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Abstract. We prove a central limit theorem for a square-integrable ergodic stationary
multi-dimensional random field of martingale differences with respect to a lexicographic
order.

1. Introduction

M. Rosenblatt [10] stated a central limit theorem (CLT) for ergodic square-integrable
stationary two-dimensional random fields of martingale differences, with lexicographic
order, which was a step towards a CLT for random fields satisfying some strong mixing
conditions. In order to formulate the assertion we start with the following notations.

Notations. On Nd, d ≥ 2, we take a lexicographic order as follows: n = (n1, . . . , nd) <
m = (m1, . . . ,md) if and only if nd < md or there exists i = 1, . . . , d − 1, such that
nj = mj for i < j ≤ d and ni < mi. Let {ζn : n ∈ Nd} be a square integrable array of
random variables and let Fn be the σ-field generated by {ζm : m ≤ n}. We say that
{ζn} is a d-dimensional martingale difference with respect to {Fn} if E[ζn|Fm] = 0 for
every m < n.

Rosenblatt’s assertion for the ergodic stationary martingale differences was that, for
d = 2, 1√

mn

∑m
j=0

∑n
`=0 ζj,` converges in distribution to a normal law, as min{m,n} → ∞.

An indication of proof was mentioned in [10]. We are interested in convergence of the
above expression as max{m,n} → ∞. As we will explain, one needs ergodicity of the
individual shifts; mere ergodicity of the random field is not sufficient in general for this
convergence.

Huang [8] proved the CLT for ergodic stationary two-dimensional square-integrable
martingale differences with the lexicographic order, in the particular case of m = n.

Dedecker [3] has a CLT for multi-dimensional stationary random fields with averaging
along Følner sequences. Clearly m × n rectangles with mn → ∞ need not have the
Følner property, so Dedecker’s result does not implies the above mode of convergence,
even when corrected to assume ergodicity of the individual shifts. It is worth mentioning
that Dedecker’s result is quite general and yields a CLT without requiring ergodicity –
in that case the limiting distribution is (as usual) a mixture of normal distributions.

The purpose of the following note is to give a simple proof of the CLT for a d-
dimensional martingale difference as above {ζn : n ∈ Nd}. Specifically, for d = 2,
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to give a sufficient condition for convergence under the assumption max{m,n} → ∞.
Under some moment conditions, a rate in the CLT is also given.

2. The CLT for multi-dimensional martingale differences

We prove below a CLT for the random field {ζn,Fn} described above. The second
part of our CLT below is new. The first part of the theorem is included for the sake of
completeness.

From now on we use the following notation: Dn := {m : 0 ≤ mi < ni, 1 ≤ i ≤ d}.
Since the adaptation of the notation and proofs from dimension two to any finite

dimension d > 2 is straightforward, for the sake of clarity and in order to avoid too long
expressions, we prove the relevant statements in dimension two.

Theorem 2.1. Let {ζn,Fn : n ∈ Nd} be a square-integrable ergodic stationary d-
dimensional random field of real martingale differences. Then 1√

n1·n2···nd

∑
m∈Dn

ζm con-

verges in distribution to N (0,E|ζ0|2) as min{n1, n2, . . . , nd} → ∞.
If the d shifts of the random field are ergodic, then 1√

n1·n2···nd

∑
m∈Dn

ζm converges in

distribution to N (0,E|ζ0|2) as n1 ·n2 · · ·nd →∞ (equivalently, as max{n1, n2, . . . , nd} →
∞).

Proof. The first assertion is a consequence of Theorem 1 of Dedecker [3] (a result about
stationary random fields with averaging along Følner sequences). We mention that this
assertion can be proved also along the same lines of the proof of the second assertion
given below. Only the multi-dimensional mean ergodic theorem is needed, instead of
Lemma 2.2.

We prove the second assertion. For the sake of clarity we prove it for d = 2. First
we make the following observation. A two-dimensional sequence of random variables
{Zm,n}m,n≥1 converges in distribution, as mn → ∞, to a random variable Z if and
only if for every subsequences {mk}, {nk} with mknk →k ∞, {Zmk,nk

} converges in
distribution to Z. Indeed, this claim is about numerical sequences ({P(Zm,n ≤ t)} for
fixed t a point of continuity of Z), and can be easily verified by definition.

Let {mk}, {nk} with mknk →k ∞. In order to prove that 1√
mknk

∑mk−1
j=0

∑nk−1
`=0 ζj,`

converges in distribution to N (0,E|ζ0,0|2) we check the conditions of the CLT of McLeish
[9, Theorem 2.3]. For every k we order the mk × nk ”rectangle” of random variables
{ζj,` : 0 ≤ j < mk, 0 ≤ ` < nk} as a normalized martingale difference row {ηk,j : 1 ≤
j ≤ mknk} ordered according to the lexicographic order < on N2, as follows:

ηk,1 =
ζ0,0√
mknk

, ηk,2 =
ζ1,0√
mknk

, . . . , ηk,nk
=

ζnk−1,0√
mknk

,

ηk,nk+1 =
ζ0,1√
mknk

. . . , ηk,2nk
=

ζnk−1,1√
mknk

, . . . , ηk,mknk
=
ζmk−1,nk−1√

mknk
.

Let Fki (sub σ-algebra of Fmk,nk
) be the σ-field generated by ηk,1, . . . , ηk,i, i = 1, 2, . . . ,mknk.

By construction and the assumptions, it is easy to see that E[ηk,i|Fki−1] = 0 for i =
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1, 2, . . . ,mknk (where we put Fk0 the trivial σ-field). Clearly, by stationarity,

sup
k
‖ max
i≤mknk

|ηk,i| ‖22 ≤ sup
k

1

mknk

mk−1∑
j=0

nk−1∑
`=0

E|ζj,`|2 = E[|ζ0,0|2] <∞.

Also, for ε > 0 we have by stationarity∥∥∥∥ 1

mknk

mk−1∑
j=0

nk−1∑
`=0

|ζj,`|21{|ζj,`|>√mknk ε}

∥∥∥∥
1

=

1

mknk

mk−1∑
j=0

nk−1∑
`=0

E
[
|ζ0,0|21{|ζ0,0|>√mknk ε}

]
= E

[
|ζ0,0|21{|ζ0,0|>√mknk ε}

]
→k→∞ 0.

The above convergence to zero implies maxi≤mknk
|ηk,i| →k 0 in probability, since{

max
i≤mknk

|ηk,i| > ε
}

=
{

max
j≤mk,`≤nk

|ζj,`|2 > mknkε
2
}
⊂

{ 1

mknk

mk−1∑
j=0

nk−1∑
`=0

|ζj,`|21{|ζj,`|>√mknkε} > ε2
}
.

Lastly, ergodicity of the two shifts yields, by Lemma 2.2 below, that

(1)

mknk∑
i=1

|ηk,i|2 =
1

mknk

mk−1∑
j=0

nk−1∑
`=0

|ζj,`|2 →k E[|ζ0,0|2].

Hence conditions (a), (b) and (c) of McLeish [9, Theorem 2.3] hold and the assertion
follows. �

Lemma 2.2. Let T1, . . . , Td be the operators induced on Lp (1 ≤ p <∞) by commuting
probability preserving ergodic transformations of (S,Σ, µ). Put An(Tj) := 1

n

∑n
k=1 T

k
j .

Then

lim
πd
j=1nj→∞

An1(T1) · · ·And
(Td)f =

∫
f dµ

in Lp-norm for every f ∈ Lp.

Proof. Put Ef =
∫
f dµ for f ∈ L1. Then by the mean ergodic theorem An(Tj)f

converges to Ef in Lp-norm for every f ∈ Lp (j = 1, . . . , d). Fix p and f ∈ Lp. For
ε > 0 there is N such that ‖An(Tj)f − Ef‖p < ε for n > N and j = 1, . . . , d. Hence for∏d

j=1 nj > Nd there is an i with ni > N , and since An(Tj)E = E we obtain

(2) ‖An1(T1) · · ·And
(Td)f − Ef‖p ≤

∏
j 6=i

‖Anj
(Tj)‖ · ‖Ani

(Ti)f − Ef‖p < ε,

which proves the lemma. Here ‖A‖ = sup{‖Af‖p : ‖f‖p = 1} is the operator norm of a
linear operator A acting on Lp. �

Remarks. 1. As (2) shows, Lemma 2.2 holds if only one of the Ti’s is ergodic, as long
as its corresponding coordinate ni →∞.

An inspection of the proof of the second part of Theorem 2.1 yields that its con-
clusion holds if only one of the shifts is ergodic, as long as its corresponding coordi-
nate tends to infinity. Of course, this result does not imply that of the theorem, since
max{n1, n2, . . . , nd} → ∞ does not imply that one of the ni’s tends to infinity.
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2. The ergodic theorem does not hold in general (for mn → ∞) without assuming,
e.g., that the two actions are separately ergodic (see Lemma 2.2), so it seems that when
only the random field is ergodic (i.e. the N2-action of the shifts is), the second assertion
of our theorem will not hold in its generality. If for example the shift T is not ergodic, we
fix m ≡ 1 and then we have a one-dimensional stationary sequence of square-integrable
martingale differences which is not ergodic; in our proof, with nk = k, the limit of∑k

i=1 |ηk,i|2 (for condition (c) of [9]) will be a non-constant random variable, and then

[5, Theorem 3.2] yields that the limiting distribution of 1√
n

∑n−1
k=0 ζ0.k is not Gaussian.

3. Theorem 1 of Dedecker [3] is about stationary random fields and the averages are
along sets which satisfy Følner’s condition. It is clear that n1 × n2 × . . . nd rectangular
boxes Dn with |Dn| = n1 ·n2 · · ·nd →∞ do not always have the Følner property, which
is the reason we can not deduce the second assertion of the theorem from Dedecker’s
result.

4. In the proof of Theorem 2.1 we conclude the L1-norm convergence in (1) either by
the mean ergodic theorem or by Lemma 2.2. This yields condition (c) of [9]. To conclude,
only convergence in probability is needed. In particular, if in (1) we have convergence
in probability toward some a.s. finite random variable η2, the limiting distribution
would have been a random variable Z whose characteristic function is E[e−

1
2
η2t2 ] (see [5,

Theorem 3.2]). In the ergodic case η2 is the a.s. constant E|ζ0|2.
5. An equivalent form of the second part of the theorem is

1√
|Dn|

∑
m∈Dn

ζm
dist.⇒ N (0,E|ζ0|2) as |Dn| → ∞.

The question is whether we can replace the sequence of boxes Dn by other increasing
sequences of finite sets in Nd. If the sequence of sets has the Følner property, then
the answer is positive, as a special case of Theorem 1 in Dedecker [3]. An inspection
of the proof of the second part of Theorem 2.1 shows that the mode of convergence is
determined by (1), deduced from Lemma 2.2. Because of the total ordering it is easy to
see that the process of reducing the dimension of the field and ordering it as an array of
one dimensional martingale differences holds for any choice of sequence of finite sets in
Nd, possibly only partially ordered. The only problem is whether (1) holds (enough in
probability) along these sets.

6. We show an example, in d = 2, in which the technique of our proof applies to certain
”convex” non-rectangular domains, which do not have the Følner property. Define the
trapezoidal domain Cn := {(j, 0) : 0 ≤ j ≤ 2n − 1} ∪ {(j, 1) : 0 ≤ j ≤ n − 1}. Clearly,
Cn does not satisfy the Følner property. Using the fact that the two shifts are ergodic
and using stationarity, the convergence in (1) holds:

1

|Cn|
∑

(j,`)∈Cn

|ζj,`|2 =
1

3n

2n−1∑
j=0

|ζj,0|2 +
1

3n

n−1∑
j=0

|ζj,1|2 →
2

3
E|ζ0,0|2 +

1

3
E|ζ0,1|2 = E|ζ0,0|2.

Combining with all remarks we have made, we obtain

1√
|Cn|

∑
m∈Cn

ζm
dist.⇒ N (0,E|ζ0|2) as |Cn| → ∞.

7. Day [2, Lemma 5] proved that a sequence (Cn) of convex sets in Rd is Følner if
the radius r(Cn) of the maximal ball contained in Cn tends to infinity. Tempelman [11,
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Example 2.11, p.180] observed that in that case the intersections Cn ∩Zd yield a Følner
sequence in Zd. An example of a sequence of non-convex subsets, which is growing to
infinity in each direction and does not satisfy the Følner property, is given (in d = 2)
by the boundary of the square [0, n) × [0, n). That is, we put En = {(j, 0) : 0 ≤ j <
n} ∪ {(0, j) : 0 ≤ j < n} ∪ {(j, n − 1) : 0 ≤ j < n} ∪ {(n − 1, j) : 0 ≤ j < n}. The
convergence in (1) holds since

1

|En|
∑

(j,`)∈En

|ζj,`|2 =
1

4(n− 1)

( n−1∑
j=0

|ζj,0|2 +
n−1∑
j=1

|ζ0,j|2 +
n−1∑
j=1

|ζj,n−1|2 +
n−2∑
j=1

|ζn−1,j|2
)
.

Indeed, the first and the second summand (after normalization) converge, each to 1
4
E|ζ0,0|2.

Now, denote the first coordinate shift by T and the second by S. PutMn = 1
4(n−1)

∑n−1
j=1 |ζj,0|2.

The third term above is Sn−1Mn. By norm preserving and invariance of constants we
conclude that

‖Sn−1Mn −
1

4
E|ζ0,0|2‖1 = ‖Sn−1(Mn −

1

4
E|ζ0,0|2)‖1 = ‖(Mn −

1

4
E|ζ0,0|2)‖1 → 0.

Similarly for the fourth summand. Hence we conclude 1
|En|

∑
(j,`)∈En

|ζj,`|2 →n E|ζ0,0|2.
Combining with all remarks we have made, we obtain

1√
|En|

∑
m∈En

ζm
dist.⇒ N (0,E|ζ0|2) as |En| → ∞.

8. Huang’s result [8] can be deduced from [5, Theorem 3.4] or Theorem 2.1 of Dvoret-
zky [4]. It is of course a consequence of Theorem 2.1.

9. Basu and Dorea [1] proved a CLT for d dimensional stationary square-integrable
martingale differences with respect to a non-lexicographic partial order on Nd. This
partial order seems to be less suitable for certain applications. For d = 2 their CLT is
similar to the first part of Theorem 2.1 (convergence as min{m,n} → ∞).

10. Our theorem is valid, with the same proof, also when we replace Nd by Zd.

When we have for the stationary random field of martingale differences a moment of
order higher than 2, we can even obtain a rate in the above CLT. Our main tool is the
following theorem of Heyde and Brown [7].

Theorem 2.3. Let {ξn,Fn, n = 0, 1, · · · } be a real martingale with ξ0 = 0 and Fn the
σ-field generated by ξ0, ξ1, . . . , ξn, and put ζn := ξn − ξn−1 for n ≥ 1. Suppose that for
some 0 < δ ≤ 1 we have E|ζn|2+2δ <∞ for n ≥ 1, and put s2n =

∑n
i=1 E|ζi|2.

Then there exists a constant C, depending only on δ, such that for every n ≥ 1 we
have

sup
t

∣∣∣∣P{ξn/sn ≤ t} − Φ(t)

∣∣∣∣ ≤ C
{
s−2−2δn

( n∑
i=1

E|ζi|2+2δ + E
∣∣ n∑
i=1

ζ2i − s2n
∣∣1+δ)}1/(3+2δ)

Where Φ is the standard normal distribution.

Remark. It is easy to see that this statement is about a finite sequence of martingale
differences (for n > N put ζn = 0 and Fn = FN), and that the conclusion does not depend
on the conditioning sequence {Fn}. We note that Haeusler [6] proved the theorem for
every δ > 0 (without the restriction δ ≤ 1).
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Theorem 2.4. Let {ζn,Fn : n ∈ Nd} be a real d-dimensional martingale difference.
Assume that for some 0 < δ ≤ 1 we have E|ζn|2+2δ < ∞ for n ∈ Nd. Put s2n =∑

m∈Dn
E|ζm|2. Then there exists a constant C, depending only on δ, such that for

every n ∈ Nd we have

sup
t

∣∣∣∣P{ 1

sn

∑
m∈Dn

ζm ≤ t} − Φ(t)

∣∣∣∣ ≤
C
{
s−2−2δn

( ∑
m∈Dn

E|ζm|2+2δ + E
∣∣ ∑
m∈Dn

ζ2m − s2n
∣∣1+δ)}1/(3+2δ)

.

In particular (similarly to [7]), if

(3) s−2−2δn

∑
m∈Dn

E|ζm|2+2δ → 0

and

(4) E
∣∣s−2n

( ∑
m∈Dn

ζ2m
)
− 1
∣∣1+δ → 0,

under a certain mode of convergence to ∞ of n, then P{ 1
sn

∑
m∈Dn

ζm ≤ t} converges

uniformly to Φ(t) with the given rate above, in the same mode of convergence.

Proof. For the proof we consider only the case d = 2. We apply the Heyde-Brown
theorem in the following manner. Fix m,n ≥ 1 and consider the m × n rectangle of
random variables {ζj,k : 0 ≤ j ≤ m− 1, 0 ≤ k ≤ n− 1}. Order these random variables
as a one-dimensional sequence {ζi, i = 1, 2, . . . ,mn} according to the lexicographic order
< on N2. That is,

ζ1 = ζ0,0, ζ2 = ζ1,0, . . . , ζn = ζn−1,0, ζn+1 = ζ0,1 . . . , ζ2n = ζn−1,1, . . . , ζmn = ζm−1,n−1.

Let {Fi} be the σ-field generated by ζ1, . . . , ζi, i = 1, 2, . . . ,mn. By construction and
the assumptions, it is easy to see that E[ζi|Fi−1] = 0 for i = 1, 2, . . . ,mn (where we put
F0 the trivial σ-field). By our construction

∑mn
i=1 ζi =

∑m−1
j=0

∑n−1
k=0 ζj,k,

s2m,n =
mn∑
i=1

E|ζi|2 =
m−1∑
j=0

n−1∑
k=0

E|ζj,k|2

and so on for the other expressions in the Heyde-Brown theorem above. Under our
assumptions the theorem above yields the results. �

Remark. The assertion of the above theorem holds for any sequence of finite sets in
Nd, not necessarily Dn, see Remarks above.

Corollary 2.5. Let ζn be an ergodic stationary real martingale difference with respect
to the filtration Fn ordered by a lexicographic order on Nd. Assume E|ζ0|p < ∞ for
some p > 2. Then 1√

n1·n2···nd

∑
m∈Dn

ζm converges in distribution to N (0,E|ζ0|2) as

min{n1, n2, . . . , nd} → ∞.
If the d shifts of the random field are ergodic, then 1√

n1·n2···nd

∑
m∈Dn

ζm converges in

distribution to N (0,E|ζ0|2) as n1 · n2 · · ·nd →∞.
In both cases the convergence is uniform at the rate implied by Theorem 2.4:

sup
t

∣∣∣∣P{ 1

‖ζ0‖2
√
n1 · n2 · · ·nd

∑
m∈Dn

ζm ≤ t
}
− Φ(t)

∣∣∣∣ ≤
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C

{ ‖ζ0‖pp
(n1 · n2 · · ·nd)(p−2)/2‖ζ0‖p2

+
(
E| 1

n1 · n2 · · ·nd
∑

m∈Dn

ζ2m − Eζ20|p/2
)}1/(1+p)

.

Proof. We prove only the case d = 2. We may assume p ≤ 4 and put δ = (p − 2)/2.
Stationarity yields that E|ζj,k|s = E|ζ0,0|s for 1 ≤ s ≤ p, so s2m,n = mn · E|ζ0,0|2. We
substitute this into the estimate of Theorem 2.4 and obtain the asserted estimate. We
also obtain that (3) holds as mn→∞.

Let S and T be the two commuting isometries induced (in the Ls-spaces) by the two
directional shifts. Since (ζj,k)

2 = (SjT kζ0,0)
2 = SjT kζ20,0, (4) holds, as min{m,n} → ∞,

by the two-dimensional mean ergodic theorem (in Lp/2) and ergodicity of {ζm,n} (which
means that the only common fixed points of S and T are the constants). The first part
of the corollary now follows from Theorem 2.4.

When both shifts S and T are ergodic, (4) holds, as mn → ∞, by Lemma 2.2, and
the second part of the corollary also follows from Theorem 2.4. �

Remarks. 1. The rate of the uniform convergence of the distribution functions
depends on the rate of convergence in the d-dimensional mean ergodic theorem (or in
Lemma 2.2 when the d shifts are ergodic and n1 · n2 · · ·nd → ∞), which depends on ζ0
since there is no uniform rate in the mean ergodic theorem.

2. The estimation in the above corollary holds for any sequence of finite sets in Nd, not
necessarily Dn. However, in order to conclude the convergence in distribution we need
to guarantee that we have the norm convergence of the corresponding averages along
these set, e.g., Følner type sets.
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