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On strong laws of large numbers with rates
Guy Cohen, Roger L. Jones, and Michael Lin

ABSTRACT. Let {fn} C Lp(p), 1 < p < o0, be a sequence of functions
with sup,, ||fnllp < oco. We prove that if for some 0 < 8 < 1 we have

1 < p—1 1
SUPHTB Z ka < 00, then for § < ——f3 the sequence {ﬂ Z fr}
n n k=1 p p n k=1

has a.e. bounded p-variation, hence converges, and the p-variation norm func-
tion is in Lp(u). If we replace sup,, || fn||p < oo by sup,, ||fn|lcc < oo, then the
a.e. convergence holds for § < p—il (. Furthermore, in each case we also have

oo
a.e. convergence of the series Z

k=1
in the first case we even have that the sequence of partial sums has bounded
p-variation.

Some applications are given. In particular, we show that if {gn} are
centered independent (not necessarily identically distributed) random variables
with sup,, ||gn||q < oo for some g > 2, then almost every realization an = gn(y)
has the property that for every Dunford-Schwartz operator 1" on a probability
ag ka

k

same result holds for 1 < ¢ < 2 if in addition the random varaibles {gn} are
all symmetric. When the {gn } are i.i.d. the symmetry is not needed, and a.e.
convergence of the above series holds also for f € Lil (n)-

=

klié for the corresponding values of §, and

oo
space (2, 1) and f € Lp(u), p > # the series Z converges a.e. The
k=1

1. INTRODUCTION

It is known that there is no general speed of convergence in the pointwise ergodic
theorem for ergodic measure preserving transformations; Krengel [Kr1] has shown
that for every measure preserving transformation 6 of the unit circle with Lebesgue
measure and for every sequence {a,} of positive numbers converging to 0 there exists
a continuous function f with integral 0 such that limsup,, |1 Y}, fo0*|/a, =
a.e. For further discussion see pp. 14-15 of [Kr2].
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2 COHEN, JONES, AND LIN

Derriennic and Lin [DL] have used a rate of convergence in the mean to obtain
pointwise rates of convergence: Let T' be a Dunford-Schwartz operator on Li(u) of
a probability space, and let f € Ly, for some (fized) p > 1. Assume that for some
0 < B <1 we have

n

1
nl=>~8 Zka

k=1

< 00.

(1) sup
" p

(i) If B > 1 —1/p, then the series > oo T*f/kY/P converges a.e. and thus
(1/nY/PYS0_ TFf — 0 ae.

(ii) If B < 1—1/p, then for every v > 1 — f3 the series > oy T*f /K7 converges
a.e. and (1/n)>0_T*f — 0 a.e.

Condition (1) had been previously used by Loeve [Lo| (see [Do], p. 492) for T
unitary on Lo to obtain the strong law of large numbers. Rates of convergence in
this case were obtained by Gaposhkin [G].

For T induced by an ergodic probability preserving transformation on (£2, 1)
and f € Lq(p) orthogonal to the eigenfunctions of T', the Wiener-Wintner the-
orem [WW] yields that for a.e. & we have lim, > | ATk f(z) = 0 for ev-
ery A on the unit circle; in fact, the convergence (for fixed x) is uniform in A
(see [A1] for f € Lo, and [CL] for the extension to f € L;). This yields [CL]
||maxu|:1 }% Sory )\kaf} Hp — 0 when f € L,, p > 1. Independently of [DL],
Assani [A3] studied the rate of convergence in the Wiener-Wintner theorem, and
considered functions f € Lo which for some § > 0 satisfy

1 n
Sy
k=1

He showed the existence of such functions for K-automorphisms and other inter-

esting systems, and proved that for z in a set of full measure the Fourier series

Sone  ARTE f(2)/k converges for every A on the unit circle. When f € L, with

p>2and > %, Assani and Nicolaou [AN] strenghtened the result, proving the
1

uniform convergence of Y, A¥T* f(x)/k" for any v > 1 — (g —35)-

< 00.
1

sup
n

max
IAl=1

A different method of measuring the speed of convergence of a numerical se-
quence x,, — ¥ is to check whether 220:1 |z, — z|P < oo (Le., {z, — 2z} € {,) for
some p > 1. Note that if for ¢ > 0 we define the e-deviation of the convergent
sequence by D({x,,},€) :=[{n: |z, — x| > €}|, we obtain

|z, — 2| \? 1 »
piwda< S (BET) < e - 2
{ki|zp—z|>e}
The condition {x, —z} € ¢, is obviously very strong, and implies
= 1/p

sup [ lene, = wnl?] T <2l — 2}l < oo

{nx}/ k=1
A sequence {z,} of complex numbers is said to have bounded p-variation if it

1/p
satisfies [|[{z }||v, := supy,,, - {2;021 £ —xnk|p] < oo. For fixed p > 1 the
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sequences of bounded p-variation are a vector space, with [|[{z,}||v, a semi-norm.
. 1 —1
Since |xnk+1 — Ty, | < E?ﬂi |xj+1 - xj'a we have ||{xn}||V1 = E]oil |xj+1 - xj"
LEMMA. Every complex sequence of bounded p-variation converges.

PrOOF. For p = 1 this is immediate, since x,, = 1 + Ez;ll(ﬂfk-u — k).

Fix j > 1, and take ny = 1, ny = j, and ny = k+ j for £ > 2. Then
lz;| < |zj — z1| + |21] < |{zn}llv, + |21|. Hence {z,} is bounded. Assume {z,}
has two different limit points a and b. Then we can find an increasing subsequence
{nx} with a = limz,,,, and b = limxy,,, ,,, SO [Zny,, — Tng,| > |b—al/2 > 0 for
large k, contradicting the convergence of the series of p-powers. O

The Lemma (which should be well-known) shows that |[{z,}||y, is a norm
(the p-variation norm) on the space BV;DO of all sequences of bounded p-variation
converging to 0, which contains £,,.

DEFINITION. The e-jump of a sequence {xy} is defined for € > 0 by

J(€) =max{n: Is; <t; < sy <tlo--- < sy <ty With |z, — 2] > €, 1 < j <}

Note that J(e) = J({zx},€) is finite for every ¢ > 0 if (and only if) {zx}
converges; it counts the number of jumps of size € that are observed along the
sequence {z}. It is easy to check that D({zy},€/2) > J({zn},€)/2.

Let {z,} have bounded p-variation. If J({z,},€) = n and the jumps occur at
the n pairs s; < t;, 1 < j < n, as in the definition, then

sy < 3 (2 0) < Dy,

7j=1
Bourgain [B] showed that for a probability preserving transformation 6 on
(Q,p) and f € Lo the sequence of ergodic averages A, f(x) := L3 | f(0%z)
satisfies || |[Anf(2)|]v, 2 < c(p)||fl|2 for every p > 2. This was generalized to L,,

1 < p < 00, by Jones, Kaufman, Rosenblatt, and Wierdl [JKRW], who proved for
p > 2 the weak (1,1) inequality

A2 .

For further discussion and additional references, see [CJRW].

ple: [[Anf(@)lly, > e} <

2. STRONG LAWS OF LARGE NUMBERS WITH RATES

Our main results give more precise information on the SLLN with rate obtained
in Cohen and Lin [CL]. Throughout this section we assume that(f2, 1) is a o-finite
measure space. We start with a rather simple result.

THEOREM 1. Let 1 < p < oo. Let {f,} C Lp(p), and assume that for some
1—17 < B <1 we have

n

1
5 2

k=1

(2) sup =B < 0.

p
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Then for 0 <06 < — % we have {—= >"1_; fu(x)} € €, a.e. Moreover, the series

— fr — fr(@ — J

Z k;l( 6) converges a.e., Z kl( 6) Z k;l( 6)

k=1 k=n k=n
PROOF. Denote s, = > ,_; fr. Then

1
/Z‘nlé‘du Z/‘nlﬁ < sznw o <o

n=1

is in Ly(p).

} €y ae., and
&

P
Hence > 7, < o0 a.e.

Denote v =1 —4§. For 1 < n < m, Abel’s summation by parts (with so = 0)
yields

m f m Sp — S1_ S m
W YE-Fegmtm S ()

k=n k=n

_Sn__
Py gy

The a.e. convergence of Z ‘Zkl( 6) is proved as in Theorem 1 of [CL], where the

boundedness of {||f.||p} is not used for the a.e. convergence of the series on the
right hand side of (4), so letting m — oo in (4) we obtain

o0

= f Sp_ 1 1
(5) ;ﬁ:—m”;(;ﬂ—fm)s'ﬂ-

By the first part, for a.e. x the sequence {5’;—@} is in £,. Since Y ,- kﬁ% =

O(n®=#), and p(B — §) > 1 by assumption, Minkowski’s inequality yields

oo | oo » o N ,
JEIE Gomti) | w2 ( Eliton) o
0o . » .
<?7p<2w% el ) <Y i <o
Hence i i (ki_ k+1p )Sk b < oo a.e., so by (5) {i ]/;k1(x5)} e, for
n=1 |k= 2
a.e. x, and

C(p,p,0)B. O

oL, (w)

REMARKS. 1. Unlike the result of [CL], Theorem 1 does not require that
sup,, || frl|p be finite. This is due to the restriction on 8 and the small range for 4.
2. For § = 3 — % the above result is no longer valid. Fix 1 < p < oo and
% < B<1. Put fr, = k' — (k- 1)!78 so (2) is satisfied, but for § = 8 — £ we

p
have { = >_,_; fe} = {3} which is not in £,
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DEFINITION. The e-deviation function of a sequence of functions {g, } is defined

for € > 0 by D({gn},€)(x) = D({gn(x)},¢€), i.e., for each point x we look at the
e-deviation of the sequence of values {g,(z)}.

COROLLARY. Under the hypothesis of Theorem 1 we have

1 n
HD ({n1asz}’€> - ,@ka
k=1
PROOF. For every point « we have (see the introduction)

p({i il < 3 )
k=1 k=1

and the result follows by integrating and applying (3).

< - sup

p

p

THEOREM 2. Let 1 < p < co. Let {f,} C L, such that sup,, || fnllp < 00, and
assume that (2) holds for some 0 < 8 < 1. For fized 0 < § < B(p—1)/p, define the

“averages”
1 n
(1-6) .
A= nl-o Z fe-
k=1

Then for a.e x the sequence {qu,lfé) (x)} has bounded p-variation and converges
to 0. Moreover, the p-variation norm of {Aﬁ}“” ()} is in L,, and satisfies the
p-variational inequality
1
P P
) <c|sup
n
P

PROOF. In view of Theorem 1 and (3), we have to prove the theorem only when
either 5 < %, or 3 > 1—17 and § > 3 — %, which will be assumed henceforth.

The measurability of the variation norm that occurs in the left hand side of
the p-variational inequality above is handled by first restricting the supremum to
all finite increasing sequences of length N (and then the series are summed for k <
N); this supremum is clearly measurable. These restricted suprema are monotone
increasing in N, and hence the limit will also be measurable.

Throughout the arguments, ¢ and C will denote constants that may depend
on a, 3,9 and p, but will not depend on z, nor even on {f,}. The values of these
constants may vary from one occurance to the next. We put ¢ = p/(p — 1), the
dual index of p.

+sup [ fallp | »
n

sup < ’A(l 8) _ 409
P

{nx}.” e

1 n
5> Ik
k=1

and thus sup,, |A$L176)| € L,.

Fix § < B(p—1)/p; this is equivalent to ———— , so for € > 0 small enough

1 1) 1
( +€) <— For such e > 0 fixed, put a = H_e , 50 ad < 1. Note that
(5 5) p(B—9) q

ifﬁgpthena>m21,andifﬁ>%and(SZﬁ—E,thenp(ﬁ—(S)Sl;thusin

any case a > 1. Let my = [k®] + 1, which is strictly increasing since o > 1. We

(ﬁ 5)

we have
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first prove that Y .-, ‘A(l 9 )‘ converges a.e. to an integrable function. Since
my > k%, we have

( 6) 1 & ’ mA\"

Al 1-— H o< | 2k su

H mllc_é ; fJ - m,lc_é np
p

1-6
— My, P ¢ _pr_°©
-7 (mi “) R TEE

n p
1
5> fr
k=1

p

which yields
6 / ’A(l 2 x’ dp = HA&*‘”H < B < OB
( ) Z H ; Uk P kZ:1 kl-i—e

. 1-§ p
Hence the series Y -, ‘Agnk )(x)‘ converges a.e.

As is now standard in such arguments, we break the variation along any given
strictly increasing sequence {n;} into two parts, the “long variation” and the “short
variation” | described below. For the “long variation” we will later use the variation
at times from the above sequence {my}. First note that for each 2 we have

1

(7) (Z QD () — 4GS, <x>}p> ;

<2<Z‘A$}Lnf ‘) <2<Z‘A<15 )p.

In order to handle the short variation, for each k we put I = [my, my1]. For
the given subsequence {n,}, let Ji denote the set of j such that [n;,n;41] C I,
and let L be the set of j such that for some i we have n; < m; < n;;11. Of course,

Jr and L depend on {n;}. In the series E . ‘ (= 6)( ) — ALY (x)‘p, the long

Tj+1

variation is the sum over the indices in L, and the short variation is the sum over
the indices in J := |J;~; Jk. In order to estimate the short variation, define

P

Si(@) = | D AL (@) = AL D (a)

JE€Jk

’

Clearly, Sy, depends on {n;}. Using the inequality |a+b+c|P < 37=1(|a|P+[b|P+|c|P),
we obtain

nj+1
p_ (1-0) _ 4-8)° _ -~ _
S = Z ’A".f A"j+1 Z 1 Ezﬂ ni-o Z f7 -
JjE€Jk j€Jk J+1 i=1
Tj+1 P
g DILRT P D DR O
JE€Jk J iv1 /) i1 J ]+1 i=my+1 Mj+1 i=n;+1

<3N UL+ VE+ WD)
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where
UII;(Z‘):Z (1— 1 5>Zf1 )
JETx n; i1 ) =1
1
V=Y (—1_ ) S )
JEJk J J+1 i=mp+1
and
P
nj+1
Wff(”f)zz i Z filz
JEJk J+1 i=nj+1
Using the fact that || - ||, < |- [|e,, we obtain
1
P
o= (2| (- ) S|
JjEJ) J J+1 =1
1 1\ = 1 1 1
(o) S| 5 (- o )l S
JjEJk J j+1 =1 JEJk J j+1 k
1 1 1-6 | 41—
= Z (F - n1—5> my ‘A'snk )(x)‘
JjEJ) J j+1

1 1 ml=0 _ 1o

1-6 | 4(1=5) = (1-8) Dkl Tk 1-p

<m0 |G (@) (mkw m,i:i> <[44 2 @) ( el K
for t > 0 and « > 1, the definition of my, yields

Since 1+t~ < (14 ¢)®

1-6 m]lcfé < ((k+2)a)1*5 _ (ka)lfé < Cka(lfd)fl’

Mi1 —
and we obtain
1-6 1-6 —5)—1
My — My ml—ﬁ < Cka(l ) ka(lfﬁ) < ¢ < ¢
ko =7 pa(2-26) = ka(B=0)+1 = -

8

®) e
Hence U (z) < ¢ A%;ﬁ) (x)’

Using again the fact that || - ||, < - |le;, we see that

AOEDS <ﬁ - %) S @)
j M1

J€Jk J i=mp+1
1 M1
<Z< = —1_5> > 1fil)
J€Jx 7 Ni11 ) i=me+1
M+1 1-6 1-6 Mkt
1 1 My — My
= PG = S
My, Mit1 ) immp+1 my P
< prreer Licmntt 1fi(@)] -

The estimate of the first factor in (8) yields Vi (z)
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For the third term in S} (x), we use || - ||¢, < || -|le, and Holder’s inequality,
and obtain
2

Wh(x) = — Z fiz s(ﬁ) Yo D @)

1
JEJIk i1 = nj+1 k jEJK \i=n;+1

p

P

<<%> SIS @) <<%> (Z |fi<x>|>
my my

JE€EJk [1=n;+1 i=mp+1
1 P / ME+1

< (mm) mens =m0’ 3 g1
i=myp+1

For fixed k define the following functions (which do not depend on {n;}):

1 p
— = | 40-8)
Fk(a:) = &P Amk. (.23)
1 ME41 p
Gy(z) :== L(+a—ad)p < Z |fz(x)|> )
i=mp+1
and
1 / MEk41
Hk(ﬂf) = m (mk+1 - mk)p I Z |fv($)|p
1=mr+1

We have shown that S¥(z) < ¢1Fy(2) + c2Gr(x) + Hi(z). Putting F = 72 | F)
G=>,2,Gy, and H =77 | Hj, we conclude that
The 7short p-variation” relative to any increasing sequence {n;} satisfies

9) DAL (@) — ALY (@) < e F(2) + e2G(2) + H(x).

jeJ

In order to finally estimate the p-variation of a given sequence {n;}, fix j € L,
and let i1 = ¢1(j) be the smallest ¢ with n; < m,, and let 45 = i5(j) be the largest
1 with m; < nj41. We then have m;, _1 < n; < m;; <m;, < njq1, and obtain
(10) |A (1-0) _ A(l 6)|

Mj41
< 3P71(Al—9) A(l 5)|p+ |A(1 5 _ A(l 6)|p+ |A(1 ) — AU= ),
7 J+1
We now define a new increasing sequence of integers {n} Wthh is the refinement
of {n;} by joining all the integers {my, jy, M4, ;) : j € L} (if i1(j) = i2(j) we add
only m;, (j)). Similarly to the definition of J and L for the orlgmal sequence {n,},
we deﬁne Jk ={j: [nj,nfq] C Ik}, J = UJp, and L' = {j : nj <m; <
', for some i}. Let j € Ji; we have n; = n;, for some 5, and the definition of
Ji; yields that j" € Ji; hence {n; : j € J} C {n}: j € J'}. When j € L, there is
no element of {my} between n; and m;, (5, while nj 11 > m;, ;) and m;, ;y—1 < ny,
so if n; = nf,, then [n},,n} 1] C I )—1, so j° € J'. All this means that the
short variation of {n/} contains all the variation of the original {n;}. Furthermore,
for j € L we always have my, ;) € {n, : j* € J'}; if ia(j) = 41(j) + 1, then also
mi, ) € {nfy + j' € J'}; when ia(j5) > 11( )+ 1, then my, () is in {n}, : j' € L'}, so
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{nly o j" e L'y ={my, )+ j € L,i1(j)+1 <i2(j)}. Using (10), and then applying
(9) to the short Varlatlon of {nj} and (7) to the long one, we have

(o) oo
—5 —5 — 1-6 1-6
DAL — AL @ < 1AL @) - AL @)

° 1
j=1

<37 ey F(x) + coG(x) 4 H(x)] 4 3P~ 127 Z |A(1 N

Since the estimate does not depend on the sequence {nj}, we have

(11) sup Z|A(1 8 _ A(l 5)|P<3;D 1(ClF+C2G+H)+3p 12pZ|A(1 6)|p
{n; }/j 1 P

In order to prove the claimed p-variational inequality, we have to show the inte-
grability of the right-hand side of (11), with an appropriate estimate. For the last
term we use (6). For the integrals of F, G, and H we look at their summands.

/ZFk Y = Z/kp A<1 )( )} du<BPkaip<oo.
=1

With K := sup, ||fn||p and using Minkowski’s inequality, we obtain

M1

1 1
/deﬂ, = m /( Z+1 |fl|) m(mk+1 mk)pr
i=my
(a=1)p P
< kP k cK

L(+a—ad)p  Lp2—ad)
Thus, G = >, G, will be integrable, with the desired estimate, if p(2 — ad) > 1.
This is equivalent to 1 — ad > % —1l,orad <1+ %, which certainly holds, since
ad < % by the definition of «.

Using p/q = p — 1 and the estimate my11 — my < ck®1, we obtain

P
/H’f = <11 gy (M —me)? K < fo(l (;C)ﬁi(a,l)p-
Thus, H = ), Hy, is integrable with the desired estimate, since p(1 — ad) > 1
which is equivalent to aé < , holds.
We therefore have the requ1red p-variational inequality, by (11), which implies
the a.e convergence of {Agllfé)}, and since (2) yields norm convergence to 0, the
limit in the a.e. convergence is 0. The inequality sup; [x;| < [[{zn}||v, +|21| proved

in the Lemma yields that supn{|A£7,176)|} is in Ly. O

DEFINITION. The e-jump function of a sequence of functions {g,} is defined
for € > 0 by J({gn},€)(z) = J({gn(2)},€), i-e., for each point z we we look at the
e-jump of the sequence of values {g,(z)}.
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COROLLARY. Under the hypothesis of Theorem 2 we have

1 n
< 5 2
k=1

1
P
1

|7(A8=},0)

c
€

sup +sup || fullp
n n

P

PROOF. For every point « we have (see the introduction)

MNk+1
€ nk /k: 1

(1-5) ¥
JHALD ()}, )% < {An " @)llv, _ 1 < sup Z‘A (1-8) () — A1) (5 )’ )

So the result follows by taking the L,-norm of each side and applying Theorem 2.

THEOREM 3. Let 1 <p < oo. Let {f,} C L, such that sup,, ||full, = K < oo,
and assume that (2) holds for some 0 < 8 < 1. Then for fited 0 < § < B(p —1)/p,

the sequence of finite sums

has a.e. bounded p-variation, hence the

k=1
series converges. Moreover, we have
1
0o Mj41 f P\ 1 n
k
ap (313 ) | <o (o= 30a] Fowlsl)
i} \ j=1 |k=n, +1 " k=1 "

p

PROOF. As before, we use the notations s,, := ZZ':l fr and AELP&) = ﬁsn,

and put v := 1 — J. For every increasing sequence {n;} we use (4) with n = 1 and
m = nj, and after subtracting we obtain

Tj+1 nj41—1 1 1
S = (oA s ¥ (5 )

k= nJJrl k=n;

Together with Minkowski’s inequality in £, this yields

(Z! 5

Jj=1 k=n;+

1

)p

p

00 nJ —1
j=1 g k+1

P\ 7

1
%) p oo [nj+1—1
(1=6) _ A(1=9¢)
S Z‘ AnJJrl Anj ) Z < ’Y k+1) )Sk
i=1

J=1| k=n;
Hence
P\ »
00 Tj+1 fk
(12) sup | =] <
{n;}/~ =1 |k=n;+1
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P\ ¥

1 0o [nj+1—1
sup (Z‘ A(17+<15) Ag}j—é))’p)}v+ sup Z ]Z (%—7%_:1)7)5

{n;}~ {n;}.~ j=1| k=n;

with first term on the right in L,(x), with an appropriate estimate of the norm,
by Theorem 2. It remains to check the last term. For this put S({n;}) =

1
1 P\ ® . .
( =1 ‘ZZ”@ ( - — m) Sk’ )p. Then the norm inequality || - [[e, <] ]le,
and obvious estimations yield

J:1 k=n;
oo Mj+1—1 | IS
Z Z Ei- 5kﬂ+v: Zk1 ﬂkﬁ+'y '
J=1 k=n; k=1

Since the right hand side does not depend on {n;}, and 5+ > 1, we obtain

— 1
SCBZWT’Y:CB’
P k=1

which shows that also the last term in (12) is in L,(x) with the desired estimate of
the norm, and the theorem is proved. ([l

lsg| 1

k1-8 B+
k=1

sup S({n;}
{n;}/

p

COROLLARY. Under the hypothesis of Theorem 2 we have
—~ RN

(et )] = (ol
=1 =

REMARKS. 1. The a.e. convergence obtained in Theorems 2 and 3 was first
proved in[CL].

2. The results of Theorems 2 and 3 (in fact, even the a.e. convergence proved
n [CL]) cannot be improved in general, as the following example shows.

p

<

(&
= | sup
€ n

+ sup || fnllp
1 P "

EXAMPLE 1. Under the assumptions of Theorem 2, the a.e. convergence of
{5 iy fi} can fail if 6 > B(p —1)/p.

We will work on [0,1) with Lebesgue measure, thought of as the unit circle.
Fix p>1and 8 < 1. Let ny = [k*] with a = % For each k, let I, be a half open
interval of length , such that I;41 is adjacent to, and to the right of I, mod 1
(i.e., Iy corresponds to a half open arc). I is the whole space, and for k£ > 1 the
intervals (arcs) Iy and Ix41 are clearly disjoint. Also note that each x € [0,1) will
be in infinitely many of the Ij.

Let f;(x) = kY/Pxp, (x) if ng < j < npyr. Note that || f5]|, = EV/?(1/k)Y/P =1
where n; < j < ng41. Also note that

Nk41

_ 1/p o a—1
E , il = =
f; H (nk41 — n)k"Px, H =npe1 — g KT

=ni+1
J=nk p
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Since @ > 1 we have {njy1 — ny} increasing. Define f;(x) = fj(z) — fn, (2) if
nk < J < ng+ (ng —ng—1) and f; = f;(x) when ng + (ng —ng—1) < j < ngta.
The idea is that for the first few terms of the k-th block, we both put positive
mass on the interval I, and put negative mass on the interval I,_;. We stop putting
negative mass on I;_; after we have cancelled all the previous positive masses on
it, but continue to put mass on I until we reach ny41.
Thus | f;]|, < 2 for each j, and by the definitions

MNk+1 MNEk+1

o= Y fi= e — )k Px, (2).

Jj=1 Jj=nr+1
Using our choice of ny, we see that

Tk+1 a—1
_ Nk+1 — Nk - k o 1

(13) Z fi| = pl=8 7 pa(1-p) T gl-aB -

k+1 j=1 » k+1

For any n, let ny <n < ngy1. Since |||, < 2, (13) yields

1 z":f‘ |l if‘ +2(nk+1—nk)N 3
= I =t ny, " (kb —1)tme?
p

p

Since we selected o = %, we have 1 — aff = 0, so (2) is satisfied.
However, on I} the height of the "average” is

ni-f f nk+1 kl/p kaflkl/P B 1
1 1-6 J = ka(1=6) — pl-ad—1/p °
k+1 j=1 k:+1

Hence on I}, we will have height greater than some fixed positive constant provided
1-6/8—=1/p=1—ad—1/p <0, whichis 6 > B(p—1)/p. Since every z € [0,1) is
in infinitely many Iy, we obtain limsup, —= >>7"1" f;(x) > 0 for every z. Since
Mt
Z?i{l fi(z) = 0 for x ¢ Ij, and each x is outside infinitely many I, we have
liminfy, —5 St fi(x) = 0 for every x. Hence {5 > i1 fi(x)} is everywhere
Mht1 n -

divergent.

THEOREM 4. Let 1 <p < oo and 1 < g < oo. Let {fn} C Ly() N Ly(p) such
that sup,, || fnllq < o0, and assume that (2) holds for some 0 < § < 1. Then for

0<6< max{ﬁ p %} the sequence {—5 >1_ fx} converges to 0 a.e.,

and the series E k1*5) converges a.e.
k=1

Proor. If 5 > %, we can apply Theorem 1. We first check when, in this

case, the assertion of the theorem enlarges the interval for §; it turns out that
-1 . . _
8 — % > % is equivalent to pg8 > ¢+ (¢ — 1)p. Put r := %; we have
to deal only with the case r > 1 (which is obviously satisfied also when g < %)
Fixd €0 ,%) We first prove that —— >7_; fi(z) — 0 a.e., by modify-
ing the proof of Proposition 1 of [CL] (which treats the case ¢ = p). The assumption

on ¢ yields
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) (B=30)rp>1 and (ii)) (1 —=rd)g>1
since we have equality for the above value of r when § = ~4—2p0

g+(g=D)p"
Define n.,,, = [m"] + 1 (which is strictly increasing since > 1). Then (i) yields

(14) /Z

Nm

= 5ka

Nm

nl- 5ka

du—

= B Z mrp(ﬁ 6)

SO D " =

P
— > fk‘ converges a.e., which implies ﬁ S fr(z) — 0 ae.
m m

For ny, < n < nyp41 we have [CL]
1 n 1 Nom
nl-o Zf’“ Tl ka
k=1 k=1

With C := sup,, || fn|lq We obtain, as in [CL],

Mm 41

1
SF Z |frel-

m o k=n,,+1

(15)

Nm,

i 5ka i 5ka

1 N 41 q
du</ln1 ;Y |fk|] an

k=n,+1

r—1
<1 (W)q <1 (m_—|—2>( )a (2r)?
n

m m-ro)q"

max
Nom <n<n7n+1

q

1 Nm41
Slm Z I fxllq

m k=nym+1

m
Since (1 —rd)g > 1 by (ii), we have a convergent series, which proves that

MNm

nl 1 Z e = ni-o Z f’“

Since |—=5 Y57 fi] < |W175 S frl = 0 ae., we have |—— >/, fi] — 0 a.e.
o0

The a.e. convergence of the series Z k@)

1-6
k=1 k

as in Theorem 1 of [CL]; see the proof of our Theorem 1. O

— 0 a.s.
m—0o0

Nm, <n<n n4+1

is proved, using (4) (with n = 1),

REMARKS. 1. Note that we may have 1 < ¢ < p, so when g is finite no
convergence follows from Theorem 2.

2. When p is finite and ¢ > p, we obviously have also sup,, ||fn|l, < o0, the
assumption of Theorem 2; however, Theorem 4 yields a larger interval for §. In any
case, for fixed p, the larger ¢ is, the larger the interval for ¢ is.

Z e

3. When p is finite, we can also prove (as in [CL]) that sup
n>0

is in

L

min{p,q}-

When g is finite and sup,, ||fn||lcoc < 00, we can apply the previous theorem,
and let ¢ — oo to obtain the interval for §, given in the case ar = 1 of the next
theorem. However, when y is not finite this cannot be done. For example, on [0, 00)
with Lebesgue’s measure let A, :=[0,n) and f,, = (—1)"xa,; then sup||fn||q = o0
for any 1 < ¢ < oo, while for 1 < p < oo (2) is satisfied with 5 =1—1/p.
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DEFINITION. Let {a)} be a sequence of (complex) numbers, and let 1 < ¢ < oo;
we say that {a,} € Wy if sup,,o 2 > p_, ak|’ < co. If {a)} is bounded we say that
{(Lk} € We.

THEOREM 5. Let 1 < p < oo, and let {f,} C L,(u) such that sup,, || fnlleo <
00. Let 1 < t < oo with dual index s :=t/(t — 1), and let {ax} € Wy. If for some

0 < B <1 we have
ni- 5Zakf’“
p

then for 0 < 0 < max{#ﬂ, 08— 5} the sequence {F S or_y akfr} converges to 0

sup < 00,

n>0

a . .
e., and the series E Z{k 5 z) converges a.e. When p is finite, for 6 as above we
— a fi(z)
also have sup, |n1—1,5 Sr_iaxfi| € L, and sup 21116 €L,
n>0
k=1

ProOF. We want to check when the value of the upper limit for § is § — %.
This requires ﬁrst that 5 > % (in which case Theorem 1 applies to {afr}). The
inequality 0 — = > erSB is equivalent to ps@/(p + s) > 1. We therefore have to
prove the theorem only when r := ff; > 1. Then for fixed § with 0 < § < p+gﬁ

we have (since for § = 28 = L equality holds)

(i) rp(B—40)>1 and (ii) 1 —rsd > 0.

Let ny,, = [m"] + 1, which is strictly increasing since r > 1. Replacing fj in
1 MNm
(14) by ay fx we obtain by (i), as in the previous proof, that —— Z apfr — 0 a.e.
Ly
Put Ki = sup, ||fnllso. Let Ko = sup, (L3}, |axl)'/t if t < oo, and
K5 := sup,, |a,| if t = c0. For n,, < n < n;,q1 we obtain, using (15) with fj
replaced by ay fi, and then Holder’s inequality in case t < oo (i.e., s > 1),
1 n MNm+1 1 Mm+41
-5 Zakfk ni- ézakfk = Z |akful < K1 Z |ax]
k=1 e T k=n, 1

1

. Mm+41 t
if s>1 1
< Ki—— ( > Iaklt> (Nmt1 = M)
n

1
m k=nm,+1

1 1 1
< K Kon?, (";j“) ("’"“_"’") < (27 +1)T K Ko (7"’"21_;”’") :
m Nm

m Nm

o =

(If t = oo we take s = 1, and skip the middle line above). We now use r > 1 and
the definiton of n,, to obtain, as in [CL] (see proof of Theorem 4)

Ml = N _ 2r(m +2)7 1 _ 9 <m+2)r_1 1

nrln s6 = mr—1lml-rsoé m ml-rsd’

Since 1 —rsd > 0 by (ii), we conclude (with K := K K»(2" + 1)Y/*(2r)'/*) that
1

1 « m+ 2 1 '
-0 I;akfk +K< m ) (ml—rsé) mj)ooo

Nm

e Zkfk

Tim =1

(16)
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ap fr(x)
J1=0

The a.e. convergence of the series Z is proved as in [CL]; see the

k=1
proof of our Theorem 1.

When p is finite, the constant functions are in L,(p); using (14) with {fx}
replaced by {axfi}, we obtain from (16)

11 5 Z ar fr

k=1

+ K307V e Lo(u).

iakfk

sup Y
-

< sup
m>0

When g is finite, sup ’ Z al;f{k 5 ’ € L, is proved as in Theorem 1 of [CL]. O
n>0

COROLLARY. Let 1 < p < oo. Let {fn} C L,(u) such that (2) holds for some

0 < B < 1. In addition, assume that sup,, || fnl|lcc < 00. Then for0 < 6 < Bp/(p+1)

the sequence {—— >_r_; fi} converges to 0 a.e., and the series Z J;l(_xé)
k=1

a.e. When p is finite, for § as above we also have sup,~q | == > p_; fx| € Lp and

= fr(x)

CONveErges

€L,

PRrROOF. Note that +1ﬂ > 3 — =, and apply Theorem 5 with a; = 1. (]

REMARKS. 1. The proof of the a.e. convergence in the corollary does not
require that {||fn||p} be bounded, but when p is finite this follows from the bound-
edness of the L..-norms.

2. Note that Theorem 4 and the previous corollary hold also for p = 1, while
in general for p = 1 condition (2) does not imply a.e. convergence of %22:1 fr —
see Example 1 in [CL] (the condition 0 < ¢ < B(p — 1)/p cannot be satisfied when
p =1, so Theorems 1 and 2 are meaningless for p = 1).

3. The speed of convergence obtained in Theorem 2, namely the bounded
p-variation of {nl—l—é > p—y fr(z)}, may fail in the corollary when 6 > B(p — 1)/p
(although the sequence converges), as shown by the following simple example: let
p be finite and p > 1, and let f = (—1)**! be constant functions. Then (2) is
satisfied with 8 =1, but for § > (p — 1)/p we have

1
Z’A1 9 _ A0 a)’ n+1)p(1 5=

EXAMPLE 2. Under the assumptions of the corollary, the a.e. convergence of
{5 Xk Ju} can fail if 6 > Bp/(p+1).

We modify Example 1. We still work on [0,1) and define the same sets {Ij},
but we now take nj, = [k®] with a = (p+1)/pB3. Put f; = xs, when ng < j < npp1,
and define {f;} as before: f; = fj — fnk when np < j < ng + (ng — ng—1), and
fi= fj when ny + (ng — nk—1) < j < ngg1. Thus ||fj]lec = 1 for every j, and by
the definitions

MNk+1 MNk+1

Sfi= > fi= (s — i,
j=1

Jj=ni+1
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Since ||x1, ||, = k=7, the definition of ny, yields
e+l o1 1

Pkl T ey a/p _
(17) ni— ﬁ Z fil| = ni=8 k=P~ Lke(1-8)+1/p — pl—aB+1/p *
Ngy1 j=1 » k+1

For any n, let ng < n < ngg1. Since [|f5ll, < [Ixnllp + lIxz_, llp < 2(k —1)71/7
when ng < j < ngy1, (17) yields

1 2 1 ok (nk+1 —nk) -1/ 3
o 2| S| 2N e k- DY R ey
j=1 N =1 Ny

By our choice of a we have 1 — a8+ 1/p =0, so (2) is satisfied.
However, on I}, the height of the "average” is

s —
+1 f Mgt — M N ko 1 1
= E: IT T a0 a(1-0)  Jl—asd °
k‘—‘rl j=1 k-l—l k k

Hence on [} we will have height greater than some fixed positive constant provided

1—ad <0, whichisd > Bp/(p+1). Since every z € [0, 1) is in infinitely many Iy, we
. . ng . Nk

obtain lim sup,, Tlﬂ > 50 fi(@) > 0 for every . Since Y ;*1" fi(z) = 0 for x ¢ Iy,

and each x is outside infinitely many I, we have lim infj, ﬁ Z;L;{l fi(z) =0 for
k41

every x. Hence {—— > i1 fi(x)} is everywhere divergent.

3. APPLICATIONS

In this section we apply our previous results, especially Theorems 4 and 5, to
obtain additional information in some special cases of the results of [CL].

PROPOSITION 6. Let {nix} be a non-decreasing sequence of positive integers,
and let {ar} be a sequence of complex numbers such that for some 0 < 8 < 1 we
have

(18) sup max =K <o00o.

n>0|A|=1

1 n
nl-8 Z apA"™
k=1

(i) If {ax} is bounded, then for every Dunford-Schwartz operator T on Li(u) of
a probability space and every f € L,(n), 2 < p < oo, the series Y o, “’;;f,;f

converges a.e. for any 0 < 6§ < gg:gﬁ. If f € Lo, then the convergence holds for

0<6< 28, and also sup,, | > 5, a"}gj’;ﬂ € La(p).

(i1) [f {ax} € W} for 1 < t < oo with dual index s, then for f € Lo the series
Sore g “’;C:fnff converges a.e. for every 0 < § < max{ QiSﬁ’ -3}
(m) If {ar} € Wy and (18) holds for ng =k, then for any f € Ls(u) the series
ak

converges a.e., and thus — Z apT*f 2 0 a.e.
- "=

\MS
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PROOF. As in [CL], we note that (18) implies (by applying the spectral theo-
rem for unitary operators and the unitary dilation theorem for contractions) that
for any contraction 7" on a Hilbert space we have

nll B Z axT™

(i): Putting fr = axT™ f, the sequence {f,} is in Lo(p) and satisfies (2). We now
apply Theorem 4 (with ¢ replaced by p), noting that for p > 2 and 8 < 1 we always
have gg:gﬁ >0 — % For f € L apply the corollary to Theorem 5 (with p = 2).
(ii) follows from applying Theorem 5 with p =2 to fi = T™* f.
(iii): By (ii) we have the a.e. convergence of = >~} | a;T* f for bounded func-
tions, which are dense in Ls(p). For any f € Lg(u), Holder’s inequality yields

1 1 & 1< Tl & :
— Tk f| < sup = TFFl <s (— t) (— Tk S) .
LS| <o S < (23 et) ! (232

But |T|, the linear modulus of T, satisfies |[T*f|* < (|T|¥|f])* < |T*(|f|*) (e-g., p-
65 of [Kr2]). Since {ar} € Wi, the pointwise ergodic theorem for |T'| applied to
|fI* € L1(p) yields sup,, | >7'_, axT" f| < 0o a.e.; now the Banach principle yields
LS a T f — 0 a.e. for every f € Ls(p).

For f € Lg(u), put Spf = >5_, axT*f. Abel’s summation by parts yields

(19) sup <K.

n>0

sup
n

Tk Sh 1
Z o k f f Z 2 Sk f. We have shown that Sy, f/n — 0 a.e., so it remains
k=1

to check the series. When s > 2 (le, 1 <t <2), we have f € Lo(n), and
[Snfll2 < Kn'=5|f||2 by (19). Since u is a probability, we obtain

s S - IS P
/Z| kf| Z I kf”l Z I Z{HQ §K||f||2z k11+ﬁ <
k=1 k=1

showing that 21:11 ‘S,fzf | converges a.e., which proves (iii) when s > 2.

Assume now 1 < s < 2. The operator S, = 22:1 arT* maps Lo into itself
with norm ||S,|la < Kn'=# by (19), and it maps Li(u) into itself with norm
[[Snlli < Yp_ilak|. Since 1 < s < 2, the Riesz-Thorin theorem ([Z], vol. II
p. 95) yields that S,, maps Ls(u ) into itself with norm [|S,||s < [|Snl|$]1Sn]l1 ™%,

where 0 < o < 1 is defined by 1 = o+ 3 + (1 — ) - 1. Holder’s inequality yields
[[Snll1 < (Zk 1 lax|" )1/t /s, Hence
1 1—a

n l-o l-o
Sulls < Km0 S R S
[1Salls < Kn > laxl) " ne (=) lal) o

k=1 k=1

Since {ax} € Wy and 1 + 1 =1, we obtain

< O .p-Pap1-a)(t+1) _ o 1-aB
||Sn||sfc n n C-n ’

This yields /Z |Skf|d < Z ||Skf||sd < C||f||sz 14;14';0‘5 < oo . Now the
k=1

previous argumentb yield (iii) also in the case s < 2. O
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REMARKS. 1. Proposition 6(i) complements Proposition 2(ii) of [CL], which
deals with f € L, for 1 < p <2.

2. Since p is assumed finite, f € L,(p) with p > 2 is in Lo, and Proposition
2(ii) of [CL] can be applied; however, we obtain here a larger interval for § than
that given in [CL] for Ly functions (which is the interval for which Theorems 2 and
3 hold).

3. Proposition 2 of [CL] gives additional results under the assumption (18).
These can be improved by applying Theorems 1 or 3, according to the value of 4.
We omit the statements of these improvements.

4. Examples of sequences {a, } satisfying (18) for ny = k were given in [CL].
Another example (not mentioned there) is a,, = exp[2min(logn)?] with v > 0; by
[I] the series Y o, Miggk)a/\k converges uniformly on the unit circle for large
enough ¢, so (18) is satisfied with any 5 < 1/2.

5. For {ar} bounded satisfying (18), Proposition 2(ii) of [CL] applies also
when p is not finite. It yields, for 1 < p < 2, the estimate of the L,-norm of
the operators H% S ar T || = O(nP*) with g, = 26’7771. For f € Loo () Ly,

we can now apply the corollary to Theorem 5, with fi = apT™* f, to obtain the

a.e. convergence of the series > ;- (”‘k:f—_ff when 0 < § < #ﬂp = %25. For

bounded L, functions, this improves the interval § < pp%l [ obtained in Proposition
2(ii) of [CL].

THEOREM 7. Fiz 1 < q < oo, and let {g,} be i.i.d. on a probability space
(Y,m), with ||g1]lq < oo and [gidm = 0. Then for a.e. y € Y the sequence
ax := gi(y) has the following property:

For every Dunford-Schwartz operator T on Li(u) of a probability space and

= akaf
fe L#(,u), the series Z lk converges a.e.
k=1

PrOOF. We first note that by the strong law of large numbers, %22:1 lgk|?
converges a.s. to [ |g1|9dm. Hence for a.e. y € Y the sequence {ay} is in W,.

If ¢ > 2 then also [ [g1/*dm < oo, so putting ¢i := min{2,q} we have {g,}
centerd i.i.d. with finite absolute moment of order ¢ < 2. Let o € (qfl, 1), so
a€(3,1),and 1 < 1/a < ¢ yields

E(|91|1/a(10gJr |g1|)é_1+€) < oo for every e > 0.

By the result of Cuzick and Lai [CuLa] we now have that for a.e. y € Y the
series Z 91;_(3))\;@ converges uniformly in |A| = 1. For such y, put ax = gr(y). A
k=1

variant of Kronecker’s lemma (a Banach space version, in the space of continuous
functions) yields that = 3"} axA* converges uniformly to 0, so {ay} satisfies (18)
1

with n, = k and 8 = 1 — « (note that § < 5). The theorem now follows from

Proposition 6(iii). O

REMARKS. 1. The convergence of %22:1 apT*f under the assumptions of
the theorem follows from the “return times theorem” (Appendix of [B], see also
[Ru]; for the passage from measure preserving transformations to Dunford-Schwartz
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operators see [CLOJ). Our result improves this convergence (in the particular i.i.d.
case).

2. Assani [A4] showed that Theorem 7 fails for ¢ = 1, although the “return
times theorem” holds.

3. For an i.i.d. sequence as in the theorem, with the additional assumption
that g1 is symmetric, Assani [A2] obtained the a.e convergence of 37" | apT"f
for every f € L ( ) with p > 1 (even if p < - —L=). We do not know if in this case

apT*f

also the series Z converges a.e. for every Dunford-Schwartz operator and

k=
every f € Ly(p )when l<p< 3

THEOREM 8. Let (2, 1) be a probability space, and let {fn} C Ly(p), 1<p<
00, such that sup,, ||fnllq < 0o for some 1 < g < co. Let {ny} be a sequence of
integers such that for some 0 < § <1 we have

nl —— kaAnk
p

If q(_z(ql)’f?p > 06— = (eg B < = orq > p), then there exists a set Q' C Q with

w() =0 such that for x ¢ ' and every 0 < § < q(jrl q1)11>§3p the series Z

(20) sup || max =K <oo.

[Al=1

converges uniformly in || = 1.

PROOF. The proof is bimilar to that of Theorem 4, with the same notations.

v
11 s ka)‘nk

Instead of (14) we obtain / Z max < 00, and instead of (15)

1A=t

we have

MNom Nm41

5 > Il

m k N +1

ma
|Al=1

1 n
Ng __
s > i - 5
k=1

1 n
— Z fe(x)A\"*| — 0 for a.e. x. For the proof of
n
k=1
the uniform convergence of the series, see the proof of Theorem 9 of [CL]. O

(From these we deduce lrn‘ax
A=1

REMARKS. 1. Since p is finite, for ¢ = oo (i.e., when sup ||fn||lco < 00), we
have the above result for ¢ < #ﬁ, by using finite ¢ tending to oo.

2. Theorem 8 extends Corollary 6 of [CL]. Theorem 9 there could be similarly
extended.

COROLLARY. Let (2, 1) be a probability space, and let T' be a power-bounded
operator on Lg(p), 1 < ¢ < oo. If f € Ly(n) satisfies, for some 3> 0,

1 n
nl-8 Z )‘kaf
k=1 1

then there exists a set Q' C Q with M(Q') 0 such that for x ¢ Q' and every

bup max =K <o,

A=

> Tk
vye(l- (gq 1)1 ,1] the series Z f ) converges uniformly in || = 1.
k=1
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Proor. Apply Theorem 8 with f,, := 7" f and p = 1.

REMARKS. 1. For ¢ > 2 and T induced on L4(x) by a probability preserving
transformation, the corollary was proved in [AN]. Since g — 2—1q < %, our result
yields the convergence for a wider range of v. However, if f is bounded, the limit as
¢ — oo in the corollary yields the same range as in Theorem 5 of [AN]. Existence
functions satisfying the assumption of the corollary was shown in [A3] and [AN].

2. For T a positively dominated contraction on L4, 1 < ¢ < oo, the a.e. uniform

Tk /\k
convergence of the random Fourier series Z %

k=1
the corollary was proved in Theorem 8 of [CL] by a different method.
3. For T a positive contraction of Lq(p) with T1 = 1 and f € L, satisfying
the hypothebib of the corollary, the a.e. uniform convergence of the random Fourier

under the assumption of

Tk
series Z was proved in Theorem 8 of [CL]; this does not follow from
our Theorem 8.

THEOREM 9. Let (Q, 1) be a probability space and 2 < p < oo. Let {f,} C
L,(p) be independent, with [ f,dp =0 and sup,, ||fallp < co. Then

n3/4 Z feAlVE

(21) sup
n>0

max < 0

|Al=1

2

V] converges uniformly in

I =1.

PROOF. We first prove (21). The assumption yields sup,, ||fn|l2 = K < oo.
Put S, = ,_, AVE £ Then

. 2
n—1  (G+1)32-1 n—1 (G+1)32-1 (j+1)%-1

SpaalP= DN D fi| = ZAJ Z fr Zw Z Fr
j=1 k=32 j j

n—1 (g+1)2 1 (m+1)%-1
=2V Z > Jule
Jym=1 L=m?2
n—1(G+1)>-1 (G+1)°-1 (G+1)2 =1 (m+1)>-1
=2 > Z fife+ ZAJ D DR D
j=1  k=j2 jm=1 k=32 £=m?
JjFm

Denote the last two summands by G,, and H,,. Then G,, does not depend on A,
and satisfies

n—1(G+1)>=1 (j+1)*-1

|G ||1<Z Z Z ||fkfz||1<K22(2j+1)(2j+1)§4K2("+1)3/3~

j=1
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Since H,, does depend on A, we have

n—1 |G+1)2=1 (m+1)2-1

/\rﬁi}i |Hn|du§/ 1Y > fefeldu
, P

jm=1 ¢=m?2
Jj#Em
1
2 3
n—1 |G+1)?=1 (m+1)2-1

< > > fulel| dp
jym=1 k=32 l=m?2
j#m

2 2
n—1 [(G+1)*=1(m+1)>-1

< /[(n—l)Q—(n—l)]Z ; S ffe duy <

Jjm=1 L=m?
j#m
1
2
n—1 (G+1)°—1(m+1)>—1 n—1 (G+1)°-1(m+1)?-1
(XX % BEREE Y Y S Sl
jm=1  k=j;2 {=m? jm=1 kr=32 £,s=m?
j#m j#m (k,0)#(r,s)

The restriction j # m puts k and r in one block of integers, while £ and s are in
another one; thus when (k,¢) # (r,s) the independence yields [ fifefrfodp = 0.
Hence the independence of |fx|? and |f,|? yields

n—1

[ s Halde < nlsup I}y 3 25)(2m)} ' < nka? = Kon',
o ’ j,m=1
We conclude that
2
Sn271’

n?2 —1

max‘
IAl=1

1 c
< =3 Gn H, < —
, (n2 —1)2 (|| ||1+|||r§\1‘?§| |||1> < -

Now let n satisfy m? < n < (m + 1)2. Then the previous inequality yields

m?—1 n
1 1 1
z Sl < ALV — A\[VE]
i Ial| = oy e D0 A |+ o ) B AN
k=1 9 k=m?2 2
C 2m+1 o C’
< — K< <
- m+ m2 T Vm+1 " a4’

which proves inequality (21).
The claimed a.e. convergence assertion now follows from Theorem 8, with
6= i, p replaced by 2, and q replaced by p. O

REMARK. The method of [CL], based on the deep results of Marcus and Pisier
[MP1], cannot be applied here since the terms in {[v/k]} are not distinct; regrouping
terms according to powers of A and then following the method of [CL] yields a worse
estimate (i.e., a smaller value of j3).
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PROPOSITION 10. Let (Q, 1) be a probability space and let {fn,} C Lp(p), 1<
p < oo, be independent with sup,, ||fnllp < 0o. Then for 1 < ¢t < p we have

1 n
sup — Z |fxl]" < 00 a.e. (i.e., for a.e. ¥ € Q the sequence {fi(x)} is in Wy).
n>0 1 =1

ProOOF. We first prove that the assumptions imply sup,, % Sorey I fe] <
a.e. (the case t = 1). It is clearly sufficient to prove for {fi} non-negative, and
we may certainly assume in this part that 1 < p < 2. We then have E(f,) =
[l fnllt < || fnllp, and the centering g, = fr, — E(fy) satisfies ||gn|lp < 2||fnllp- Hence
o0

Z E(|gn|?)/n? < 0. By the Marcinkiewicz-Zygmund theorem ([MaZ], Theorem
n=1

o0
5’; see also [S], Theorem 2.12.2), the series Z gn converges a.e., so by Kronecker’s
n
n=1
lemma 37" | gp — 0 a.e. The claim now follows from

%kaé %ng %ng
k=1 k=1 k=1

We now prove the proposition. The functions h,, = |f.|* € L,/ are indepen-
dent, with sup,, [|hn||,/: < co. Since p/t > 1, we can apply the first part of the
proof to {h,} C L,,+(1), and obtain

+ % Y E(fi) <
=1

+ sup || f;[p-
J

| t

I, 1 &
sup — felf =sup— h, <oco a.e. ]
n>0 T kZ:l | | n>0 T ; "

REMARK. Note that {fx(z)} need not be in W,. Let {A4,} be independent
sets in non-atomic (€, p) with p(A,) = —~— and f,, := (nlogn)'/Px 4, . By Borel-

nlogn

Cantelli a.e. z is in infinitely many A,, and for x € A,,; we have % L fe(@)P >
10g n;.

THEOREM 11. Let {n;} be a strictly increasing sequence of integers with ny <
ck™ for some r > 1, let (Y, m) be a probability space, and let {gn} C L,(Y,m),
2 < g < o0, be independent with sup ||gn||q < co and [ gndm = 0. Then for a.e.
y €Y the sequence ay := gr(y) has the following property:

For every Dunford-Schwartz operator T on Li(u) of a probability space and

= agT™ f
f € Loo(p), the series Z converges a.e. for v € (
k=1

2qg—1
— 1].

3q—27

PROOF. Since ¢ > 2, we have sup,, ||gn||2 < co. It follows from Theorem 12 of
[CL] (by a variant of Kronecker’s lemma) that for a.e. y € Y the sequence {ay}
satisfies (18) for any 8 < % By Proposition 10 {ay} € W; for 1 <t < gq. We can
now apply Proposition 6(ii) (letting t — ¢ and 5 — 1/2). O

THEOREM 12. Let {ny} be a strictly increasing sequence of integers with ny <
ck™ for some r > 1, let (Y, m) be a probability space, and let {gn} C Loo(Y,m)
be independent with sup ||gn||cc < 00 and [ gndm = 0. Then for a.e. y € Y the
sequence ay := gr(y) has the following property:
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For every Dunford-Schwartz opemtor T on Li(u) of a probability space and

T”k
feLy(p), 2<p< oo, the series Z f
k=1

2p11]

converges a.e. for~y € (3p 5

PROOF. As before, {a} satisfies (18) for any § < % For p = 2 we apply

Proposition 2(i) of [CL], and for p > 2 we apply Proposition 6(i). O

REMARKS. 1. When f € Lo and sup,, ||gn||lcc < 00, the lower limit for + is
2/3, either by letting ¢ — oo in Theorem 11 or by letting p — oo in Theorem 12.

2. Theorem 12 complements Theorem 14 of [CL], which gives the result for
p = 2, with v > 3/4, and uses it also when f € L,(p) with p > 2. Theorem 12
gives a better lower bound for ~.

THEOREM 13. Let (Y,m) be a probability space, and let {g,} C L4,(Y,m),
2 < g < o0, be independent with sup ||gn||q < co and [ gndm = 0. Then for a.e.
y €Y the sequence ay := gr(y) has the following property:

For every Dunford-Schwartz operator T on Li(u) of a probability space and

feLy(p), p> L5, the series Z akk / converges a.e. and L3 apyT*f — 0
a.e. b=t

PROOF. As in the proof of Theorem 11, {ax} € W, for t < ¢, and {ay} satisfies
(18), with ng = k, for any 3 < =. For a given p, if p >4 7 then its dual index ¢ is

less than ¢, and we apply Pr0p051t10n 6(iil) (with s = p) O

REMARKS. 1. When g = 2 we obtain the convergence for all f € L,, p > 2.
When ¢ > 2 we obtain convergence for all f € L.

2. If the sequence {g,} in Theorem 13 is i.i.d., then Theorem 7 gives the
convergence of the series also for p = qqu, since the SLLN can be used instead of
Proposition 10. Moreover, for {g,} i.i.d. Theorem 7 does not require a finite second
moment.

In order to extend the previous theorem to the case ¢ < 2, we need the following
theorem, which complements Theorem 12 of [CL]. Note that we have an additional
assumption of symmetry.

THEOREM 14. Let (Q, 1) be a probability space. Let 1 < p < 2, and {f,} C
L,(p) be symmetric and independent with [ f,dp = 0, and sup,, ||fnllp < co. Let
{ni} be a strictly increasmg sequence with ng < ck” for some r > 1. Then for a.e.

n i ; p—1
x, the series Z k1 5 )\ k converges uniformly in X\, for any 0 < § < o

PROOF. We will use Theorem B(i) of [MP2], with the group G the unit circle,
G the compact neighborhood, the set of characters A := {nj : k > 1}, and the
independent random variables &,, = fx.

By linearity of the model we may and do assume that sup,, ||fn||p < 1; this
clearly implies that P(|f,| > ¢) < ¢7P for every n and ¢ > 0, the assumption in
[MP2], p. 247. Fix0 < é < (p—1)/p, and put a = % so0<a<(p—1)/p.

Define {a;} on A by an, = 7= (the sequence need not be defined outside A, but
we put a; = 0 for j ¢ A). It will be convenient to identify the unit circle with
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the interval [0, 27], with addition modulo 27. Let ¢1,t2 € [0,27] and define the
corresponding translation invariant pseudo-metric d(t1,t2) = o(t1 — t2) (which is
uniformly convergent), where

o N1/p | sin Z&L[P N\ 1/p

D . J— t — —_—

o(t) == (Z |aj|P|1 — € |P) - 2(2 — ) :
jeA k=1

Since |sint| < 1 and |sint| < [¢|, we obtain |sint|P < |sint|* < [¢|%. This yields

e’} Cakroz|t|oz 1/p l_o o o ~ 1/p
U(t)§2(;72akpp5) <2 tp(—v_l) <

withy:=p—pd—ra>p—pé —p(1—-0)+1=1.
Denote by m the Lebesgue measure on [0,27]. Then the “distribution” of o
satisfies
mo(e) = m{t € [0,27] : ot) < €} > C * b ;
hence the ’inverse’ function defined on [0,27] (which is the non—decreasing re-
arrangement of o), satisfies

o(s) == sup{t > 0: my(t) < s} < Cus¥.

In order to apply Theorem B(i) of [MP2] (in the form described in the discus-
sion beginning at the end of p. 248 there), we estimate

2 2m
o(s)ds / ds
1, = —— < C,
»(©) /0 s(log ") 1/p 0 517 (log W2)1/p

where b(p) > 27 is a constant depending only on p (see p. 290 of [MP2]). The
finiteness of I, (o) follows from the integrability of —%= for a > 0. Now the claimed
S P

convergence follows from [MP2]. O

REMARKS. 1. The theorem applies to sequences {[k"] : k > 1} with » > 1.

2. The integers in the sequence {ny} must be distinct (in addition to the growth
condition), to make it an enumeration of the set of characters A; hence the proof
of the theorem does not apply to the sequence {[v/k]}.

THEOREM 15. Let (Y,m) be a probability space, and let {g,} C L4(Y,m),
1 < ¢ < 2, be independent and symmetric with sup||gn|lq < oo and fgndm 0.
Then for a.e. y €Y the sequence ay := gr(y) has the following property:

For every Dunford-Schwartz opemtor T on Li(u) of a probability space and

Tk
feLy(u),p = —L5, the series Z
k=1

converges a.e. and 1370  apTFf — 0
a.e.

PROOF. The proof is similar to that of Theorem 13, but uses Theorem 14
instead of Theorem 12 of [CL]: {ay} € W, for 1 <t < ¢, and by Theorem 14 (and a
variant of Kronecker’s lemma) {ay} satisfies (18) with ny = k for any 0 < 3 < %
For p > —%5 the dual index ¢ is less than ¢ and we apply Proposition 6(iii) (with
s=p). O
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REMARK. Note that in the i.i.d. case (Theorem 7) symmetry is not required,
and the convergence holds also for f € L a_.
e

THEOREM 16. Let (Y,m) be a probability space, and let {g,} C L4(Y,m),
2 < g < o0, be independent with sup ||gn||q < co and [ gndm = 0. Then for a.e.
y €Y the sequence ay := gr(y) has the following property:
For every Dunford-Schwartz operator T on Li(u) of a probability space and
> akT[‘/E]f 1\2
f € Loo(p), the series Z 5 converges a.e. forye(1— (3({1%2) ,1].
k=1
PROOF. By Theorem 9 (and a variant of Kronecker’s lemma), {ay} satisfies
(18), with ny = [V/k], for any § < qu114. By Proposition 10 {ar} € W, for any
t < q. We now apply Proposition 6(ii) with § — 6(1(1;_14 and t — q. O

THEOREM 17. Let (Y,m) be a probability space, and let {gn} C Loo(Y,m) be
independent, with sup||gn||sc < o0 and [ gndm = 0. Then for a.e. y € Y the
sequence ay := gr(y) has the following property:

For every Dunford-Schwartz operator T on L1(u) of a probability space and
ap TR f

o0
feLy(p),2<p< oo, the series Z =

k=1

8p—5
95——671]

converges a.e. for -y € (

PROOF. As before, Theorem 9 implies that the sequence {ay} satisfies (18) for
ny, = [Vk], this time for any 3 < £ (by letting p — oo in the result). Since {ax} is
bounded, we apply Proposition 6(i), letting § — %. O
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