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Abstract. We extend the solution of Burkholder’s conjecture for products of conditional
expectations, obtained by Delyon and Delyon for L2 and by Cohen for Lp, 1 < p <∞, to the
context of Badea and Lyubich: Let T be a finite convex combination of operators Tj which
are products of finitely many conditional expectations. Then Tnf converges a.e. for every
f ∈ Lp, 1 < p < ∞, with supn |Tnf | ∈ Lp. The proof uses the work of Le Merdy and Xu
on positive Lp contractions satisfying Ritt’s resolvent condition. As another application of
the work of Le Merdy and Xu, we extend a result of Bellow, Jones and Rosenblatt, proving
that if a probability {ak}k∈Z has bounded angular ratio, then for every positive invertible
isometry S of an Lp space (1 < p < ∞), the operator T =

∑
k∈Z akS

k is a positive Lp
contraction such that for every f ∈ Lp, Tnf converges a.e. and supn |Tnf | ∈ Lp. If {ak} is
supported on N, the same result is true when S is only a positive contraction of Lp. Similar
results are obtained for µ-averages of bounded continuous representations of a σ-compact
LCA group by positive operators in one Lp space, 1 < p < ∞. For a positive contraction
T on Lp which satisfies Ritt’s condition and f ∈ (I − T )αLp (0 < α < 1) we prove that
nαTnf → 0 a.e., and supn n

α|Tnf | ∈ Lp.

1. Introduction

Let (S,B) be a measurable space and P (x,A) : S × B −→ [0, 1] a transition probability,

with Markov operator Pf(x) =
∫
f(y)P (x, dy) defined for bounded f . When m is a σ-finite

measure on B which is P -invariant, the operator P can be extended to a contraction of

L1(S,m). Moreover P becomes a contraction in each Lp(S,m) space, 1 ≤ p ≤ ∞ [38].

Hopf’s pointwise ergodic theorem yields that for f ∈ L1(m) the Cesàro averages 1
n

∑n
k=1 P

kf

converge a.e., and also in L1-norm when m is finite. When m is a probability and P is er-

godic in L1, i.e. when Pf = f a.e. for f ∈ L1 holds only for f constant a.e., the limit is∫
f dm. When m is infinite and P is conservative and ergodic, the limit is 0.

It is therefore a natural question to study the convergence of the unaveraged sequence

{P nf}, in norm or a.e. The following general results for a.e. convergence are known:

1. If P ∗ = P and −1 is not an eigenvalue, then P nf converges a.e. for every f ∈ Lp, p > 1

(Stein-Rota theorem [58] [57]; Rota’s proof yields the convergence also for f ∈ L log+ L [11],

but in general convergence may fail for f ∈ L1 [52]).

2. If P is an aperiodic Harris recurrent operator with invariant probability m, then

P nf →
∫
f dm a.e. for every f ∈ L1(S,m) by S. Horowitz [34].
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3. If P is a Harris recurrent operator with infinite (σ-finite) invariant measure m, then

P nf → 0 a.e. for every f ∈ Lp(S,m), 1 ≤ p <∞ [34].

4. If PP ∗ = P ∗P and the spectrum of P as a contraction of L2(S,m) is contained in

a Stolz region, then P nf converges a.e. for every f ∈ Lp, 1 < p < ∞, by Bellow, Jones

and Rosenblatt [6, Theorem 14]. This can be applied to convolutions on compact Abelian

groups [18].

In the proof of [6, Theorem 14], it is shown that supn n‖P n − P n+1‖2 < ∞ under their

assumptions. The purpose of this paper is to study examples of positive contractions T on

Lp(S,m) (1 < p <∞ fixed) satisfying the condition supn n‖T n − T n+1‖ <∞. We will then

apply the work of Le Merdy and Xu [44], [45], which yields for such operators the maximal

inequality sup |T nf | ∈ Lp and the a.e. convergence of {T nf} , for every f ∈ Lp.

2. Powers of positive Ritt contractions of Lp

The proof of Stein’s theorem uses spectral theory and the pointwise ergodic theorem.

Combining it with Akcoglu’s pointwise ergodic theorem [2] we obtain that if T is a positive

self-adjoint contraction of the complex L2(S,m) with −1 not an eigenvalue, then T nf con-

verges a.e. Gaposhkin [29] extended Stein’s result to normal contractions with spectrum in

a Stolz region; see [6, Theorem 14].

In this introductory section we look at the a.e. convergence of T nf for every f ∈ Lp(S,m),

where 1 < p <∞ is fixed and T is a positive contraction on Lp(S,m) satisfying

(1) sup
n
n‖T n − T n+1‖ = C <∞.

We also study equivalent conditions for (1). Much of this section is based on the work of Le

Merdy and Xu [44], [45] and Le Merdy [42]; it is included for the reader’s convenience, in

order to provide some completeness, as it is the basis for the next sections.

Nagy and Zemánek [51, p. 146] proved that if the resolvent R(λ, T ) of an operator T on

a complex Banach space X satisfies Ritt’s condition

(2) sup
|λ|>1

|λ− 1| · ‖R(λ, T )‖ <∞,

then its spectrum σ(T ) is contained in a Stolz region. Their main theorem is that T satisfies

Ritt’s condition if and only if T is power-bounded with supn n‖T n − T n+1‖ < ∞; see also

[49]. Hence a power-bounded operator T satisfying (1) will be called a Ritt operator.

Lemma 2.1. The following are equivalent for a bounded linear operator T on a Banach

space X.

(i) T is power-bounded and supn n‖T n − T n+1‖ = K <∞.

(ii) T is mean-bounded and there exists C > 0 such that

(3) ‖T nx‖ ≤ C

n
max

1≤k≤n
‖
k−1∑
j=0

T jx‖ ∀x ∈ X, ∀n ≥ 1.
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Proof. The implication (ii) =⇒ (i) is easy.

If (i) holds, then obviously T is mean-bounded. For n ≥ 1 and x ∈ X we have

x =
1

n

n∑
k=1

k−1∑
j=0

(I − T )T jx+
1

n

n∑
j=1

T jx.

Applying T n we obtain

‖T nx‖ ≤ ‖T n(I − T )‖ 1

n

n∑
k=1

‖
k−1∑
j=0

T jx‖+ ‖T n+1‖ · ‖ 1

n

n−1∑
j=0

T jx‖,

which yields (3) with C = K + supn ‖T n‖. �

Definition. Let T be a bounded linear operator on a complex Banach space X. A closed

set F ⊂ C is called a K-spectral set for T if

(4) ‖u(T )‖ ≤ K sup
z∈F
|u(z)| for every rational function u(z) with poles outside F.

A K-spectral set necessarily contains the spectrum σ(T ).

Proposition 2.2. Let T be a bounded operator on a Banach space X. If a closed Stolz

region S is a K-spectral set for T , then T is power-bounded, and supn n‖T n − T n+1‖ <∞.

In addition, there exist C > 0 such that

(5) n‖T nx‖ ≤ C‖
n−1∑
j=0

T jx‖ ∀x ∈ X, ∀n ≥ 1.

Proof. Since S is a subset of the unit disk, (4) yields ‖T n‖ ≤ K supz∈S |zn| = K. For a Stolz

region S we have (as observed in [6]) sup16=z∈S
|1−z|
1−|z| = C <∞. For z ∈ S we then have

|zn − zn+1| = |z|n|1− z| ≤ C|z|n(1− |z|).

Since max0≤t≤1 t
n(1 − t) =

(
n
n+1

)n 1
n+1

, we have maxz∈S n|zn(1 − z)| ≤ C. Since S is a

K-spectral set, (4) yields ‖n(T n − T n+1)‖ ≤ C ·K for every n ≥ 1.

For z ∈ S,
∑n−1

j=0 z
j 6= 0, since a Stolz region does not contain non-trivial roots of unity.

Fix 1 ≤ k < n and define u(z) =
∑k−1

j=0 z
j/
∑n−1

j=0 z
j. Then u(z) is a rational function

bounded on S. For z ∈ S we have

|1− z| · |
k−1∑
j=0

zj| ≤ C(1− |z|k) ≤ C(1− |z|n) ≤ C|1− zn| = C|1− z| · |
n−1∑
j=0

zj|.

Hence |
∑k−1

j=0 z
j| ≤ C|

∑n−1
j=0 z

j| for 1 ≤ k < n and z ∈ S, so supz∈S |u(z)| ≤ C. By the

functional calculus and (4),

‖
k−1∑
j=0

T jx‖ = ‖u(T )
n−1∑
j=0

T jx‖ ≤ ‖u(T )‖·‖
n−1∑
j=0

T jx‖ ≤ K(sup
z∈S
|u(z)|)‖

n−1∑
j=0

T jx‖ ≤ KC‖
n−1∑
j=0

T jx‖.

Using Lemma 2.1, we combine this with (3) and obtain (5). �
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Remarks. 1. For proving (1) we have used (4) only for polynomials, but for proving (5)

we used the full definition. An easy adaptation of Lebow’s lemma in [40, p. 66] shows that

when F is a compact set which does not separate the plane, it is a K-spectral set as soon

as ‖P (T )‖ ≤ K supz∈F |P (z)| for every polynomial P (z).

2. The converse of the proposition may fail; Lancien and Le Merdy [39] gave an example

of a power-bounded Ritt operator T for which no Stolz region is a K-spectral set.

The following corollary was observed in [45, Remark 6.7].

Proposition 2.3. Let T be a power-bounded operator on a complex Hilbert space H. If

its numerical range W (T ) := {〈Tf, f〉 : ‖f‖ = 1} is contained in a Stolz region, then

supn n‖T n − T n+1‖ <∞.

Proof. Let S be the closure of the Stolz region containing the numerical range. Since S
is convex, by Delyon and Delyon [22, Theorem 3] (see also Putinar and Sandberg [54]),

there is a KS > 0 such that for every rational function u(z) with poles outside S we have

‖u(T )‖ ≤ KS supz∈S |u(z)|, i.e. S is a KS-spectral set. We now apply Proposition 2.2. �

Remarks. 1. The numerical radius sup{|z| : z ∈ W (T )} of a power-bounded operator

in H may be larger than 1. The assumption of the proposition implies a numerical radius

not exceeding 1, for which it is necessary that supn ‖T n‖ ≤ 2 (see [59]).

2. For a contraction T , the proposition was proved (independently of [22]) in [12].

Definition. A bounded linear operator on a Banach space X is called polynomially

bounded if there exists K > 0 such that ‖P (T )‖ ≤ K sup|z|≤1 |P (z)| for every polynomial.

Obviously polynomial boundedness implies power boundedness. If the closure of the open

unit disk D is a K-spectral set, then T is polynomially bounded.

Theorem 2.4. The following are equivalent for a bounded linear operator T on a Hilbert

space H.

(i) T is polynomially bounded and supn n‖T n − T n+1‖ <∞.

(ii) There is a closed Stolz region S which is a K-spectral set for T .

(iii) T is polynomially bounded, and there exists K > 0 such that

(6) n‖T nx‖ ≤ K‖
n−1∑
j=0

T jx‖ ∀x ∈ H, ∀n ≥ 1.

(iv) T is similar to a Ritt contraction.

Proof. By Proposition 2.2, (ii) implies both (i) and (iii). (iii) implies (i) is easy, by putting

x = (I − T )y in (6).

(iv) implies that T is polynomially bounded by von-Neumann’s inequality [55, Section

153]. The similarity to a Ritt contraction yields that also T is Ritt.

If (i) holds, then by [51] T satisfies (2). By a result of deLaubenfels [21, Theorem 4.4], T

is similar to a contraction S, which is necessarily also Ritt, so (iv) holds.
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Finally, we prove that (i) implies (ii). By the above, T is similar to a Ritt contraction S.

By Le Merdy [42, Theorem 8.1] (who uses the fact that in H Ritt operators are R-Ritt), S

has a Stolz region which is a K-spectral set; this easily implies (ii). �

Remarks. 1. An alternative proof of (i) implies (ii) can be obtained by showing that

the polygon P constructed in the proof of (a)=⇒(c) of [21, Theorem 4.4] can be taken to

have all its vertices except 1 inside D, with the Stolz region containing σ(T ) contained in

its interior, and then including P in another Stolz region.

2. In an unpublished note [43], Le Merdy proved that if T satisfies the conditions in

Theorem 2.4, then it is similar to a contraction with numerical range in a Stolz region.

Proposition 2.5. Let T be a normal contraction on a complex Hilbert space H. Then the

following are equivalent:

(i) The spectrum σ(T ) is contained in a Stolz region.

(ii) The numerical range W (T ) is contained in a Stolz region.

(iii) supn n‖T n − T n+1‖ <∞.

Proof. (ii) implies (iii) by Proposition 2.3, and (iii) implies (i) by the above cited results of

[51] and [49].

Assume (i). Since T is normal, the closure of W (T ) is the convex hull of σ(T ) [8], so

W (T ) is in the same Stolz region as the spectrum. �

Remarks. 1. A direct proof that (i) implies (iii) is given in [6, p. 111] (and also in [45,

Lemma 6.3]).

2. Without normality (i) does not imply (iii). Let V f(x) =
∫ x

0
f(t)dt be the Volterra

operator on L2[0, 1]. Let S = (I + V )−1 and T = I − V . Then ‖S‖ ≤ 1 [31, Problem 150],

and T is similar to S [1, p. 15], so T is power-bounded. By Lyubich [50], T does not satisfy

Ritt’s resolvent condition, so neither does S, while σ(S) = σ(T ) = {1}.
3. We do not know if without normality (iii) implies (ii).

In view of Proposition 2.5, we rephrase the main consequence of Gaposhkin’s result: If T

is a positive normal contraction on L2(S,m) with supn n‖T n − T n+1‖ < ∞, then for every

f ∈ L2(S,m), T nf converges a.e. We show below that with this formulation normality is

not needed, and the result extends to Lp, 1 < p <∞.

Lemma 2.6. Fix 1 < p < ∞ and let T be a power-bounded operator on Lp(S,m) of a

σ-finite measure space. If supn n
α‖T n − T n+1‖ <∞ for some α > 1/p, then T nf converges

a.e. for f in a dense subspace, and nβT nf → 0 a.e. for 0 ≤ β < α−1/p and f ∈ (I−T )Lp.

Proof. Put F (T ) := {f ∈ Lp : Tf = f}. The mean ergodic theorem yields the ergodic

decomposition Lp = F (T ) ⊕ (I − T )Lp . For f = (I − T )g and 0 ≤ β < α − 1/p, the

assumption yields nβ‖T nf‖ ≤ C‖g‖/nα−β, so
∑∞

n=0(nβ‖T nf‖)p < ∞. By Beppo Levi’s

theorem
∑∞

n=0 n
βp|T nf |p converges a.e., so nβ|T nf | → 0 a.e. Hence T nf converges a.e. for

f ∈ F (T )⊕ (I − T )Lp. �
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Remarks. 1. Léka [41] constructed for every α ∈ (1/2, 1) a contraction T on a Hilbert

space (which can be L2(S,m)) such that σ(T ) = {1} and ‖T n−T n+1‖ � nα. We are grateful

to J. Zemánek for this reference.

2. For T a positive contraction satisfying the assumptions with α = 1/2, there can be

functions f for which T nf does not converge a.e. For an example see [56, Theorem 10].

The following theorem is due to Le Merdy and Xu [45, Theorem 4.4 and Corollary 5.2].

Theorem 2.7. Fix 1 < p <∞ and let T be a positive contraction of Lp(S,m) of a σ-finite

measure space. If supn n‖T n − T n+1‖ = C < ∞, then T nf converges a.e. for every f ∈
Lp(S,m), and for some c > 0,

∥∥ supn |T nf |
∥∥
p
≤ c‖f‖p for every f ∈ Lp(S,m). Moreover,

(7) ‖ sup
{nk}↑

{
|T n0f |q +

∞∑
k=1

|T nkf − T nk−1f |q
}1/q‖p < Cp,q‖f‖p for 2 < q <∞

Remark. The a.e. convergence follows already from combining Lemma 2.6 with the

maximal inequality of Le Merdy and Xu [44, Theorem 4.1].

Corollary 2.8. Let T be a positive contraction of Lp(S,m). If T n converges weakly in Lp
and for some integer d > 1 we have

sup
n
n‖T nd − T nd+d‖ <∞ ,

then T nf converges a.e. for every f ∈ Lp(S,m), and supn |T nf | ∈ Lp(S,m).

Proof. Since T nf converges weakly, the fixed points of T d are only those of T , and limn T
ndf =

limn T
n+rf = Ef (weakly) for every f ∈ Lp and 0 ≤ r < d. By Theorem 2.7 T ndT rf con-

verges a.e. for every f ∈ Lp and 0 ≤ r < d, and the limit is Ef , which easily yields the

assertion. �

Example 1. Convolution powers on compact Abelian groups

Let G be a compact Abelian group with normalized Haar measure m, and µ a probability

measure on G which is assumed strictly aperiodic, i.e. |µ̂(γ)| < 1 for every character γ 6= 1.

Put Tf = µ ∗ f for f ∈ L2(G,m). Conze and Lin [18, Theorem 5.3] proved that µn ∗ f
converges a.e. for every f ∈ Lp, 1 < p <∞, if and only if for some d > 0 we have

(8) sup
γ 6=0

|1− µ̂(γ)d|
1− |µ̂(γ)|d

<∞.

Since the characters are an orthonormal basis of eigenvectors, it follows easily that σ(T ) is

the closure {µ̂(γ) : γ ∈ Ĝ}. Condition (8) means that σ(T d) is contained in a Stolz region

[6], so by Proposition 2.5 the condition of Corollary 2.8 holds. The example in [18, p. 558]

shows that the conditions of Corollary 2.8 may hold with d = 2, but fail for d = 1. Thus,

(1) is not necessary for the a.e. convergence.

Theorem 2.9. Fix 1 < p <∞ and let T be a positive contraction of Lp(S,m) of a σ-finite

measure space. Then the following are equivalent:
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(i) supn n‖T n − T n+1‖ <∞.

(ii) There exists Cp > 0 such that

(9)
∥∥∥( ∞∑

n=1

n|T n(I − T )f |2
)1/2
∥∥∥
p
≤ Cp‖f‖p for every f ∈ Lp.

(iii) There exists a closed Stolz region S and a constant KS > 0 such that

(10) ‖u(T )‖p ≤ KS sup
z∈S
|u(z)| for every rational function u(z) with poles outside S.

(iv) There exists a constant K > 0 such that n‖T nf‖ ≤ K‖
∑n−1

j=0 T
jf‖ for every f ∈ Lp

and n ≥ 1.

Proof. If T satisfies (i), then (9) holds by putting m = 1 in [44, Theorem 3.3(2)].

Assume now that (9) holds. By [42, Lemma 5.4] there is a C > 0 such that

(11)
∥∥∥( ∞∑

n=1

n3|(I − T )2T nf |2
)1/2
∥∥∥
p
≤ C‖f‖p ∀f ∈ Lp.

The identity (see beginning of the proof of [13, Proposition 2.2])

(12) n(I − T )T n−1 − 1

n+ 1

n∑
k=2

k(k − 1)(I − T )2T k−2 = 2T n − 2

n+ 1

n∑
k=0

T k

together with the estimate (by the Cauchy-Schwarz inequality)

(13)
∣∣ 1

n+ 1

n∑
k=2

k(k − 1)(I − T )2T kf
∣∣2 ≤ ∞∑

k=1

k3|(I − T )2T kf |2

and (11) yield (i).

(iii) implies (i) and (iv) by Proposition 2.2. (iv) implies (i) by the argument used to prove

that (iii) implies (i) in Theorem 2.4.

Assume (i). By Le Merdy [42, Theorem 8.3] T has a bounded H∞(S) functional calculus

for some closed Stolz region S, i.e. (iii) holds. �

Remark. For p = 2, see also Theorem 2.4, where positivity is not needed.

Corollary 2.10. Let T1, . . . , TN be positive contractions on L2(S,m) such that the numerical

range of each Tj is included in a Stolz region, and put T =
∑N

j=1 αjTj with αj > 0 and∑N
j=1 αj = 1. Then T satisfies all the properties of Theorem 2.9 with p = 2, and T nf

converges a.e. for every f ∈ L2(S,m), with L2 integrability of the strong q-variation for

2 < q <∞.

Proof. We show that when Tj are operators in a Hilbert space (not necessarily positive,

nor contractions) such that W (Tj) is contained in a closed Stolz region Sj, then W (T ) is

contained in the Stolz region S = ∪Nj=1Sj. Since Stolz regions are comparable, we have that
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indeed S is a Stolz region, and W (Tj) ⊂ S for every j. Then for ‖f‖ = 1 we have

〈Tf, f〉 =
N∑
j=1

αj〈Tjf, f〉 ∈ S

by convexity of Stolz regions. This implies, by Proposition 2.3, that when the Tj are positive

contractions, T satisfies (i)-(iii) of Theorem 2.9. The a.e. convergence follows from Theorem

2.7. �

Proposition 2.11. Fix 1 < p < ∞ and let T be a positive contraction of Lp(S,m) of a

σ-finite measure space satisfying supn n‖T n − T n+1‖ <∞. If f ∈ (I − T )Lp, then:

(i)
∑∞

n=0 T
nf converges a.e. and in Lp-norm, with supn |

∑n
k=0 T

kf | ∈ Lp.
(ii) nT nf → 0 m-a.e. and in Lp-norm.

Proof. For f = (I − T )g we can assume Eg := limT ng = 0, by the ergodic decomposition.

The assertions in (i) follow directly from Theorem 2.7, and
∑n

k=0 T
kf converges to g.

By the proof of Theorem 2.9, we have that
∑∞

k=1 k
3|(I − T )2T kg|2 < ∞ a.e., so by the

Cauchy-Schwarz inequality and Kronecker’s lemma

| 1
n

n∑
k=1

k(k − 1)(I − T )2T kg|2 ≤ 1

n

n∑
k=1

k4|(I − T )2T kg|2 → 0 a.e.

Since Eg = 0, we obtain the a.e. convergence in (ii) by applying the identity (12) to g. Now

(13) and (11) yield

‖ 1

n

n∑
k=1

k(k − 1)(I − T )2T kg‖ → 0

by Lebesgue’s dominated convergence theorem, so ‖nT nf‖ → 0 using (12). �

Example 2. Some convex combinations of powers of a contraction.

Let 1 < p <∞ and let S be a positive contraction of Lp(S,m). For α ∈ (0, 1) we define T =∑∞
n=1

1
cαn1+αS

n, where cα =
∑

1
n1+α . In the power series expansion (1−t)α = 1−

∑∞
k=1 a

(α)
k tk

for |t| < 1, the coefficients are a
(α)
1 = α and

(14) a
(α)
k =

α

k!

k−1∏
j=1

(j − α) for k > 1.

Since (k + 1)a
(α)
k+1 = αk−α

Γ(1−α)
[1 +O( 1

k
)] [61, vol. I, p. 77], we have

(15)
∞∑
k=1

k| 1

cαk1+α
− Cαa(α)

k | <∞

with Cα = Γ(1 − α)/αcα. Combining Dungey’s [28, Theorems 1.1 and 4.1(II)], we obtain

that supn n‖T n − T n+1‖ <∞. By Theorem 2.7, T nf converges a.e. for every f ∈ Lp.

Remarks. 1. The case α = 1
2

of the example was presented in [6, p. 116] for normal con-

tractions S in L2, showing the spectrum is in a Stolz region and deducing a.e. convergence.

Proposition 2.5 applies in that case.
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2. Theorem 1.3 of [28] shows that a power-bounded T satisfying (1) must be of the form

in the example.

3. Dungey [28, Theorem 3.1] proved that if for a probability distribution {ak : k ≥ 0} on

N with a0 < 1 the operator T :=
∑∞

k=0 akS
k with S power-bounded always satisfies (1), then∑∞

k=0 kak = ∞, hence {ak} has infinite support. The situation is different for probabilities

on Z and S unitary – see [6].

3. Convergence of powers of positive Dunford-Schwartz contractions

As mentioned in the introduction, Markov operators with σ-finite invariant measures

can be extended to become contractions of all the Lp spaces. An operator T on L1(S,m)

which extends to a contraction of each of the Lp(S,m) spaces is called a Dunford-Schwartz

operator. The Dunford-Schwartz theorem is that if T is a Dunford-Schwartz operator, then
1
n

∑n
k=1 T

kf converges a.e. for every f ∈ Lp, 1 ≤ p <∞.

The following theorem is a special case of Blunck’s interpolation theorem [10, Theorem

1.1].

Theorem 3.1. Let T be a Dunford-Schwartz operator. If supn n‖T n − T n+1‖r < ∞ for

some 1 ≤ r ≤ ∞, then supn n‖T n − T n+1‖p <∞ for every 1 < p <∞.

Combining Theorems 3.1 and 2.7 we obtain the following.

Corollary 3.2. Let T be a positive Dunford-Schwartz operator. If supn n‖T n−T n+1‖r <∞
for some 1 ≤ r ≤ ∞, then for any f ∈ Lp(S,m), 1 < p <∞, we have supn |T nf | ∈ Lp and

T nf converges a.e.; moreover, for 2 < q <∞ the strong q-variation is in Lp.

Example 1 (continued)

If µ satisfies (8), Tf = µd ∗ f is a positive Dunford-Schwartz operator on L1(G,m), so by

Theorems 3.1 and 2.9 for every 1 < p <∞ the spectrum σ(T dp ) is included in a Stolz region.

Example 3. Products of conditional expectations

Let (S,B,m) be a probability space, let E1, . . . , Ed be conditional expectations, and put

T = E1 · E2 · · ·Ed. The maximal inequality in [13, Proposition 2.2], with r = 1, yields that

supn‖(I − T )T n‖2 < ∞. Hence, by Corollary 3.2, we obtain Cohen’s result [13, Theorem

2.7]: for every 1 < p < ∞ and f ∈ Lp(S,B,m) the sequence {T nf} converges a.e., with

supn |T nf | ∈ Lp(S,B,m).

Remark. The maximal inequality of Le Merdy and Xu used in Theorem 2.7 was not

available when [13] was written, though Blunck’s interpolation was.

Theorem 3.3. Let (S,B,m) be a probability space, let T =
∑N

j=1 αjTj with αj > 0,∑N
j=1 αj = 1, and each Tj is a product of dj conditional expectation operators Ej,1, . . . , Ej,dj .

Then for every f ∈ Lp(S,m), 1 < p < ∞, the sequence {T nf} converges a.e. and in

Lp-norm, with supn |T nf | ∈ Lp(S,B,m), and (7) holds.
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Proof. Since each Tj is a product of orthogonal projections, it follows from [22, p. 39] that for

each Tj the numerical range is contained in a closed Stolz region, so also W (T ) is contained

in a closed Stolz region, by the proof of Corollary 2.10. Each Tj is a positive contraction of

all the Lp(S,m) spaces, and so is T . By Corollary 2.10 we have supn n‖T n(I − T )‖2 < ∞.

Now we obtain the maximal inequality and the a.e. convergence for every f ∈ Lp from

Corollary 3.2; together they yield the Lp-norm convergence. �

Remark. The proof shows that if T =
∑N

j=1 αjTj is a convex combination with each Tj
a product of finitely many orthogonal projections on a Hilbert space H, then supn n‖T n(I−
T )‖2 < ∞. This yields strong convergence (in H) of T n, a special case of the main result

of Badea and Lyubich [4], who also describe the limit (a projection by the mean ergodic

theorem). Our proof adds in this case the rate O( 1
n
) for the convergence ‖T n(I −T )‖2 → 0,

proved in [4].

Example 4. Convolution powers on R
Let G be a locally compact non-compact σ-compact Abelian group with Haar measure m,

and let µ be a strictly aperiodic probability on G (defined as in Example 1). If the random

walk generated by µ is transient, then
∑∞

n=0 µ
n ∗ f converges a.e. for any f ∈ L1(G,m) by

the definition of transience, so µn ∗ f → 0 a.e. Since for any transition probability P (x,A)

we have |P nf(x)|p ≤ P n(|f(x)|p) for 1 < p < ∞, we obtain that µn ∗ f → 0 a.e. for any

f ∈ Lp(G,m), 1 ≤ p < ∞. Thus the problem of a.e. convergence of convolution powers in

the non-compact case is only for recurrent random walks. If the random walk is recurrent

and some power of µ is non-singular with respect to m, then the Markov chain is Harris

recurrent and µn ∗ f → 0 a.e. for every f ∈ Lp(G,m), 1 ≤ p < ∞, by [34]; moreover, if in

addition µ is centered, has a finite second moment, and σ(T2) ⊂ D∪{1} (where T2f = µ ∗ f
for f ∈ L2(G,m) ), then by Dungey [27] supn n‖T n(I − T )‖p <∞ for 1 < p <∞. Thus the

a.e. convergence problem, say for R or R2, is for µ recurrent strictly aperiodic with all its

convolution powers singular (e.g. discrete). It is known that on R σ(T2) is the closure of the

range of the Fourier-Stieltjes transform of µ (see Proposition 5.1 below), so when µ on R is

strictly aperiodic and satisfies (8), σ(T d2 ) is contained in a closed Stolz region, and we obtain

that µn ∗ f → 0 a.e. for every f ∈ Lp(G,m), 1 < p < ∞, using Proposition 2.5, Corollary

2.8 and Corollary 3.2. The finitely supported µ′ of [27, p. 439] is recurrent (being centered)

and strictly aperiodic, but since σ(T2) contains the unit circle, so does σ(T d2 ); hence µ′ does

not satisfy (8) for any d > 0.

4. Convex combinations of powers of positive Lp-contractions

In this section we study the a.e. convergence of the powers of T =
∑∞

k=−∞ akS
k, where

{ak}k∈Z is a probability on Z and S is a positive invertible isometry of an Lp space, 1 <

p < ∞. This problem was studied by Bellow, Jones and Rosenblatt [6],[7] in the case of

S induced by an invertible ergodic probability preserving transformation. When {ak} is

supported on N, we can define T for any positive contraction of Lp (see Example 2).
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Definitions [6]. Let µ = {ak : k ∈ Z} be a probability on Z. It is called strictly aperiodic

if |µ̂(λ)| < 1 for any |λ| = 1, 1 6= λ ∈ C. A probability µ has bounded angular ratio if

sup
|λ|=1,λ 6=1

|1− µ̂(λ)|
1− |µ̂(λ)|

<∞.

If µ has bounded angular ratio, then it must be strictly aperiodic. On the other hand, if µ

is strictly aperiodic, then |1−µ̂(λ)|
1−|µ̂(λ)| is finite and continuous on any arc {|λ| = 1, |λ− 1| ≥ ε},

so it is bounded on each such arc. Hence µ strictly aperiodic has bounded angular ratio if

and only if

lim sup
16=λ→1

|1− µ̂(λ)|
1− |µ̂(λ)|

<∞.

For µ = {ak} strictly aperiodic supported on N and S a power-bounded operator on

a Banach space, we put T = Tµ(S) :=
∑∞

k=0 akS
k. Then (see [6, Proposition 5] for the

convergence)

‖T n − T n+1‖ ≤ (sup
n
‖Sn‖) · ‖µn − µn+1‖`1 → 0.

Dungey [28, Theorem 2.1] proved a ”spectral mapping theorem” for Tµ(S), namely

(16) σ(Tµ(S)) = {
∞∑
k=0

akz
k : z ∈ σ(S)}.

Theorem 4.1. Let µ = {ak} be a probability supported on N with bounded angular ratio.

Then for every contraction S on a Hilbert space the operator T = Tµ(S) has its numerical

range in a Stolz region, and satisfies supn n‖T n − T n+1‖ <∞.

Proof. Since µ has bounded angular ratio, the range of its Fourier-Stieltjes transform is in a

Stolz region S. Let U be unitary. By the spectral mapping theorem (16) (which for unitary

operators is implicit in [6, p. 115])

σ(Tµ(U)) = {
∞∑
n=0

akλ
k : λ ∈ σ(U)} = {µ̂(λ̄) : λ ∈ σ(U)} ⊂ S.

By Proposition 2.5, supn n‖T nµ (U) − T n+1
µ (U)‖ < ∞ and W (Tµ(U)) ⊂ S. Now let S be a

contraction on H, and let U be a unitary dilation of S on a larger space H1 containing H, so

Sn = EUn. Then n‖T n−T n+1‖ ≤ n‖E(T nµ (U)−T n+1
µ (U) )‖, and W (Tµ(S)) ⊂ W (Tµ(U)) ⊂

S, which proves the theorem. �

Theorem 4.2. Let µ = {ak} be a probability supported on N with bounded angular ratio.

Let 1 < p < ∞ and for S a positive contraction on Lp(S,m) put T = Tµ(S). Then

supn n‖T n − T n+1‖ < ∞. Consequently T nf converges a.e. for every f ∈ Lp(S,m), and

supn |T nf | ∈ Lp(S,m).

Proof. Note that for p = 2 the claim follows from Theorems 4.1 and 2.7.

We first look at the right shift R on `p = `p(N), defined by R(c1, c2, . . . ) = (0, c1, c2, . . . ).

The shift R is a well-defined isometry on all the `q spaces, 1 ≤ q ≤ ∞, and by Theorem
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4.1 we have supn n‖T nµ (R) − T n+1
µ (R)‖2 < ∞. Now we apply Blunck’s interpolation (see

Theorem 3.1) and obtain that supn n‖T nµ (R)− T n+1
µ (R)‖p = K <∞.

Now define φN(z) =
∑N

k=0 akz
k. Then ‖φN(S)− Tµ(S)‖ → 0 for every power-bounded S,

and also for any fixed n we have ‖φnN(S) − T nµ (S)‖ → 0. Now fix S a positive contraction

on our Lp. By Coifman and Weiss [17] (see also [15]), for every polynomial φ(z) we have

‖φ(S)‖Lp ≤ ‖φ(R)‖`p . Hence for fixed n we obtain

n‖T nµ (S)− T n+1
µ (S)‖ = lim

N→∞
n‖φnN(S)− φn+1

N (S)‖ ≤

lim
N→∞

n‖φnN(R)− φn+1
N (R)‖p = n‖T nµ (R)− T n+1

µ (R)‖p < K.

This shows that T = Tµ(S) satisfies supn n‖T n − T n+1‖ <∞. Now Theorem 2.7 yields the

a.e. convergence of T nf and supn T
n|f | ∈ Lp, for every f ∈ Lp. �

When S is a positive invertible isometry of Lp (1 ≤ p < ∞), then S−1 is an isometry

(‖f‖ = ‖S(S−1)f‖ = ‖S−1f‖). We show that it is positive. Let 0 ≤ f ∈ Lp and write

S−1f = g − h with g, h ∈ Lp non-negative with disjoint supports. Then f = Sg − Sh, and

since positive isometries preserve disjointness of supports [38, p. 186], Sh = 0 and thus

h = 0, so S−1f ≥ 0. Hence for a positive invertible isometry S and a probability µ on Z
(not supported in N) the operator Tµ(S) :=

∑∞
k=−∞ akS

k is a positive contraction of Lp.

Theorem 4.3. Let µ = {ak} be a strictly aperiodic probability on Z. Then the following

conditions are equivalent.

(i) µ has bounded angular ratio.

(ii) For any fixed 1 < p <∞ and any positive invertible isometry S on Lp(S,m), we have

supn n‖T nµ (S)− T n+1
µ (S)‖ <∞.

(iii) For any fixed 1 < p < ∞ and any positive invertible isometry S on Lp(S,m), for

every f ∈ Lp we have T nµ (S)f converges a.e. and supn T
n
µ (S)|f | ∈ Lp.

(iv) There is a 1 < p <∞, such that for any positive invertible isometry on Lp(S,m), we

have supn n‖T nµ (S)− T n+1
µ (S)‖ <∞.

(v) For every ergodic invertible measure preserving transformation τ on a probability space

(S,m) with Sf = f ◦ τ and every 1 < p < ∞, the operator Tµ(S) has the property that for

every f ∈ Lp, T nµ f converges a.e. and supn T
n
µ |f | ∈ Lp.

(vi) For any fixed 1 < p <∞ and any invertible operator S on Lp(S,m) with supn∈Z ‖Sn‖ <
∞, we have supn n‖T nµ (S)− T n+1

µ (S)‖ <∞.

(vii) For any fixed 1 < p < ∞ and any positive invertible operator S on Lp(S,m) with

supn∈Z ‖Sn‖ < ∞ and S−1 positive, for every f ∈ Lp we have T nµ (S)f converges a.e. and

supn T
n
µ (S)|f | ∈ Lp.

Proof. We first prove that (i) implies (ii). Let R be the right shift on `2(Z), defined for

~c := {cj}j∈Z by R~c = {cj−1}. Then Tµ(R)~c = µ ∗ ~c. The spectrum of the convolution

opertor Tµ(R) is the range of the Fourier-Stieltjes transform of µ [37, Example 4.3.22], so it

is contained in a Stolz region since µ has bounded angular ratio. By Proposition 2.5 we have
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supn n‖T nµ (R)− T n+1
µ (R)‖2 <∞. By Blunck’s theorem supn n‖T nµ (R)− T n+1

µ (R)‖p = Kp <

∞ for every 1 < p < ∞. The proof is now similar to that of Theorem 4.2. Fix 1 < p < ∞
and let S be a positive invertible isometry on Lp(S,m). Then S−1 is also a positive isometry.

Define ψN(z) =
∑N

k=−N akz
k. Then ‖ψnN(S) − T nµ (S)‖ → 0 as N → ∞ for each fixed n.

Since S is an isometry and φN = zNψN is a polynomial, we have by [17]

n‖T nµ (S)− T n+1
µ (S)‖ = lim

N→∞
n‖ψnN(S)− ψn+1

N (S)‖ = lim
N→∞

n‖S(n+1)N(ψnN(S)− ψn+1
N (S))‖ ≤

lim
N→∞

n‖R(n+1)N(ψnN(R)−ψn+1
N (R))‖p = lim

N→∞
n‖ψnN(R)−ψn+1

N (R)‖p = n‖T nµ (R)−T n+1
µ (R)‖p

which shows that supn n‖T nµ (S)− T n+1
µ (S)‖ ≤ Kp.

Clearly (iii) implies (v), and (ii) implies (iii) by Theorem 2.7. Obviously (ii) implies (iv).

We show (iv) implies (v). Let Sf = f ◦ τ for τ as in (v). By (iv) supn n‖T nµ (S) −
T n+1
µ (S)‖p < ∞, and by Blunck’s interpolation supn n‖T nµ (S) − T n+1

µ (S)‖q < ∞ for every

1 < q <∞. We now apply Theorem 2.7 in each Lq(S,m).

Assume (v). If µ does not have bounded angular ratio, then by Losert [47, Theorem 2] µ

has the strong sweeping out property – there is τ as in (v) for which there is a set A with

lim supSn1A = 1 a.e. and lim inf Sn1A = 0 a.e., contradicting the assumed convergence in

(v).

Clearly (vi) implies (ii) and (vii) implies (iii). The proof that (i) implies (vi) and (vii)

follows from Theorem 5.6 and Corollary 5.8 below. �

Remark. In [6] it is shown that (i) implies (v).

Proposition 4.4. The set of strictly aperiodic probabilities on Z having bounded angular

ratio is convex, and is closed under convolutions.

Proof. Let µ = {ak} and ν = {bk} be strictly aperiodic probabilities with bounded angular

ratio, and let η = tµ + (1 − t)ν, 0 < t < 1. The support of η is the union of the supports

of µ and ν, so η is strictly aperiodic. By definition, η̂ = tµ̂ + (1 − t)ν̂, so 1 − |η̂(λ)| ≥
t(1− |µ̂(λ)|) + (1− t)(1− |ν̂(λ)|), which yields

|1− η̂(λ)| ≤ t|1− µ̂(λ)|+ (1− t)|1− ν̂(λ)| ≤

C1t(1− |µ̂(λ)|) + C2(1− t)(1− |ν̂(λ)|) ≤ max{C1, C2}(1− |η̂(λ)|),

so η has bounded angular ratio. For the convolution µ ∗ ν, we have µ̂ ∗ ν = µ̂ · ν̂, so

|1− µ̂(λ)ν̂(λ)| ≤ |1− µ̂(λ)|+ |µ̂(λ)| · |1− ν̂(λ)| ≤ (C1 + C2)(1− |µ̂(λ)ν̂(λ)|),

so µ ∗ ν has bounded angular ratio. �
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5. Averages of representations of LCA groups by positive Lp isometries

In this section we look at averages of representations of a locally compact Abelian (LCA)

group G, with Haar measure mG, by positive isometries of an Lp space, extending some of

the results of the previous section (where G = Z). We assume G to be σ-compact, with

dual group Ĝ with (properly normalized) Haar measure m̂Ĝ.

Proposition 5.1. let µ be a probability on G, and denote the operator of convolution by µ

on Lp(G,mG) by Tµ,p. Then Tµ,2 is a normal operator with

(17) σ(Tµ,2) = {µ̂(γ) : γ ∈ Ĝ}.

Proof. Normality follows from commutativity of G. By Plancherel’s theorem [33, p.226]

L2(G,mG) is isometrically isomorphic to L2(Ĝ, m̂Ĝ), and Tµ,2 is represented by multiplication

by the Fourier transform µ̂. The spectrum of the latter is the right-hand side of (17) by

Exercise VII.5.15 of [26]. �

Definitions. Let µ be a probability on G. It is called strictly aperiodic if |µ̂(γ)| < 1 for

any 0 6= γ ∈ Ĝ. A probability µ has bounded angular ratio if it is strictly aperiodic and

sup
06=γ∈Ĝ

|1− µ̂(γ)|
1− |µ̂(γ)|

<∞.

Proposition 5.2. A probability µ on the LCA group G has bounded angular ratio if and

only if

(18) sup
n
n‖T nµ,p − T n+1

µ,p ‖ <∞ for any 1 < p <∞.

Proof. Bounded angular ratio means that {µ̂(γ) : γ ∈ Ĝ} is in a closed Stolz region. Equiva-

lently, σ(Tµ,2) is in a Stolz region, by (17), and Proposition 2.5 yields that it is equivalent to

supn n‖T nµ,2− T n+1
µ,2 ‖ <∞. Since mG is invariant for the convolution, Blunck’s interpolation

(Theorem 3.1) yields the equivalence with (18) for every 1 < p <∞. �

Definition. Let G be a LCA group. An operator representation of G in a Banach space

X is a homomorphism S from G to the group of invertible bounded operators on X, i.e.

S(t + s) = S(t)S(s). We assume that the representation is strongly continuous, i.e. S(t)x

is continuous when X has its norm topology. In reflexive spaces this is equivalent to weak

continuity – 〈x∗,S(t)x〉 is continuous for each x ∈ X and x∗ ∈ X∗ [32, p. 340]. The regular

representation by translations will be denoted by R.

Definition. An action of a LCA group G in a σ-finite measure space (S,m) is a family

{θt : t ∈ G} of invertible measure preserving transformations of (S,m), satisfying θt+s = θtθs
and θ0 = id, such that θtω is measurable on G × S; if limt→0 ‖f − f ◦ θt‖p = 0 for any

1 < p <∞ and f ∈ Lp(S,m), the action is called continuous. For 1 < p <∞, a continuous

action induces a continuous representation Sp in Lp(S,m), defined by Sp(t)f = f ◦ θt; in

L2(S,m) this is a unitary representation. These representations are by positive invertible

isometries.
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Let µ be a probability on G and S a bounded operator representation in X. The operator

Tµ(S), the µ-average of the representation S, is defined as the Bochner integral Tµ(S)x :=∫
S(t)x dµ(t); we then have

〈x∗, Tµ(S)x〉 =

∫
〈x∗,S(t)x〉dµ(t) for every x ∈ X, x∗ ∈ X∗.

In reflexive spaces, the above equality can be used as the definition of Tµ(S) [32, p. 335].

Similarly, we can define Tη(S) for every finite signed measure η, and we have ‖Tη(S)‖ ≤
‖η‖ supt∈G ‖S(t)‖. We also have S(s)(Tη(S)x) =

∫
S(s)S(t)x dη(t).

In this section we are interested in representations ofG by (positive) isometries on Lp(S,m)

of a σ-finite space for a fixed 1 < p < ∞, and properties of their µ-averages when µ has

bounded angular ratio. For p = 2 we have the following.

Proposition 5.3. Let µ be a probability on the σ-compact LCA group G and let S be a

continuous bounded representation of G in a Hilbert space. If µ has bounded angular ratio,

then supn n‖T nµ (S)− T n+1
µ (S)‖ <∞.

Proof. It is well-known [25, Théorème 6] (see also [48, p. 83]) that S is equivalent to a

unitary representation, say U, so it is enough to prove the assertion for Tµ(U). By the

general Stone spectral theorem for unitary representations of LCA groups [55, section 140],

we have U(t) =
∫
Ĝ
γ(t)E(dγ), where E(·) is a spectral measure on the Borel sets of Ĝ. By

the definitions and Fubini’s theorem,

Tµ(U) =

∫
G

[

∫
Ĝ

γ(t)E(dγ)]dµ(t) =

∫
Ĝ

µ̂(γ)E(dγ).

Thus, if λ /∈ {µ̂(γ) : γ ∈ Ĝ}, then 1
λ−µ̂(γ)

is a bounded continuous function on Ĝ, and∫
1

λ−µ̂(γ)
E(dγ) yields the inverse of λI − Tµ(U). Thus σ(Tµ(U)) ⊂ {µ̂(γ) : γ ∈ Ĝ}, which is

contained in a Stolz region when µ has bounded angular ratio. Proposition 2.5 now yields

the result. �

Theorem 5.4. Let {θt : t ∈ G} be a continuous action of a σ-compact LCA group G, and

let µ be a probability on G with bounded angular ratio. Then for every 1 < p < ∞ we

have supn n‖T nµ (Sp)−T n+1
µ (Sp)‖p <∞, and consequently, T nµ (Sp)f converges a.e. for every

f ∈ Lp(S,m).

Proof. The operator Tµ(S)f =
∫
f ◦ θtdµ(t) is a positive Dunford-Schwartz operator. By

Proposition 5.3 supn n‖Tnµ(S2)− T n+1
µ (S2)‖2 <∞, so Blunck’s interpolation (Theorem 3.1)

yields supn n‖Tnµ(Sp) − T n+1
µ (Sp)‖p < ∞ for 1 < p < ∞. The asserted a.e. convergence

follows from Theorem 2.7. �

The following ”transfer principle” is essentially due to Coifman and Weiss [16] for abso-

lutely continuous measures supported in compact sets.
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Theorem 5.5. Let η be a finite signed measure on a σ-compact locally compact amenable

group G, and let S be a continuous representation of G in Lp(S,m) (1 < p < ∞ fixed),

with sup{‖S(t)‖ : t ∈ G} = C < ∞. Let Tη(R) be the convolution operator Tη(R)φ(s) =∫
φ(s · t)dη(t) on Lp(G,mG), and let Tη(S)f(x) =

∫
(S(t)f)(x)dη(t) on Lp(S,m). Then

‖Tη(S)‖ ≤ C2‖Tη(R)‖p.

Proof. We first prove the theorem when η (i.e. its variation |η|) is supported in a compact

set K. We adapt the proof of [16], skipping some of the details. Put A := ‖Tη(R)‖p. We

denote Tη(S) by T .

Since G is amenable, by Leptin’s condition [53, pp. 62-72], for ε > 0 there is an open V

with 0 < mG(V ) <∞ such that

(19) mG(V ·K) < (1 + ε)mG(V ).

Fix ε > 0 and V as in (19). Writing Tf = S(s−1)S(s)Tf for s ∈ G we obtain∫
S
|Tf(x)|pdm(x) ≤ Cp

∫
S
|S(s)Tf(x)|pdm(x), s ∈ G.

Integration of this inequality over V and dividing by mG(V ), inserting the definition of

Tf and using the fact that S is a continuous representation yields, after changing order of

integration and remembering that η is supported on K:∫
S
|Tf(x)|pdm(x) ≤ Cp

mG(V )

∫
S

{∫
V

∣∣ ∫
G

S(st)f(x) · 1V ·K(st)dη(t)
∣∣pdmG(s)

}
dm(x).

Note that the inner integral is actually over K. For fixed x put fx(t) := S(t)f(x). Then∣∣ ∫
G

S(st)f(x) · 1V ·K(st)dη(t)
∣∣ = |(η ∗ (fx1V ·K))(s)|,

which yields, when integrating over G instead of V , using the norm of the convolution

operator in Lp(G,mG) and Fubini’s theorem,∫
S
|Tf(x)|pdm(x) ≤ CpAp

mG(V )

∫
G

1V ·K(s)
{∫

S
|S(s)f(x)|pdm(x)

}
dmG(s) ≤ C2pAp

mG(V )
‖f‖ppmG(V ·K).

The choice of V yields
∫
S |Tf(x)|pdm(x) ≤ C2pAp‖f‖pp(1 + ε), and letting ε → 0 yields the

desired inequality.

We now obtain the general case. Since G is σ-compact, there is an increasing sequence

{Kj} of compact sets with union G. Then ηj(·) := η(· ∩ Kj) tends to η in total variation

norm, and so ‖Tηj(R) − Tη(R)‖ → 0 and ‖Tηj(S) − Tη(S)‖ → 0; with the inequality

‖Tηj(S)‖ ≤ C2‖Tηj(R)‖ proved above we obtain the result. �

Theorem 5.6. Let G be a σ-compact LCA group, and µ a probability on G with bounded

angular ratio. Fix 1 < p < ∞ and let S be a bounded continuous representation of G in

Lp(S,m). Then supn n‖T nµ (S)− T n+1
µ (S)‖ <∞.

Proof. Put ηn = n(µn − µn+1). Then by Theorem 5.5 (LCA groups are amenable),

n‖T nµ (S)− T n+1
µ (S)‖ = ‖Tηn(S)‖ ≤ ‖Tηn(R)‖p = n‖T nµ,p − T n+1

µ,p ‖.
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Since µ has bounded angular ratio, Proposition 5.2 yields the assertion. �

Definition. A bounded linear operator on Lp(S,m) is called a Lamperti operator if

(Tf)(Tg) = 0 whenever fg = 0 (f, g ∈ Lp); this means that T preserves disjointness of

supports. For 1 < p < ∞, isometries of Lp(S,m), p 6= 2, and positive isometries of L2 are

Lamperti operators (see [38, p. 186]).

Theorem 5.7. Let 1 < p < ∞, and let S be a bounded representation of a σ-compact

LCA group G by Lamperti operators on Lp(S,m). If µ is a probability on G with bounded

angular ratio, then for every f ∈ Lp(S,m) the sequence {T nµ (S)f} converges a.e., and

supn |T nµ (S)f | ∈ Lp(S,m).

Proof. By Proposition 5.2 we can apply the maximal inequality of Le Merdy and Xu [44,

Theorem 4.1] to the operator of convolution by µ on Lp(G,mG), and we obtain that∥∥ supn µ
n ∗ |φ|

∥∥
p
≤ c‖φ‖p for every φ ∈ Lp(G,mG). The extension of Calderon’s trans-

fer principle to amenable groups by Lin and Wittmann [46, Theorem 3.1] yields that

‖ sup
n
|T nµ (S)f | ‖p ≤ c

(
sup
t∈G
‖S(t)‖

)2‖f‖p for f ∈ Lp(S,m).

By Theorem 5.6, we have the convergence rate supn‖T nµ (S)− T n+1
µ (S)‖ <∞, which yields

the a.e. convergence as in the proof of Theorem 2.7. �

Corollary 5.8. Let 1 < p < ∞, and let S be a bounded representation of a σ-compact

LCA group G by positive operators on Lp(S,m). If µ is a probability on G with bounded

angular ratio, then for every f ∈ Lp(S,m) the sequence {T nµ (S)f} converges a.e., and

supn |T nµ (S)f | ∈ Lp(S,m).

Proof. Kan [36] proved that an invertible operator T on Lp(S,m) such that both T and T−1

are positive is Lamperti, so Theorem 5.7 applies. �

Remarks. 1. Theorem 2.7 does not yield directly Corollary 5.8, because Tµ(S) is not

necessarily a contraction. Note that the maximal inequality of Le Merdy and Xu is used in

the proof of Theorem 5.7.

2. When p 6= 2, Theorem 5.7 applies to isometric representations in Lp which are not

necessarily positive. In this case Theorem 2.7 does not yield the convergence, because Tµ(S)

is not necessarily positive (though it is a contraction).

3. It is possible to have µ strictly aperiodic with µn ∗ φ → 0 a.e. on G for every

φ ∈ LP (G,mG), without a maximal inequality. In this case T nµ (S)f need not converge

a.e. For example, on Z let µ = 1
2
(δ0 + δ1); the pointwise convergence of µn ∗ φ for φ ∈

Lp(G,mG), 1 ≤ p < ∞, follows from norm convergence since we have a discrete group.

However, J. Rosenblatt [56, Theorem 10] proved that for every action of Z in a separable

non-atomic probability space (S,m) there is a set B for which lim supT nµ (S)1B = 1 a.e. and

lim inf T nµ (S)1B = 0 a.e. For a dense subspace of Lp(S,m) a.e. convergence holds by [6,

Remark, p. 103].
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Jones, Rosenblatt and Tempelman [35] studied the a.e. convergence of T nµ (Sp)f for the

µ-averages of actions of general σ-compact locally compact metric groups. They introduced

an analogue, for the non-Abelian case, of the bounded angular ratio property. From their

approach we obtain the following.

Theorem 5.9. Let G be a σ-compact locally compact metric group, and let {Uγ : γ ∈ Λ} be

the set of all irreducible unitary representations of G (Uγ acts on a Hilbert space Hγ). Let

µ be a probability on G such that ‖Tµ(Uγ)‖ < 1 for Uγ 6= Id. If

(20) sup
Id 6=γ∈Λ

‖Iγ − Tµ(Uγ)‖
1− ‖Tµ(Uγ)‖

= C <∞

then for every unitary representation S by positive operators in L2(S,m) we have

(21) sup
n
n‖T nµ (S)− T n+1

µ (S)‖ <∞.

Consequently for any f ∈ L2(S,m) the sequence {T nµ (S)f} converges a.e., with supn T
n
µ (S)|f |

in L2(S,m).

Proof. The assumptions yield, by the proof in [35, p. 548], that (9) holds with p = 2,

T = Tµ(S), and C2 = C. By positivity of the representation, T is positive, and (21) holds

by Theorem 2.9. The a.e. convergence holds by Theorem 2.7. �

Remark. In particular, under the assumptions of the theorem, (18) holds.

Corollary 5.10. Let {θt : t ∈ G} be a continuous action of a σ-compact locally compact

metric group G, let S(t)f = f ◦ θt−1, and let µ be a probability on G satisfying (20). Then

for every 1 < p <∞ we have supn n‖T nµ (Sp)−T n+1
µ (Sp)‖p <∞, and consequently, T nµ (Sp)f

converges a.e. for every f ∈ Lp(S,m).

The convergence is the result of [35]. The proof is like that of Theorem 5.4 (which is the

special case of G Abelian).

Theorem 5.11. Let 1 < p < ∞, and let S be a bounded representation of a σ-compact

locally compact amenable group G by positive operators on Lp(S,m). If µ is a probability

on G which satisfies supn n‖T nµ,2 − T n+1
µ,2 ‖ < ∞, then for every f ∈ Lp(S,m) the sequence

{T nµ (S)f} converges a.e., and supn |T nµ (S)f | ∈ Lp(S,m).

Proof. By Blunck’s interpolation, the assumption on µ is equivalent to (18). In the proofs

of Theorems 5.6 and 5.7, replace the assumption that µ has bounded angular ratio by (18),

and then the proof of Corollary 5.8 yields the assertion. �

Remarks. 1. Dungey [27, Theorem 1.2] gives sufficient conditions for (18) when µ is

absolutely continuous.

2. Example 3.10 of [35] exhibits an amenable (countable) group such that for any µ

adapted (20) fails, although for any µ symmetric strictly aperiodic (21) holds for unitary

representations by positive operators (see [35, p. 549]).
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3. In [35, Theorem 3.15] it is shown that if G is a discrete group with Kazhdan’s property

(T) (hence not amenable), then (20) holds for every strictly aperiodic µ.

4. If µ is strictly aperiodic on G non-amenable with e ∈ supp(µ), then ‖Tµ,2‖ < 1 by

Derriennic-Guivarc’h [23] (see also [9], [5]), so (18) obviously holds. However, (21) need not

hold, as shown in the next example.

Example 5. µ strictly aperiodic on G non-amenable satisfying (18) and not (21).

Let G = F2 be the free group with two generators a, b and let S be the positive unitary

operator on L2(S,m) of a separable non-atomic probability space, induced by an ergodic

measure preserving transformation on S. For elements of F2 in their reduced representations,

we define

S(
N∏
j=1

akjbnj) = S
∑N
j=1 kj .

Then S is a unitary representation. Since S(bn) = S0 = I, the probability µ := 1
4
(δe+2δa+δb)

is adapted with e ∈ supp(µ), so ‖Tµ,2‖ < 1, hence (18) holds. But Tµ(S) = 1
2
(I + S), so by

[56, Theorem 10] the final conclusion of Theorem 5.9 fails, so (21) does not hold.

Remark. Example 5 shows also that Theorem 5.11 need not hold if G is non-amenable.

6. Fractional coboundaries of positive Ritt Lp-contractions

Let T be a power-bounded operator on a Banach space X. Let 0 < α < 1. Following

Derriennic-Lin [24], we define (I − T )α := I −
∑

k≥1 a
(α)
k T k, where {a(α)

k } is given by the

power-series expansion (1− t)α = 1−
∑

k≥1 a
(α)
k tk, |t| ≤ 1, with a

(α)
k > 0 and

∑∞
k=1 a

(α)
k = 1

(see Example 2). The elements of (I−T )αX are called fractional coboundaries of T (of order

α). It was proved in [24, Theorem 2.11] that y ∈ (I−T )αX if and only if
∑∞

k=1
Tky
k1−α

converges

in norm. These conditions are equivalent to the norm convergence of
∑∞

k=0 b
(α)
k T ky, where

{b(α)
k } is the sequence of coefficients in the expansion (1 − t)−α =

∑∞
k=0 b

(α)
k tk for |t| < 1,

which are all positive (see [24]).

In this section we study additional properties of fractional coboundaries of a positive Lp-

contraction (1 < p < ∞) T which satisfies Ritt’s condition, i.e. supn n‖T n − T n+1‖ < ∞.

For some properties of coboundaries see Proposition 2.11.

We start with a general property of fractional coboundaries in Banach spaces. Remember

that for T power-bounded on X, we have

Xerg := {x ∈ X :
1

n

n∑
k=1

T kx converges } = F (T )⊕ (I − T )X

T is mean ergodic if Xerg = X. If X is reflexive, every power-bounded T is mean ergodic.

Proposition 6.1. Let T be a power-bounded operator on a Banach space X satisfying

supn n‖T n − T n+1‖ = K <∞, and let 0 < α < 1. Then

(i) supn≥1 n
α‖T n(I − T )α‖ <∞.
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(ii) For any f ∈ Xerg we have nα‖T n(I − T )αf‖ −→
n→∞

0.

Proof. We prove (i). Let α ∈ (0, 1) and f ∈ X. Using the asymptotics of a
(α)
k in (14) and

(15), supn ‖T n‖ = C <∞ and the assumption, we obtain

‖(I − T )αT n‖ = ‖
∑
k≥1

a
(α)
k (I − T k)T n‖ ≤

‖
n∑
k=1

a
(α)
k

k−1∑
j=0

T j(I − T )T n‖+ ‖
∑
k≥n+1

a
(α)
k (I − T k)T n‖ ≤

C

n

n∑
k=1

ka
(α)
k ‖n(I − T )T n‖ + (C + 1)C

∑
k≥n+1

|a(α)
k | ≤ C̃/nα .

To prove (ii), it is enough to prove it on a dense subspace, by (i). Obviously (I−T )αf = f

for f ∈ F (T ), so it suffices to prove (ii) for f = (I − T )g. Since

nα‖T n(I − T )α(I − T )‖ ≤ nα

n
‖(I − T )α‖n‖T n(I − T )‖ ≤ C + 1

n1−α K → 0.

we obtain that nα‖T n(I − T )α(I − T )g‖ −→
n→∞

0 for every g ∈ X. �

Remark. Our proof is valid also in real Banach spaces. Part (i) was proved for complex

Banach spaces in [3, Proposition 2.8].

For r > 0, we define (I − T )r = (I − T )[r](I − T )r−[r]. It was proved in [24] that

{(I − T )r : r ≥ 0} is a C0-semi-group on (I − T )X; its infinitesimal generator was proved

to be −
∑∞

n=1 T
n/n [14], [30].

Corollary 6.2. Let T be as in Proposition 6.1. Then for every r > 0 we have

(i) supn≥1 n
r‖T n(I − T )r‖ <∞.

(ii) For any f ∈ Xerg we have nr‖T n(I − T )rf‖ −→
n→∞

0.

Proof. The condition supn n‖T n(I − T )‖ < ∞ implies that for every positive integer k we

have supn n
k‖T n(I − T )k‖ < ∞ [60, Lemma 2.1]. Given r > 0, let k = [r] and α = r − k.

Then (i) follows from

nr‖T n(I − T )r‖ = ‖nkT [n/2](I − T )knαT [(n+1)/2](I − T )α‖ ≤

‖nkT [n/2](I − T )k‖ · ‖nαT [(n+1)/2](I − T )α‖.

(ii) follows from the above and Proposition 6.1(ii). �

We now turn to the case of positive Lp-contractions. We start with a consequence of

the work of Arhancet-Le Merdy [3]. Note that they use a different definition of (I − T )α,

appropriate only for T Ritt, but for Ritt operators both definitions cöıncide.
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Definition. We say that an operator T on Lp(S,m) is R-Ritt if there exists C > 0 such

that, for every sequence of integers {nk}k≥1 and any sequence {fk}k≥1 in Lp(S,m),∥∥∥(∑
k≥1

|T nkfk|2
)1/2∥∥∥

p
≤ C

∥∥∥(∑
k≥1

|fk|2
)1/2∥∥∥

p
,

∥∥∥(∑
k≥1

|nk(T nk − T nk+1)fk|2
)1/2∥∥∥

p
≤ C

∥∥∥(∑
k≥1

|fk|2
)1/2∥∥∥

p
.

Proposition 6.3. Let 1 < p < ∞ and let T be a positive contraction of Lp(S,m) which

satisfies (1). For 0 < α < 1, there exists Cp,α > 0 such that for every h ∈ (I − T )Lp(S,m),

(22)
‖h‖p
Cp,α

≤
∥∥∥(∑

n≥1

n2α−1|T n(I − T )αh|2
)1/2∥∥∥

p
≤ Cp,α‖h‖p .

Proof. By Theorem 2.9(iii), there is a Stolz region for which (10) holds, which in the termi-

nology of [42] means that T has a bounded H∞(Bγ) calculus. Hence, by [42, Proposition

7.4], T is R-Ritt. Hence, by Theorem 3.3 of [3] (with β = 1), there exists C ′p,α > 0 such that

1

C ′p,α

∥∥∥(∑
n≥1

n|T n(I − T )h|2
)1/2∥∥∥

p
≤
∥∥∥(∑

n≥1

n2α−1|T n(I − T )αh|2
)1/2∥∥∥

p

≤ C ′p,α

∥∥∥(∑
n≥1

n|T n(I − T )h|2
)1/2∥∥∥

p
.

By [44, Theorem 3.3(2)] and [44, Corollary 3.4] (both with m = 1), the extreme terms are

equivalent to ‖h‖p for h ∈ (I − T )Lp(S,m). �

We now give a complement to the above mentioned characterization of fractional cobound-

aries of [24], in the spirit of the paper [19], when T is a positive Ritt contraction of Lp(S,m).

Proposition 6.4. Let 1 < p <∞ and let T be a positive contraction of Lp(S,m) satisfying

supn n‖T n − T n+1‖ <∞. For α ∈ (0, 1), the following are equivalent for f ∈ Lp(S,m):

(i) f ∈ (I − T )αLp(S,m);

(ii)
∑

k≥1
Tkf
k1−α

converges in Lp-norm.

(iii)
(∑

k≥1 k
2α−1|T kf |2

)1/2

∈ Lp(S,m) .

(iv)
(∑

r≥0 22rα max2r≤n<2r+1 |T nf |2
)1/2

∈ Lp(S,m).

In particular, f satisfies all the above conditions if∑
n≥1

npα−1‖T nf‖pp <∞ when 1 < p ≤ 2 ;(23) ∑
n≥1

n2α−1‖T nf‖2
p <∞ when p ≥ 2.(24)

When p = 2, (i) holds if and only if
∑

n≥1 n
2α−1‖T nf‖2

2 <∞.
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Proof. The equivalence of (i) and (ii) is in Theorem 2.11 of [24] (valid for any mean ergodic

power-bounded operator).

Let f ∈ (I − T )αLp(S,m). Then there exists h ∈ Lp(S,m) such that f = (I − T )αh, and

since T is mean ergodic, by [24, Theorem 2.11] one may assume that h ∈ (I − T )Lp(S,m).

Then (iii) follows from Proposition 6.3.

Assume (iii). By reflexivity, Corollary 2.12 of [24] yields that f ∈ (I − T )αLp(S,m) if

{‖
∑N

k=0 b
(α)
k T kf‖p}N≥1 is bounded.

We first show that f ∈ (I − T )Lp, by proving that 1
n

∑n
k=1 T

kf → 0 a.e. and using

Akcoglu’s theorem. By (iii) the series
(∑

k≥1 k
2α−1|T kf |2

)1/2
converges a.e. When α ≥ 1/2,

this implies |T kf |2 → 0 a.e., so | 1
n

∑n
k=1 T

kf | ≤ 1
n

∑n
k=1 |T kf | → 0 a.e. When α < 1

2
,

Cauchy’s inequality followed by Kronecker’s lemma yield∣∣∣ 1
n

n∑
k=1

T kf
∣∣∣2 ≤ 1

n

n∑
k=1

|T kf |2 ≤ 1

n1−2α

n∑
k=1

|T kf |2 → 0.

Since α is fixed, we denote below ak = a
(α)
k and bk = b

(α)
k . Put uN =

∑N
k=0 bkT

kf . Then

uN is in (I − T )Lp, and Proposition 6.3 yields

(25) ‖uN‖p ≤ Cp,α

∥∥∥(∑
n≥1

n2α−1|T n(I − T )αuN |2
)1/2∥∥∥

p
.

By Proposition 2.4(i) of [24], we have

(I − T )αuN = f +
∞∑

`=N+1

(
N∑
k=0

bka`−k)T
`f .

Then by the triangle inequality in `2 and in Lp, we have∥∥∥(∑
n≥1

n2α−1|T n(I − T )αuN |2
)1/2∥∥∥

p
≤

∥∥∥(∑
n≥1

n2α−1|T nf |2
)1/2∥∥∥

p
+
∑

`≥N+1

(
N∑
k=0

βkα`−k)
∥∥∥(∑

n≥1

n2α−1|T n+`f |2
)1/2∥∥∥

p
.(26)

As noted at the beginning of the proof of Proposition 6.3, T is R-Ritt. Hence, by taking

in the definition fk = kα−
1
2T kf and nk = ` for each k, we obtain∥∥∥(∑

k≥1

k2α−1|T k+`f |2
)1/2∥∥∥

p
≤ Cp

∥∥∥(∑
k≥1

k2α−1|T kf |2
)1/2∥∥∥

p
.

By [24, Lemma 2.3],
∑

`≥N+1(
∑N

k=0 βkα`−k) = 1 for every N ≥ 0. Putting it all in (26) and

using (25), we obtain by (iii) that supN ‖uN‖p <∞, so f ∈ (I − T )αLp(S,m).

Assume (iv). Then( ∞∑
n=1

n2α−1|T nf |2
)1/2

=
( ∞∑
`=0

2`+1−1∑
k=2`

k2α−1|T kf |2
)1/2

≤ 22α−1
( ∞∑
`=0

22`α max
2`≤k<2`+1

|T kf |2
)1/2

.
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Hence (iii) holds.

It remains to prove that (i) implies (iv). Let f ∈ (I − T )αLp(S,m).

Let r ≥ 1 and 2r ≤ n ≤ 2r+1− 1. Then n = 2r−1 + ` for some 2r−1 ≤ ` ≤ 2r+1− 2r−1− 1.

For every h ∈ Lp, we have, using (a+ b)2 ≤ 2a2 + 2b2 and the Cauchy-Schwarz inequality,

|T `h|2 =
∣∣∣1
`

`−1∑
j=0

T jh+
1

`

∑̀
j=1

j(T jh− T j−1h)
∣∣∣2 ≤

2
∣∣∣1
`

`−1∑
j=0

T jh
∣∣∣2 + 2

∣∣∣1
`

∑̀
j=1

j(T jh− T j−1h)
∣∣∣2 ≤ 2

1

`

`−1∑
j=0

|T jh|2 + 2
∑̀
j=1

j|T jh− T j−1h|2.

Taking h := T 2r−1
f and maximizing over a block, we obtain

max
2r≤n<2r+1

|T nf |2 = max
2r−1≤`<2r+1−2r−1

|T `(T 2r−1

f)|2 ≤

2

2r−1

2r+1−1∑
j=2r−1

|T jf |2 + 2
2r+1−1∑
j=2r−1

j|T jf − T j−1f |2 ≤ 8
2r+1−1∑
j=2r−1

|T jf |2

j
+ 2

2r+1−1∑
j=2r−1

j|T jf − T j−1f |2 .

We shall multiply this estimate by 22rα ≤ 4αj2α for j in the summations. We then take

the sum over r. When doing so we notice that our blocks [2r−1, 2r+1 − 1] overlap when r

varies, but any integer j > 1 will appear twice. Hence, we obtain∑
r≥1

22rα max
2r≤n<2r+1

|T nf |2 ≤ C̃
(∑
j≥1

j2α−1|T jf |2 +
∑
j≥1

j2α+1|T jf − T j−1f |2
)
.

By assumption, there exists g ∈ Lp such that f = (I − T )αg. Since (i) and (iii) are

equivalent,
(∑

j≥1 j
2α−1|T j(I − T )αg|2

)1/2 ∈ Lp. By [3, Theorem 3.3], with β = α + 1, we

have also
(∑

j≥1 j
2α+1|T j(I − T )1+αg|2

)1/2 ∈ Lp. Hence (iv) holds.

We now prove that (23) or (24) imply (iii).

Assume that 1 < p ≤ 2. Then, estimating on blocks of length 2` and using the norm

inequality ‖ · ‖`2 ≤ ‖ · ‖`p , we obtain

h2 :=
∞∑
n=1

n2α−1|T nf |2 ≤
∞∑
`=0

(2`+1)(2α−1)2` max
2`≤k<2`+1

|T kf |2 =

22α−1

∞∑
`=0

22α` max
0≤j<2`

|T 2`+jf |2 ≤ 22α−1

∞∑
`=0

(
2pα` max

0≤j<2`
|T 2`+jf |p

)2/p

.

By the maximal inequality of Le Merdy and Xu [44], ‖ supj |T jf | ‖p ≤ c‖f‖p, so∫
hpdm =

∫
(h2)p/2dm ≤ C

( ∞∑
`=0

2p`α‖ max
0≤j<2`

‖T j(T 2`f)‖pp
)
≤ C

( ∞∑
`=0

2p`αcp‖T 2`f‖pp
)
.

Since T is a contraction, we estimate on blocks (2`−1 + 1, 2`] to obtain
∞∑
n=1

npα−1‖T nf‖pp ≥
∞∑
`=1

2(`−1)(pα−1)2`−1‖T 2`f‖pp = 2−pα
∞∑
`=1

2`pα‖T 2`f‖pp ,
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which shows that (23) implies (iii).

When p ≥ 2, we use the identity ‖h‖p/2 = ‖h1/2‖2
p for h ≥ 0 and (24) to obtain[ ∫ ( ∞∑

k=1

k2α−1|T kf |2
)p/2

dm
]1/p

=
∥∥∥ ∞∑
k=1

k2α−1|T kf |2
∥∥∥1/2

p/2
≤

( ∞∑
k=1

k2α−1‖ |T kf |2‖p/2
)1/2

=
( ∞∑
k=1

k2α−1‖ |T kf | ‖2
p

)1/2

<∞.

Thus in either case, (iii) holds.

Finally, for p = 2 (23) is exactly (iii). �

Remark. The fact that (23) implies (i) was proved in [20] when p = 2 and T is normal.

Theorem 6.5. Let 1 < p < ∞ and let T be a positive contraction of Lp(S,m) satisfying

supn n‖T n − T n+1‖ <∞. Let α ∈ (0, 1) and f ∈ (I − T )αLp(S,m). Then:

(i) The series
∑

n≥1 n
α−1T nf converges m-a.e. and supn≥1 |

∑n
k=1 k

α−1T kf | ∈ Lp(S,m).

(ii) nαT nf −→
n→∞

0 m-a.e. and supn≥1 n
α|T nf | ∈ Lp(S,m).

(iii) The square variation norm ‖{nαT nf}n≥1‖Lp(v2) is finite.

Proof. Let f ∈ (I −T )αLp(S,m). The proof that the series
∑

n≥1 n
α−1T nf converges m-a.e.

and that supn≥1 |
∑n

k=1 k
α−1T kf | ∈ Lp(S,m) is similar to that of Theorem 3.9 of [24], since

by Theorem 2.7, supn T
n|g| ∈ Lp for every g ∈ Lp(S,m). This proves (i).

To prove (ii), we first observe that by Kronecker’s lemma, (i) yields nα−1(f + · · · +

T n−1f) −→
n→∞

0 m-a.e. and supn≥1 n
α−1|f + · · ·+ T n−1f | ∈ Lp.

Recall that for every n ≥ 1, we have

(27) T nf − 1

n
(f + · · ·+ T n−1f) =

1

n

n∑
j=1

j(T jf − T j−1f) .

By the Cauchy-Schwarz inequality,

nα

n

n∑
j=1

j|T jf − T j−1f | = 1

n1−α

n∑
j=1

j
1
2
−αj

1
2

+α|T jf − T j−1f | ≤

1

n1−α

( n∑
j=1

j1−2α
)1/2( n∑

k=1

k1+2α|T kf − T k−1f |2
)1/2

≤ C
( n∑
k=1

k1+2α|T kf − T k−1f |2
)1/2

.

Hence

(28) max
0≤k≤n

kα|T kf | ≤ max
0≤k≤n

kα|f + · · ·+ T k−1f |
k

+ C
( ∞∑
k=1

k2α+1|T kf − T k−1f |2
)1/2

.
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To prove supn n
α|T nf | ∈ Lp, we have to show that the series on the right-hand side of (28)

is in Lp. We write the terms of the series as

(2k)2α+1|T 2kf − T 2k−1f |2 = 22α+1
∣∣∣k(T k+1 − T k)(kα−1/2T k−1f)

∣∣∣2 ,
(2k + 1)2α+1|T 2k+1f − T 2kf |2 ≤ 22α+1

∣∣∣(k + 1)(T k+1 − T k)((k + 1)α−1/2T kf)
∣∣∣2 ,

Since T is R-Ritt, the second inequality of the definition of R-Ritt yields

(29)
∥∥∥(∑

k≥1

k2α+1|T kf − T k−1f |2
)1/2
∥∥∥
p
≤ C

∥∥∥(∑
k≥1

k2α−1|T kf |2
)1/2
∥∥∥
p
,

which is finite by (iii) of Proposition 6.4. Hence supn≥1 n
α|T nf | ∈ Lp .

To show nαT nf → 0 a.e., note that by (iv) of Proposition 6.4, for 2r ≤ n < 2r+1 we have

nα|T nf | ≤ 2α · 2rα max
2r≤n<2r+1

|T nf | → 0 a.e.

We now prove (iii). Denote uj := jαT jf . Let {tk}k≥0 be an increasing sequence of integers.

We will use properties (iii) and (iv) of Proposition 6.4 to bound
(∑

k≥0 |utk − utk+1
|2
)1/2

by

a function of Lp which does not depend on {tk}.
We partition the sequence (tk)k≥0 into the blocks of dyadic integers, and accordingly

partition the indices. Put {`n} := {` : [2`, 2`+1) ∩ {tk} 6= ∅}, and let kn be the first index k

with 2`n ≤ tk < 2`n+1, i.e. 2`n ≤ tk < 2`n+1 if and only if kn ≤ k < kn+1.

We start with the following simple observation

∑
k≥0

|utk − utk+1
|2 =

∑
n≥0

kn+1−1∑
k=kn

|utk − utk+1
|2

For kn ≤ k ≤ kn+1 − 2, tk+1 < 2`n+1, and by the Cauchy-Schwarz inequality we obtain

|utk − utk+1
|2 =

[ tk+1−1∑
j=tk

(uj − uj+1)
]2 ≤ (tk+1 − tk)

tk+1−1∑
j=tk

|uj − uj+1|2 ≤ 2`n
tk+1−1∑
j=tk

|uj − uj+1|2.

With the convention that
∑j−1

j = 0 we obtain, after separating the index from a different

block,

kn+1−1∑
k=kn

|utk − utk+1
|2 ≤

kn+1−2∑
k=kn

2`n
tk+1−1∑
j=tk

|uj − uj+1|2 + 2|utkn+1−1
|2 + 2|utkn+1

|2 .

By the definitions,

|utkn+1−1
|2 ≤ 4α22`nα max

2`n≤j<2`n+1
|T jf |2 and |utkn+1

|2 ≤ 4α22`n+1α max
2`n+1≤j<2`n+1+1

|T jf |2.
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Moreover, |uj − uj+1|2 ≤ C
(
j2α−2|T jf |2 + j2α|T jf − T j+1f |2

)
. Hence, we infer that∑

n≥0

kn+1−1∑
k=kn

|utk − utk+1
|2 ≤ C

∑
n≥0

( kn+1−2∑
k=kn

tk+1−1∑
j=tk

(
j2α+1|T jf − T j+1f |2 + j2α−1|T jf |2

))
+C

∑
n≥0

(
22`nα max

2`n≤j<2`n+1
|T jf |2 + 22`n+1α max

2`n+1≤j<2`n+1+1
|T jf |2

)
=

C
∑
j≥1

(
j2α+1|T jf − T j+1f |2 + j2α−1|T jf |2

)
+ 2C

∑
`≥0

22`α max
2`≤j<2`+1

|T jf |2.

Since (
∑3

i=1 |bi|)1/2 ≤
∑3

i=1 |bi|1/2, we obtain( ∞∑
k=1

|utk − utk+1
|2
)1/2

≤

C
[(∑

j≥1

j2α+1|T jf − T j+1f |2
)1/2

+
(∑
j≥1

j2α−1|T jf |2
)1/2

+
(
2
∑
`≥0

22`α max
2`≤j<2`+1

|T jf |2
)1/2
]
.

Since f ∈ (I−T )αLp, the second and the third term are in Lp by (iii) and (iv) of Proposition

6.4, and the first term was then proved to be in Lp in (29). �
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