1−β)α
(

n
∑

k=1

|ak|t
)

1−α
t

n
1−α

s ≤ Kαn(1−β)αn
1−α

t

( 1

n

n
∑

k=1

|ak|t
)

1−α
t

n
1−α

s .

Since {ak} ∈ Wt and 1
t + 1

s = 1, we obtain

||Sn||s ≤ C · n(1−β)αn(1−α)( 1
t + 1

s ) = C · n1−αβ .

This yields

∫ ∞
∑

k=1

|Skf |
k2

dµ ≤
∞
∑

k=1

||Skf ||s
k2

dµ ≤ C||f ||s
∞
∑

k=1

1

k1+αβ
< ∞ . Now the

previous arguments yield (iii) also in the case s < 2. �
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Remarks. 1. Proposition 6(i) complements Proposition 2(ii) of [CL], which
deals with f ∈ Lp for 1 < p ≤ 2.

2. Since µ is assumed finite, f ∈ Lp(µ) with p > 2 is in L2, and Proposition
2(ii) of [CL] can be applied; however, we obtain here a larger interval for δ than
that given in [CL] for L2 functions (which is the interval for which Theorems 2 and
3 hold).

3. Proposition 2 of [CL] gives additional results under the assumption (18).
These can be improved by applying Theorems 1 or 3, according to the value of δ.
We omit the statements of these improvements.

4. Examples of sequences {an} satisfying (18) for nk = k were given in [CL].
Another example (not mentioned there) is an = exp[2πin(logn)γ ] with γ > 0; by
[I] the series

∑∞
k=1

ak

k1/2(log k)δ λk converges uniformly on the unit circle for large

enough δ, so (18) is satisfied with any β < 1/2.
5. For {ak} bounded satisfying (18), Proposition 2(ii) of [CL] applies also

when µ is not finite. It yields, for 1 < p ≤ 2, the estimate of the Lp-norm of

the operators
∥

∥

∥

1
n

∑n
k=1 akT nk

∥

∥

∥

p
= O(nβp) with βp = 2β p−1

p . For f ∈ L∞
⋂

Lp,

we can now apply the corollary to Theorem 5, with fk = akT nkf , to obtain the

a.e. convergence of the series
∑∞

k=1
akT nk f

k1−δ when 0 ≤ δ < p
p+1βp = p−1

p+12β. For

bounded Lp functions, this improves the interval δ < p−1
p β obtained in Proposition

2(ii) of [CL].

Theorem 7. Fix 1 < q < ∞, and let {gn} be i.i.d. on a probability space
(Y, m), with ||g1||q < ∞ and

∫

g1dm = 0. Then for a.e. y ∈ Y the sequence
ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ L q
q−1

(µ), the series

∞
∑

k=1

akT kf

k
converges a.e.

Proof. We first note that by the strong law of large numbers, 1
n

∑n
k=1 |gk|q

converges a.s. to
∫

|g1|qdm. Hence for a.e. y ∈ Y the sequence {ak} is in Wq.
If q > 2 then also

∫

|g1|2dm < ∞, so putting q1 := min{2, q} we have {gn}
centerd i.i.d. with finite absolute moment of order q1 ≤ 2. Let α ∈ (q−1

1 , 1), so
α ∈ (1

2 , 1), and 1 < 1/α < q1 yields

E
(

|g1|1/α(log+ |g1|)
1
α−1+ε

)

< ∞ for every ε > 0.

By the result of Cuzick and Lai [CuLa] we now have that for a.e. y ∈ Y the

series

∞
∑

k=1

gk(y)

kα
λk converges uniformly in |λ| = 1. For such y, put ak = gk(y). A

variant of Kronecker’s lemma (a Banach space version, in the space of continuous
functions) yields that 1

nα

∑n
k=1 akλk converges uniformly to 0, so {ak} satisfies (18)

with nk = k and β = 1 − α (note that β < 1
2 ). The theorem now follows from

Proposition 6(iii). �

Remarks. 1. The convergence of 1
n

∑n
k=1 akT kf under the assumptions of

the theorem follows from the “return times theorem” (Appendix of [B], see also
[Ru]; for the passage from measure preserving transformations to Dunford-Schwartz
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operators see [ÇLO]). Our result improves this convergence (in the particular i.i.d.
case).

2. Assani [A4] showed that Theorem 7 fails for q = 1, although the “return
times theorem” holds.

3. For an i.i.d. sequence as in the theorem, with the additional assumption
that g1 is symmetric, Assani [A2] obtained the a.e convergence of 1

n

∑n
k=1 akT kf

for every f ∈ Lp(µ) with p > 1 (even if p < q
q−1 ). We do not know if in this case

also the series

∞
∑

k=1

akT kf

k
converges a.e. for every Dunford-Schwartz operator and

every f ∈ Lp(µ) when 1 < p < q
q−1 .

Theorem 8. Let (Ω, µ) be a probability space, and let {fn} ⊂ Lp(µ), 1 ≤ p <
∞, such that supn ||fn||q < ∞ for some 1 < q < ∞. Let {nk} be a sequence of
integers such that for some 0 < β ≤ 1 we have

(20) sup
n

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−β

n
∑

k=1

fkλnk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

p

= K < ∞ .

If (q−1)pβ
q+(q−1)p ≥ β − 1

p (e.g., β ≤ 1
p or q ≥ p), then there exists a set Ω′ ⊂ Ω with

µ(Ω′) = 0 such that for x /∈ Ω′ and every 0 ≤ δ < (q−1)pβ
q+(q−1)p the series

∞
∑

k=1

fk(x)

k1−δ
λnk

converges uniformly in |λ| = 1.

Proof. The proof is similar to that of Theorem 4, with the same notations.

Instead of (14) we obtain

∫ ∞
∑

m=1

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−δ
m

nm
∑

k=1

fkλnk

∣

∣

∣

∣

∣

p

< ∞, and instead of (15)

we have

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

fkλnk − 1

n1−δ

nm
∑

k=1

fkλnk

∣

∣

∣

∣

∣

≤ 1

n1−δ
m

nm+1
∑

k=nm+1

|fk|.

¿From these we deduce max
|λ|=1

∣

∣

∣

∣

∣

1

n1−δ

n
∑

k=1

fk(x)λnk

∣

∣

∣

∣

∣

→ 0 for a.e. x. For the proof of

the uniform convergence of the series, see the proof of Theorem 9 of [CL]. �

Remarks. 1. Since µ is finite, for q = ∞ (i.e., when sup ||fn||∞ < ∞), we
have the above result for δ < p

p+1β, by using finite q tending to ∞.

2. Theorem 8 extends Corollary 6 of [CL]. Theorem 9 there could be similarly
extended.

Corollary. Let (Ω, µ) be a probability space, and let T be a power-bounded
operator on Lq(µ), 1 < q < ∞. If f ∈ Lq(µ) satisfies, for some β > 0,

sup
n

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

1

n1−β

n
∑

k=1

λkT kf

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

= K < ∞ ,

then there exists a set Ω′ ⊂ Ω with µ(Ω′) = 0 such that for x /∈ Ω′ and every

γ ∈ (1 − (q−1)β
2q−1 , 1] the series

∞
∑

k=1

T kf(x)λk

kγ
converges uniformly in |λ| = 1.
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Proof. Apply Theorem 8 with fn := T nf and p = 1.

Remarks. 1. For q ≥ 2 and T induced on Lq(µ) by a probability preserving

transformation, the corollary was proved in [AN]. Since β
2 − 1

2q < β(q−1)
2q−1 , our result

yields the convergence for a wider range of γ. However, if f is bounded, the limit as
q → ∞ in the corollary yields the same range as in Theorem 5 of [AN]. Existence
functions satisfying the assumption of the corollary was shown in [A3] and [AN].

2. For T a positively dominated contraction on Lq, 1 < q < ∞, the a.e. uniform

convergence of the random Fourier series
∞
∑

k=1

T kf(x)λk

k
under the assumption of

the corollary was proved in Theorem 8 of [CL] by a different method.
3. For T a positive contraction of L1(µ) with T 1 = 1 and f ∈ L1 satisfying

the hypothesis of the corollary, the a.e. uniform convergence of the random Fourier

series

∞
∑

k=1

T kf(x)λk

k
was proved in Theorem 8 of [CL]; this does not follow from

our Theorem 8.

Theorem 9. Let (Ω, µ) be a probability space and 2 ≤ p ≤ ∞. Let {fn} ⊂
Lp(µ) be independent, with

∫

fndµ = 0 and supn ||fn||p < ∞. Then

(21) sup
n>0

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

1

n3/4

n
∑

k=1

fkλ[
√

k]

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

< ∞

and for a.e. x ∈ Ω and δ < p−1
6p−4 the series

∞
∑

k=1

fk(x)

k1−δ
λ[

√
k] converges uniformly in

|λ| = 1.

Proof. We first prove (21). The assumption yields supn ||fn||2 = K < ∞.

Put Sn =
∑n

k=1 λ[
√

k]fk. Then

|Sn2−1|2 =

∣

∣

∣

∣

∣

∣

n−1
∑

j=1

λj

(j+1)2−1
∑

k=j2

fk

∣

∣

∣

∣

∣

∣

2

=





n−1
∑

j=1

λj

(j+1)2−1
∑

k=j2

fk









n−1
∑

j=1

λ−j

(j+1)2−1
∑

k=j2

f̄k





=

n−1
∑

j,m=1

λj−m

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

fkf̄`

=
n−1
∑

j=1

(j+1)2−1
∑

k=j2

(j+1)2−1
∑

`=j2

fkf̄` +
n−1
∑

j,m=1

j 6=m

λj−m

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

fkf̄` .

Denote the last two summands by Gn and Hn. Then Gn does not depend on λ,
and satisfies

||Gn||1 ≤
n−1
∑

j=1

(j+1)2−1
∑

k=j2

(j+1)2−1
∑

`=j2

||fkf̄`||1 ≤ K2
n−1
∑

j=1

(2j + 1)(2j + 1) ≤ 4K2(n + 1)3/3 .
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Since Hn does depend on λ, we have

∫

max
|λ|=1

|Hn| dµ ≤
∫ n−1
∑

j,m=1

j 6=m

∣

∣

∣

∣

∣

∣

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

fkf̄`

∣

∣

∣

∣

∣

∣

dµ

≤















∫









n−1
∑

j,m=1

j 6=m

∣

∣

∣

∣

∣

∣

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

fkf̄`

∣

∣

∣

∣

∣

∣









2

dµ















1
2

≤















∫

[(n − 1)2 − (n − 1)]

n−1
∑

j,m=1

j 6=m

∣

∣

∣

∣

∣

∣

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

fkf̄`

∣

∣

∣

∣

∣

∣

2

dµ















1
2

≤

n



















∫

(

n−1
∑

j,m=1

j 6=m

(j+1)2−1
∑

k=j2

(m+1)2−1
∑

`=m2

|fk|2|f̄`|2 +

n−1
∑

j,m=1

j 6=m

(j+1)2−1
∑

k,r=j2

(m+1)2−1
∑

`,s=m2

(k,`) 6=(r,s)

fkf̄`frf̄s

)

dµ



















1
2

.

The restriction j 6= m puts k and r in one block of integers, while ` and s are in
another one; thus when (k, `) 6= (r, s) the independence yields

∫

fkf̄`frf̄sdµ = 0.
Hence the independence of |fk|2 and |f`|2 yields

∫

max
|λ|=1

|Hn| dµ ≤ n{sup
k

||fk||42
n−1
∑

j,m=1

(2j)(2m)}1/2 ≤ nK2n2 = K2n3.

We conclude that
∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

1

n2 − 1
Sn2−1

∣

∣

∣

∥

∥

∥

∥

2

2

≤ 1

(n2 − 1)2

(

||Gn||1 + || max
|λ|=1

|Hn| ||1
)

≤ C

n
.

Now let n satisfy m2 ≤ n < (m + 1)2. Then the previous inequality yields

∥

∥

∥

∥

1

n
max
|λ|=1

|Sn|
∥

∥

∥

∥

2

≤ 1

m2 − 1

∥

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

∣

m2−1
∑

k=1

λ[
√

k]fk

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

2

+
1

m2

∥

∥

∥

∥

∥

max
|λ|=1

∣

∣

∣

∣

∣

n
∑

k=m2

λ[
√

k]fk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

≤
√

C

m
+

2m + 1

m2
K ≤ C′

√
m + 1

≤ C′

n1/4
,

which proves inequality (21).
The claimed a.e. convergence assertion now follows from Theorem 8, with

β = 1
4 , p replaced by 2, and q replaced by p. �

Remark. The method of [CL], based on the deep results of Marcus and Pisier

[MP1], cannot be applied here since the terms in {[
√

k]} are not distinct; regrouping
terms according to powers of λ and then following the method of [CL] yields a worse
estimate (i.e., a smaller value of β).
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Proposition 10. Let (Ω, µ) be a probability space and let {fn} ⊂ Lp(µ), 1 <
p ≤ ∞, be independent with supn ||fn||p < ∞. Then for 1 ≤ t < p we have

sup
n>0

1

n

n
∑

k=1

|fk|t < ∞ a.e. (i.e., for a.e. x ∈ Ω the sequence {fk(x)} is in Wt).

Proof. We first prove that the assumptions imply supn
1
n

∑n
k=1 |fk| < ∞

a.e. (the case t = 1). It is clearly sufficient to prove for {fk} non-negative, and
we may certainly assume in this part that 1 < p ≤ 2. We then have E(fn) =
||fn||1 ≤ ||fn||p, and the centering gn = fn−E(fn) satisfies ||gn||p ≤ 2||fn||p. Hence
∞
∑

n=1

E(|gn|p)/np < ∞. By the Marcinkiewicz-Zygmund theorem ([MaZ], Theorem

5’; see also [S], Theorem 2.12.2), the series

∞
∑

n=1

gn

n
converges a.e., so by Kronecker’s

lemma 1
n

∑n
k=1 gk → 0 a.e. The claim now follows from

1

n

n
∑

k=1

fk ≤
∣

∣

∣

∣

∣

1

n

n
∑

k=1

gk

∣

∣

∣

∣

∣

+
1

n

n
∑

k=1

E(fk) ≤
∣

∣

∣

∣

∣

1

n

n
∑

k=1

gk

∣

∣

∣

∣

∣

+ sup
j

||fj ||p.

We now prove the proposition. The functions hn = |fn|t ∈ Lp/t are indepen-
dent, with supn ||hn||p/t < ∞. Since p/t > 1, we can apply the first part of the
proof to {hn} ⊂ Lp/t(µ), and obtain

sup
n>0

1

n

n
∑

k=1

|fk|t = sup
n>0

1

n

n
∑

k=1

hn < ∞ a.e. �

Remark. Note that {fk(x)} need not be in Wp. Let {An} be independent

sets in non-atomic (Ω, µ) with µ(An) = 1
n log n and fn := (n log n)1/pχAn . By Borel-

Cantelli a.e. x is in infinitely many An, and for x ∈ Anj we have 1
nj

∑nj

k=1 |fk(x)|p ≥
log nj .

Theorem 11. Let {nk} be a strictly increasing sequence of integers with nk ≤
ckr for some r ≥ 1, let (Y, m) be a probability space, and let {gn} ⊂ Lq(Y, m),
2 ≤ q < ∞, be independent with sup ||gn||q < ∞ and

∫

gndm = 0. Then for a.e.
y ∈ Y the sequence ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ L∞(µ), the series
∞
∑

k=1

akT nkf

kγ
converges a.e. for γ ∈ (2q−1

3q−2 , 1].

Proof. Since q ≥ 2, we have supn ||gn||2 < ∞. It follows from Theorem 12 of
[CL] (by a variant of Kronecker’s lemma) that for a.e. y ∈ Y the sequence {ak}
satisfies (18) for any β < 1

2 . By Proposition 10 {ak} ∈ Wt for 1 ≤ t < q. We can
now apply Proposition 6(ii) (letting t → q and β → 1/2). �

Theorem 12. Let {nk} be a strictly increasing sequence of integers with nk ≤
ckr for some r ≥ 1, let (Y, m) be a probability space, and let {gn} ⊂ L∞(Y, m)
be independent with sup ||gn||∞ < ∞ and

∫

gndm = 0. Then for a.e. y ∈ Y the
sequence ak := gk(y) has the following property:
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For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ Lp(µ), 2 ≤ p < ∞, the series

∞
∑

k=1

akT nkf

kγ
converges a.e. for γ ∈ (2p−1

3p−2 , 1].

Proof. As before, {ak} satisfies (18) for any β < 1
2 . For p = 2 we apply

Proposition 2(i) of [CL], and for p > 2 we apply Proposition 6(i). �

Remarks. 1. When f ∈ L∞ and supn ||gn||∞ < ∞, the lower limit for γ is
2/3, either by letting q → ∞ in Theorem 11 or by letting p → ∞ in Theorem 12.

2. Theorem 12 complements Theorem 14 of [CL], which gives the result for
p = 2, with γ > 3/4, and uses it also when f ∈ Lp(µ) with p > 2. Theorem 12
gives a better lower bound for γ.

Theorem 13. Let (Y, m) be a probability space, and let {gn} ⊂ Lq(Y, m),
2 ≤ q < ∞, be independent with sup ||gn||q < ∞ and

∫

gndm = 0. Then for a.e.
y ∈ Y the sequence ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ Lp(µ), p > q
q−1 , the series

∞
∑

k=1

akT kf

k
converges a.e. and 1

n

∑n
k=1 akT kf → 0

a.e.

Proof. As in the proof of Theorem 11, {ak} ∈ Wt for t < q, and {ak} satisfies
(18), with nk = k, for any β < 1

2 . For a given p, if p > q
q−1 then its dual index t is

less than q, and we apply Proposition 6(iii) (with s = p). �

Remarks. 1. When q = 2 we obtain the convergence for all f ∈ Lp, p > 2.
When q > 2 we obtain convergence for all f ∈ L2.

2. If the sequence {gn} in Theorem 13 is i.i.d., then Theorem 7 gives the
convergence of the series also for p = q

q−1 , since the SLLN can be used instead of

Proposition 10. Moreover, for {gn} i.i.d. Theorem 7 does not require a finite second
moment.

In order to extend the previous theorem to the case q < 2, we need the following
theorem, which complements Theorem 12 of [CL]. Note that we have an additional
assumption of symmetry.

Theorem 14. Let (Ω, µ) be a probability space. Let 1 < p < 2, and {fn} ⊂
Lp(µ) be symmetric and independent with

∫

fndµ = 0, and supn ||fn||p < ∞. Let
{nk} be a strictly increasing sequence with nk ≤ ckr for some r ≥ 1. Then for a.e.

x, the series

∞
∑

k=1

fk(x)

k1−δ
λnk converges uniformly in λ, for any 0 ≤ δ < p−1

p .

Proof. We will use Theorem B(i) of [MP2], with the group G the unit circle,
G the compact neighborhood, the set of characters A := {nk : k ≥ 1}, and the
independent random variables ξnk

= fk.
By linearity of the model we may and do assume that supn ||fn||p ≤ 1; this

clearly implies that P (|fn| > c) ≤ c−p for every n and c > 0, the assumption in

[MP2], p. 247. Fix 0 < δ < (p−1)/p, and put α = p(1−δ)−1
pr , so 0 < α < (p−1)/p.

Define {aj} on A by ank
= 1

k1−δ (the sequence need not be defined outside A, but
we put aj = 0 for j /∈ A). It will be convenient to identify the unit circle with
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the interval [0, 2π], with addition modulo 2π. Let t1, t2 ∈ [0, 2π] and define the
corresponding translation invariant pseudo-metric d(t1, t2) = σ(t1 − t2) (which is
uniformly convergent), where

σ(t) :=
(

∑

j∈A

|aj |p|1 − eijt|p
)1/p

= 2
(

∞
∑

k=1

| sin nkt
2 |p

kp−pδ

)1/p

.

Since | sin t| ≤ 1 and | sin t| ≤ |t|, we obtain | sin t|p ≤ | sin t|α ≤ |t|α. This yields

σ(t) ≤ 2
(

∞
∑

k=1

cαkrα|t|α
2αkp−pδ

)1/p

≤ 21−α
p c

α
p |t|α

p

( γ

γ − 1

)1/p

≤ Cα|t|
α
p

with γ := p − pδ − rα > p − pδ − p(1 − δ) + 1 = 1.
Denote by m the Lebesgue measure on [0, 2π]. Then the “distribution” of σ

satisfies

mσ(ε) := m{t ∈ [0, 2π] : σ(t) < ε} ≥ C
− p

α
α ε

p
α ;

hence the ’inverse’ function defined on [0, 2π] (which is the non-decreasing re-
arrangement of σ), satisfies

σ(s) := sup{t > 0 : mσ(t) < s} ≤ Cαs
α
p .

In order to apply Theorem B(i) of [MP2] (in the form described in the discus-
sion beginning at the end of p. 248 there), we estimate

Ip(σ) :=

∫ 2π

0

σ(s)ds

s(log b(p)
s )1/p

≤ Cα

∫ 2π

0

ds

s1−α
p (log b(p)

s )1/p
,

where b(p) > 2π is a constant depending only on p (see p. 290 of [MP2]). The
finiteness of Ip(σ) follows from the integrability of 1

s
1− α

p
for α > 0. Now the claimed

convergence follows from [MP2]. �

Remarks. 1. The theorem applies to sequences {[kr] : k ≥ 1} with r ≥ 1.
2. The integers in the sequence {nk} must be distinct (in addition to the growth

condition), to make it an enumeration of the set of characters A; hence the proof

of the theorem does not apply to the sequence {[
√

k]}.
Theorem 15. Let (Y, m) be a probability space, and let {gn} ⊂ Lq(Y, m),

1 < q < 2, be independent and symmetric with sup ||gn||q < ∞ and
∫

gndm = 0.
Then for a.e. y ∈ Y the sequence ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ Lp(µ), p > q
q−1 , the series

∞
∑

k=1

akT kf

k
converges a.e. and 1

n

∑n
k=1 akT kf → 0

a.e.

Proof. The proof is similar to that of Theorem 13, but uses Theorem 14
instead of Theorem 12 of [CL]: {ak} ∈ Wt for 1 ≤ t < q, and by Theorem 14 (and a
variant of Kronecker’s lemma) {ak} satisfies (18) with nk = k for any 0 < β < q−1

q .

For p > q
q−1 the dual index t is less than q and we apply Proposition 6(iii) (with

s = p). �
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Remark. Note that in the i.i.d. case (Theorem 7) symmetry is not required,
and the convergence holds also for f ∈ L q

q−1
.

Theorem 16. Let (Y, m) be a probability space, and let {gn} ⊂ Lq(Y, m),
2 ≤ q < ∞, be independent with sup ||gn||q < ∞ and

∫

gndm = 0. Then for a.e.
y ∈ Y the sequence ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ L∞(µ), the series

∞
∑

k=1

akT [
√

k]f

kγ
converges a.e. for γ ∈ (1 −

(

q−1
3q−2

)2

, 1].

Proof. By Theorem 9 (and a variant of Kronecker’s lemma), {ak} satisfies

(18), with nk = [
√

k], for any β < q−1
6q−4 . By Proposition 10 {ak} ∈ Wt for any

t < q. We now apply Proposition 6(ii) with β → q−1
6q−4 and t → q. �

Theorem 17. Let (Y, m) be a probability space, and let {gn} ⊂ L∞(Y, m) be
independent, with sup ||gn||∞ < ∞ and

∫

gndm = 0. Then for a.e. y ∈ Y the
sequence ak := gk(y) has the following property:

For every Dunford-Schwartz operator T on L1(µ) of a probability space and

f ∈ Lp(µ), 2 ≤ p < ∞, the series

∞
∑

k=1

akT [
√

k]f

kγ
converges a.e. for γ ∈ (8p−5

9p−6 , 1].

Proof. As before, Theorem 9 implies that the sequence {ak} satisfies (18) for

nk = [
√

k], this time for any β < 1
6 (by letting p → ∞ in the result). Since {ak} is

bounded, we apply Proposition 6(i), letting β → 1
6 . �
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