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Parametric Estimation of the Orientation of Textured
Planar Surfaces

Joseph M. France$enior Member, IEEEBnd Haim H. Permuter

Abstract—This paper presents a parametric solution to the the perspective projection the observed texture has properties
problem of estimating the orientation in space of a planar textured  different from those of the surface texture. Thus, 3-D shape
surface, from a single, noisy, observed image of it. The coordinate information can be computed such that the discrepancy is

transformation from surface to image coordinates, due to the ted f = le if the t text is k ¢
perspective projection, transforms each homogeneous sinusoidal @cCounted for. =or example, 1T the true texture Is known 1o

component of the surface texture into a sinusoid whose frequency € an array of elements with a known shape, say circular, the
is a function of location. The functional dependence of the sinusoid surface gradient can be inferred from the observed distorted
phase in location is uniquely determined by the tilt and slant an- shape, elliptical in this case, of the elements. In this paper we
gles of the surface. Using the phase differencing algorithm we fit a address a special case of the general problem of estimating

polynomial phase model to a sinusoidal component of the observed . . . -
texture. Assuming the estimated polynomial coefficients are the shape from texture: We consider the problem of estimating the

coefficients of a Taylor series expansion of the phase, we establishorientation in space of a planar textured surface, from a single,
a linear recursive relation between the model parameters and noisy, observed image of it.
the unknown slant and tilt. A linear least squares solution of the A solution to this problem is an essential component in many
resulting system provides the slant and tilt estimates. To improve 446 processing and multimedia data processing applications.
accuracy, an iterative reflnement procedure is applied in a small = le th tati f tWo-di . 1(2-D 3D
neighborhood of these estimates. The performance of the proposed™ O €Xa@mMpl€, the segmentation oftwo-dimensiona (2-D) or )
algorithms is evaluated by applying them to images of different images and video for content-based coding and representation
planar surfaces, and by comparing their statistical performance is considerably simplified if the effects of the perspective pro-
with the Cramer—Rao bound. The combined two-stage algorithm jection are eliminated first, thus reducing the nonhomogeneity
is shown to produce estimates that are close to the bound. of the image. By estimating and then canceling the effect of the
Index Terms—Nonhomogeneous two-dimensional signals, para- perspective projection on a given image, we avoid the difficulty
metric texture modeling, perspective estimation, two-dimensional of segmenting and coding an image where each of its patches
polynomial phase models. is nonhomogeneous. Furthermore, to enable content-based in-
dexing for retrieval from multimedia data bases, the effect of the
|. INTRODUCTION specific perspective projection in each image has to be nulled in
. — . order to “normalize” all images with respect to some “common
HE perspectl_ve prol?c“or.‘ has a dominant and fundgésis.” In particular, in indexing and retrieval systems of multi-
men_tal role in any imaging process, whether by thr?]edia data that employ the textural information in the imagery
human V.'Su.al system, or by some type. OT a camera. Hen_‘é‘cn)mponents of the data, e.qg., [12], the identification of similar
perspective is one of the prominent clues in image Interpretatioy red surfaces as being such, is impossible unless the effects

and understanding. This makes perspective estimation a lfﬂhe different perspective projections involved in the process

Rrotl)leml in rln?ng im%?e m_odtﬁling ?nd tgnaly?i% apﬂicatio?&rtaking each of the images are estimated and then removed. We
closely related probiem 1S the estimation of the Shape Ohga efore conclude that all the foregoing applications require an
three-dimensional (3-D) rigid body from one, or more, imag

£ that bodv. O tth in| hes t q | t(E'f'ccurate estimate of the perspective transformation to become
ot that body. one of Ine possi ? approaches towar ?So Ullhilable at a moderate computational complexity, so that per-
of this problem is known as “shape from texture,” wher

Epective estimation could be conveniently integrated into the
estimation of the shape of the rigid body is based on its surf y 9

) . igher level applications.
texture information. In general, recovery of 3-D shape from Pp

texture i ble if or k led bout th ‘ Existing solutions to problems where perspective estimation
exiure Is possible It some prior knowledge about the SUurafe;, o) eq attempt to extract the projection parameters based
texture, in the surface coordinate system, is available. Due

dR the observed variations in the image, generated by the
perspective projection. The structure-based approaches attempt

, _ , to recognize the structure of the surface texture (the “true”
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the noise contribution the observed surface does not exhibitA maximum likelihood estimator for the tilt and slant param-
the expected “regularities,” and texture elements (“texels&ters is proposed in [9]. In this framework the homogeneous
are difficult to identify [5]. An alternative approach, thatsurface texture is modeled by a Gauss—Markov random field.
does not require the initial recognition of the structure of th& probability distribution function for the observed textured
surface texture is based on statistical assumptions regardingithage, assuming a “linear” projection model (instead of the
distribution of textural properties of the surface texture. Typicalonlinear perspective projection transformation) is derived. The
assumptions are isotropy, [1], [2], [8], [13] and homogeneitypint problem of estimating the surface orientation parameters,
[3], [6], [14]. Thus, an observed preferred orientation of aand the texture model is then solved by a ML estimator. How-
isotropic surface texture, or an observed inhomogeneity ofeger, due to the linear approximation of the projection transfor-
homogeneous surface texture, is employed to estimate the soation, the method was found to be sensitive to the nonhomo-
face orientation. We note that many of the foregoing methodeneities of the observed texture which are especially significant
(see, e.g., [6], [11], [3], [4]) are derived for binary images, dior low slant angles.
are based on an initial local analysis of the image, using itsin this paper we elaborate on the problem of estimating the
edge information. Hence, their usefulness in the presenceooientation in space of a planar textured surface from a single,
noise is limited. noisy, observed image of it, such that, in its own coordinate
In [5] a two-step procedure for texel identification and sursystem the surface texturdismogeneou®y employing a gen-
face estimation is proposed. Aad-hocprocedure based on aeral texture model which is based on the 2-D Wold-like decom-
multiscale region detector and some simplifying assumptionggesition of homogeneous random fields, and substituting the
used to construct a set of candidate texels. In a second staggsical model of the perspective projection, we derive an ac-
perspective viewing constraints are employed to select the tmgate and physically meaningful model for the observed image
texels from the candidates, while simultaneously constructing the planar surface. Using the derived model of the observed
an approximation of the surface orientation. The algorithm praonhomogeneous image, two algorithms are rigorously devel-
posed in [14] evaluates the dominant frequency at each imageed. The performance of the proposed algorithms is evaluated
point using the wavelet transform, and then employs the spatiatough Monte-Carlo simulations. The error variance in esti-
dependence of this frequency component to estimate the surfaing the tilt and slant parameters in the presence of noise is
orientation. A different method for estimating and canceling, trmmpared with the Cramer—Rao bound for this problem, derived
effects of perspective based on the 1-D Chirplet transform wiaq29]. To the best of our knowledge the derivation of estimation
suggested in [15]. More recently, an algorithm for estimating tlegorithms in the presence of noise, and the evaluation of their
surface orientation by first evaluating the ridge surface of a coperformance relative to a universal performance bound, were
tinuous wavelet transform of the observed textured image wasver considered in the existing literature. Furthermore, since
derived in [17]. This approach employs the fact that the dorthe model of the homogeneous surface texture is based on the
inant spatial frequencies of a textured image are characterizz® Wold decomposition of homogeneous random fields, the
by ridge points of the wavelet transform, to evaluate the surfapsposed algorithms provide a unifying framework for both the
tilt and slant angles from the parameters of these ridge pointstructural and statistical methods. In addition, the extremely dif-
Generally speaking, these algorithms address the problenfiofilt task of identifying the texture elements from the perspec-
estimating thénstantaneous frequeney every image point (or tive projected noisy image, as required by the structure-based
a related quantity) as a first step in a procedure for estimatiagproaches, is avoided.
the tilt and slant of the observed surface, based on the variationMore specifically, the 2-D Wold decomposition implies that
of the instantaneous frequency. This approach is further ptine deterministic component of any homogeneous texture field
sued with the introduction of novel space-frequency methodsan be approximated by a sum of 2-D sinusoids, [23]. Thus, an
see e.g., [14], [7]. However, given a nonhomogeneous sigr@gdproximate model of the surface texture deterministic compo-
d(x;, y;), the question of the unique determination of its innent is given by
stantaneous phase, frequency and amplitude, is not a straight
forward one, as even in the one dimensional case incoherent L
definitions of instantaneous phase and amplitude are common. tzs, vs) = Z Ay cos(z,wi +ys11 + 1) @
We refer the interested reader to [22] for a detailed discussion =1

on the one-dimensional problem. Following, [22] it is clear thayhere(z,, y,) denote the surface coordinates. The coordinate
starting from a given signal(z;, v;), itis possible to introduce transformation from surface to image coordinates, due to the
an infinite number of pairfu(z;, v), ®(z;, ¥;)] such that perspective projection, transforms each homogeneous sinu-
soidal component to a sinusoid whose frequency is a function
@i, i) = ali, vi) cos(®(i, vi)). @ of Iocation.pln the Appendix it is proved tcrllat inythe case of
Nevertheless, in order to be able to interpgét;, ;) as the a planar surface, the functional dependence of the sinusoid
instantaneous amplitude of the signal, afdr;, y;) as its phase in location is uniquely determined by the tilt and slant
instantaneous phase, the instantaneous phase and ampliaundges of the surface. Hence, the surface tilt and slant angles
should be defined in such a way that onlgiagle well defined, can be recovered from the phase of the sinusoidal component,
pair [a(z;, u:), ®(x;, w;)] will correspond to any given signal measured in the image plane.
d(z;, v;), so that the representation (1) is unique. We shall The perspective projection results in a continuous coordi-
further elaborate on this point in Section IV. nate transformation from the surface coordinate system to the
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Fig. 1. Perspective projection.

image coordinate system. Hence, the phase function of eacho$inoise and analyze their performance through Monte-Carlo
nusoidal component of the surface texture is transformed by ienulations and by comparing the Monte-Carlo results with the
perspective projection into a nonlinear, continuous function @ramer—Rao lower bound (CRLB). Finally, in Section VIII we
the image coordinates. Since continuous functions can be amke some concluding remarks.

proximated by polynomials, a natural choice for modeling the

continuous phase function of each sinusoidal component is by a Il. THE PERSPECTIVETRANSFORMATION

polynomial function of the image coordinates. Hence, the mOdelThiS section defines the viewing geometry we use. In the fol-

of t_he harmonic cqmponent ofa homogeneou_s S“rf"%ce FeXt_%ﬁing we adopt the notations used by Super and Bovik in [14]
projected onto the image plane by the perspective projection '3t assume a pinhole perspective projection model, since it pro-

multicomponent model, where each component is of a const@meS a good approximation to a lens-type imaging system.
amplitude times a sine of a polynomial function of the image Assign a world coordinate syster), — [z yu zo]” to

coordinates. . . . the imaging system such that its origin is at the focal point and
Th_e Paper 1 organized as follows. In Secpon . we prese e —z, axis is the optical axis (see Fig. 1). The image plane
the viewing geometry we use and the resulting functional d%’located at, — f < 0where|f| is the focal length. Define

pendepce of the observed phase on the image coordma’Festﬁgrimage plane coordinate system = [z; ]” such that
each sinusoidal component of the surface texture. In Section Il _" andy; = y

we briefly present the polynomial phase model and a COME e use the slant-tilt system for representing the orientation of

sponding algorithm for estimating its parameters. However, ﬂ}ﬁe planar surface. The slant,is the angle between the surface
estimation algorithm is designed to work with complex valueq’gi§e '

tant litud | 2l oh tsi ormal and the optical axig, . The tilt, 7, is the angle between
constant ampiitude polynomial phase monocomponent sign z;-axis and the projection of the surface normal onto the
In our application the 2-D signal is real, and in general it h

. : . age plane. To describe a texture on the surface, we must de-
more than a single component. Therefore, in Section IV we

. laorithm that isolat inal t from th 1e a coordinate systes, = [, y, 7]’ onthe surface. This

rive an algorithm that isolates a single component from the o5 | 4 ate system is formed by

served signal and converts it into a complex form through the 1 tting th is 10 be th ‘ 1

2-D Hilbert transform, such that the concepts of 2-D instanta- 2) sett!ng thas-ax!s to be thesursce r_lorrt1_1a, toth

neous phase, frequency, and amplitude are well defined. In Sec-) fse 'ngf thec_s-axs tO'It € te ac -p.rOJec. lon onto the sur-

tion V we derive a computationally efficient algorithm for esti- actts 0 the 'mage t vect: O]ErCOS T’.Slrlllt?’ ded orth |

mating the slant and the tilt of the planar surface directly from ) se Ing they, -axis so as fo form right-nanded orthogona
coordinate system;

the estimated polynomial model of the phase. In order to do so . - . . :

it is assumed that the estimated polynomial phase coefficients4) settlng the origin at the intersection of the surface with the
are in fact, the coefficients of a Taylor series expansion of the ZuwaXIS. . . )
phase. In Section VI we present an iterative algorithm to imhus, the coordinate trans_formatlon fromth_e surface coordinate
prove the accuracy of the obtained tilt and slant estimates.S¥Stem to the world coordinate system is given by

Section VIl we illustrate the performance of the proposed algo- COSO COST —sSInT SingCosT 0

rithms using synthetic and photographed images. In particulag,, = | cososinT cosT sinosinT | X+ [ 0| (3)

we investigate the performance of the algorithms in the presence —sino 0 coso 20
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wherez, is thez,,-coordinate of the surface where it crosses thend

optical axis. o
The coordinate transformation of a point in the world coordi- 7fl =wizo
nate system to image coordinates due to the perspective projec- U = 2.

tion is given by Following the definition in the 1-D case, we call real 2-D signals
/

o 1 00 4 with constant instantaneous amplitu@el) phase signals

Xi= Zy |0 1 0 X “) Since the origin of the observed surface is projected onto the

Since for any surface point we have by definition that= origin of the image, we concluQe that_for.each harmpmc com-
ponent of the surface texture, its projection on the image has

0, let us definex, = [z, ys]? to be the coordinate vector o o
of a surface point. Therefore, the surface to world coordina&tv]-:e same initial phasg, as on the surface. This is because the

. ) . . Initial value of each cosine function, i.e., its valu 0), re-
transformation of a poiminthe surface is given using (3) by mains unchanged under a projection that keepset(r?é o)rigin

COSoCosT —sinT 0
Xy = | cososinT cosT [ Xs+ [ O |. (5) Ill. THE PARAMETRIC PHASE MODEL AND ITS ESTIMATION
—sino 0 20

In the previous section it is concluded that the phase func-
For any point of the surface we have thatifscoordinate is tion of any sinusoidal component of the homogeneous surface
given by texture is transformed by the perspective projection into a non-
linear function of the image coordinates. As shown in the Ap-
pendix, for a given focal length, the transformation is a unique

Substituting (5) and (6) into (4) we obtain the surface to imadgnction of the surface tilt and slant angles. Hence, in principle,
coordinate transformation of a poiot the surface to a point on the surface tilt and slant can be recovered from the phase of the

the image plane due to the perspective projection projected sinusoidal component, measured on the image plane.
However, due to it@w periodicity the phase wraps around, and

x_ 1 [CF’ST - Si‘”} [COSU 0} x,. (7) onlyits principle value is observable. Therefore, any use of the
ST CosT 0 1 phase information is limited by the need to first unwrap the

The matrix[**7 ~57] is a rotation matrix, and the matrix Phase of the observed signal. _

[cos7 0 In this paper we propose to use a parametric model as an

5" 1] provides the projection af, to x;/f for a zero tilt. - )
The terml/(z— x, sin o) is a scaling factor due to the distancéltérnative to the need to employ phase unwrapping methods.

Zw = 20 — Tysino. (6)

f T 2o — zssinc

of the surface from the pinhole. (For an overview of 2-D phasg unvv_rapping glgorithms, see, e.g,
The inverse of the relation (7) is given by [24] and th_e references there|'n.) Since contlnuqus functlons.can
) be approximated by polynomials, a natural choice for modeling
X, = % [Seca 0} [ cosT S“”} Xi (8) anycontinuous2-D phase function is by a 2-D polynomial of
0 L} [—sinT cos7] f the coordinates. Since the assumption of phase smoothness is
where substitution of (8) into (6) yields implicit to this model, neexplicitphase unwrapping is required
20 in estimating the observed phase.
2 = Z ” . (9) In this section we briefly study the model of a single compo-
tan o <? cosT + 7 sin 7') +1 nent, constant amplitude exponential of a polynomial function

of the field coordinates. This model belongs to the general class

of AM-FM signals, [25], [26]. The model, as well as the proper-

ties of the parametric phase estimation algorithm, described in
Next, we derive a model for the harmonic component of this section, are studied in detail in [18] and [19]. More specif-

texture field, undergoing a perspective projection. ically, let {v(z, )} be a discrete 2-D constant amplitude poly-
Substituting the inverse coordinate transformation expressiggmial phase signal, i.e.,

(8) into the texture model (2), we obtain the model of the har-

A. Projection of the Texture

monic component, projected onto the image plane, i.e., v(z, y) = Aexp{jégi(z, v}, z=01,--, N—1,
. y=01 -, M—1 (12)
ti(xi) = ta[xa(xi)] = Y Arcos(P(x;)) (10)  where
=1 k, £
where ®; (x5, ys) = x.w +ysv + ¢ iS given in the image Pz, v) = > ok, Hz"y".  (13)
coordinate system by {0k, 60sh+H=Q+1)

& (1 v We call¢gy1(x, y) 2-D polynomial oftotal-degree + 1. The
(i, ?{Z) . . . . amplitude A is a real valued positive constant. To simplify the
i (Grcos 7Ty cososin 7) LY (tusin7 + 9 c080COST)  presentation we assume there is no observation noiseland

_f cos ! coso 1. Hence(z, y) = exp{jgori(z. 1)}
tano [ i COST+& sint ) 41 _The proposed_phase_est_imation a!gorithm is suboptimal_ (rel-
ative to the maximum likelihood estimator), but computation-

+ @1 (11) ally efficient (since no multidimensional search in the parameter
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space is required). The algorithm is based on the properties oftheorem 1: Let v(x, %) be given by (12) and (13). Then, the
a 2-D phase difference operator. First we give a brief heuris8gnalPD,.») ,e-r [v(z, y)] is a 2-D exponential given by
explanation of the idea behind the operator.

Consider the observed signal which is given by (12), and as- PD,» y@-»[v(z, y)]
sume for the moment thatandy are continuous variables. By = exp {jlwor + voy + 1o (Tz, Ty},
differentiating the phase of the observed sigRdimes along 2=0.1. .- N—1—Pr

thez axis and@ — P times along the; axis, (in any order, as
long as the total number of differentiation operations in both
axes is@?), we obtain a 2-D complex exponential signal. It can, ore
be shown that the spatial frequengy, ) of this complex ex-
ponential is a function of two of the coefficients of the highest
“layer,” Q+1, of the phase polynomial, and other known quanti- @ ~ (-D%(P+1, Q- PP+ 1(Q~P)
ties. The exact functional relation of the exponential spatial fre-
guency and the phase parameters is given later in this sectiomg = (—1)%c(P, Q +1 - P)PY(Q + 1 — P)!Txp’/'yQ_
By estimating the frequency of the complex exponential we ob- (18)
tain estimates of two of the coefficients of the highest “layer”
of the phase polynomial model. Repeating this procedure for aid~, (7., 7,) is not a function ofr nor y.
0 < P < @, all the coefficients of the highest “layer + 1, Theorem 1 implies that applying in some arbitrary se-
of the phase polynomial model are estimated. quence, P times the operatoD,,, and Q — P times
Having completed the estimation of the phase parameterdlie operatorPD,.;, to the observed signal (12), the re-
the highest “layer,” their contribution to the signal phase can Iselting signal is the 2-D exponenti®D .») o [v(z, ¥)]
eliminated, thus resulting in a polynomial phase signal of totat= exp{jlwoxr + roy + vo(7=, 7y)|} Wherewg andvg are
degred?). By repeating this entire process for all the “layers” igiven by (17) and (18), respectively. We can thus reduce any
the phase model, all the phase parameters are estimated. 2-D nonhomogeneous, polynomial phase signalz, v),
Since in our problem the variablesandy are discrete, phasewhose phase is of total-degrég + 1, to a 2-D single tone
differentiating will be replaced by phase differencing. In prinsignal whose frequency {sg, vq).
ciple, this could be accomplished by computing the phase ofHence, estimatinguq, v ) using any standard frequency es-
the 2-D signal and then performing the differencing operatiotimation technique, results in an estimate:@P + 1, Q — P),
However, extraction of the phase function is difficult, and espandc( P, 4+ 1 — P). In this paper we estimate the frequency of
cially in the presence of noise, because of the need to perfattme exponential using a search for the maximum of the absolute
phase unwrapping. As we will show next, phase differencinglue of the signal 2-D Discrete Fourier Transform (2-D DFT).
can be accomplishedithoutphase unwrapping, by performingRepeating the procedure which was described above assuming
a certain nonlinear operation on the 2-D signal, using what geme arbitraryP, for all P such thatd < P < @, we obtain
call “the phase differencing (PD) operator.” We next define thestimates of all the parameters of the highest order l&yer,

y:()vlv"'vM_l_(Q_P)T’y (16)

!’rf’ryQ_P,

17)
P

basic polynomial phase differencing operators. 1 of the phase model. Multiplying(z, y) by exp{—j ijol
Definition 1: Letr, andr,. be some positive constants. De¢(k, Q + 1 — k)y@*T1=*z*} results in a new polynomial phase
fine signal whose total-degree 3. By applying to the resulting

signal a procedure similar to the one used to estimate the pa-
rameters:(k, ¢) for k + £ = @ + 1, we obtain an estimate of
PDyw [v(z, y)] = v(z, y) z2=0,1,--, N—-1 theQ + 1(para)meters in the “layer.”
y=01,--, M-1 (14)  Ingeneral, lev@tV)(z, 3) denote the 2-D signal, whege- 1
denotes thecurrent total-degree of its phase polynomial. By
repeating for ally = @, ---, 0, the two basic steps of esti-
mating thec(k, ¢) parameters of “layery + 1 through finding
the maxima of

and in general

PD o) [v(z, y)]
Y
. _ (g+1)
= PDy v [u(x, )] (PDyo wlo(e y+7,)])°  (15) ‘DFT (PDy(q P) [PDm(m [v (x, y)”)‘
forall 0 < P < g, followed by multiplying the already re-

where the resulting 2-D sign&lD ) [v(x, )] exists forz = duced order 2-D polynomial phase signal &yp{—;j EZE)
0,1,--,N—-1,y=0,1,.--, M —1— gr,. The phase dif- ¢(k, ¢+1— k)y?1*z*} in the next step, we obtain estimates
ferencing operator along theaxis,PD . [v(x, v)] is defined for all the phase parameters exceftt, 0). The resulting signal
in a similar way. after this processing,”) (x, ), is a constant phase 2-D signall.

Assume we have sequentially applied the phase difféfaking now the average of the imaginary part of the logarithm
ence operatoPD_ ., P times, and the phase differenceof this signal we obtain an estimate fai0, 0). We have thus
operator PD,o; @ — P times, to some complex-valuedcompleted the estimation of all the coefficients of the 2-D phase
2-D signal v(z, ). We will denote the resulting signal by polynomial of total-degre@-1. In the following we refer to the
PD ) y@-m[v(z, y)]. algorithm as thehase differencing algorithifPD algorithm).
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So far we described the parameter estimation algorithm fibre Fourier transform of,(xz;, ;). Then, it can be easily ver-
the case in which no observation noise exists. However, in maifigd that a consistent definition of the 2-D Hilbert transform
practical situations the signal is observed in the presence of @itat results in a nonnegative instantaneous amplitude) is pos-
ditive noise. Thus, a straightforward but computationally praible only if
hibitive alternative to the PD Algorithm is to develop a max-
imum likelihood estimator for the polynomial phase parameters.D (w, ) =0, «w <0, vr>0 and «w >0, v<O0.

This estimator involves a multidimensional search in the param- (21)

eter space and is not practical except for very low order modethus, in case the energy df (z;, y;) is concentrated in the

It turns out, [18] that although the PD algorithm is suboptimaecond and fourth quadrants, the image must first be rotated by
(relative to the ML algorithm), its performance in the presen@0 degrees, so that its energy is concentrated in the first and
of additive white noise, is close to the Cramer—Rao lower boutigird quadrants. We therefore conclude that it is required that
(CRLB) onthe error variance in estimating the parameters of tHg(x;, y;) has its energy in two of the four quadrants only, either
polynomial phase model, for moderate to high signal to noise e first and third, or the second and fourth. Two-dimensional

tios. sinusoids have this property, and in most cases signals obtained
by geometric distortions of sinusoids still possess this property.
IV. EXTRACTION OF A MONOCOMPONENTCOMPLEX VALUED Let H[] denote the 2-D Hilbert transform operator. The ana-
SIGNAL lytic signalz,(z;, y;) of a real signalti,(z;, y;) whose energy

As already indicated in Section I, most of the existing algé§ concentrated in the first and third quadrants of the frequency

rithms attempt to estimate tlmestantaneous frequeney every plane is obtained by applying the operator
image point (or some related quantity) and to estimate the tilt
and slant of the observed surface by analyzing the variations
of the instantaneous frequency, e.qg., [7], [10], [14], [15], [17].
However, it seems that the problem of how to rigorously defi 8 I
the instantaneous frequency of a 2-D nonhomogeneous signatfd 7« (> ¥i)}. In terms of spectral characterization, the
overlooked. Hence, there is no guarantee that the instantanedi@Ytic signalzy(z;, y;), is obtained fromd,(w;, y;) by
frequency is being correctly estimated. filtering it using a filter with frequency response equal_ to 2
Starting from the physical model of the observed nonhomf ¢ > 0, > 0 and zero elsewhere. Heneg(x;, ;) is
geneous signal (10), (11), one would like to obtain a coheredft @nalytic signal if its Fourier transform is nonzero only for
definition of the instantaneous frequency of the signal, or of it~ 9 andv > 0. Thusz, («;, y;) cannot be a real function, and
individual components. Yet, to keep the physical interpretatigA€refore it has a unique amplitude-phase representation in the
of the model meaningful, it is clear form (10) that we would likdo'™M (20), where the instantaneous amplitude is nonnegative.
the instantaneous amplitude of each component to be a const&hgonclusion, using the analytic signal we can associate with

Let us consider a single component of the sum in (10), and I&"Y real signatl,(z;, v;), satisfying the foregoing constraints,
a unique pair of functionga,(x;, vi), ®,(x;i, v:)], such that

as(x;, ¥;) i its instantaneous amplitude, ag(z;, ;) is its
instantaneous phase.

] ] ] The estimation algorithm summarized in Section Il is de-
denote this component. The question then is what are the CO%‘ned to work with complex valued constant amplitude polyno-

tions that ensure that, can indeed be interpreteql as the instan g phase monocomponent signals. In our application the 2-D
taneous amplitude af, (=i, y;) and®, (i, yi) as its phase.  gjgna|is real, and in general it has more than a single component.
Clearly, starting from a given signdl (z;, ), it is possible 1,5 the proposed algorithm for estimating the tilt and slant an-
to introduce an infinite number of paifs, (zi, vi), ®4(xi, ¥:)]  gles first isolates a single component from the observed signal
such thatd, (zi, 4i) = aq(wi, yi) cos(Pq(wi, 4i))- NEV- anq converts it into a complex form through the 2-D Hilbert
ertheless, in order to be able to interpigf(z;, y;) as the (ansform. The problem then is how to best choose this com-
instantaneous amplitude of the signal, abg(x;, v;) as its ponent.
instantaneous phase, the instantaneous phase and amplitugge component selection procedure is based on the results
should be defined in such a way that onlgingle well defined, o 29] on the Cramer—Rao lower bound on the error variance
pair(aq(xi, yi), ®q(ai, yi)] will correspond to the given signal i estimating the tilt and slant of the observed surface. Based
dy (i, y;). Similarly to the 1-D case, [22], the way to defing,, hese results we conclude that the bounds are nearly linear
without ambiguity the instantaneous amplitude and phase of gctions of1/SNR, where SNR denotes the signal to noise
real signald, («;, y;) is to associate it with itanalytic signal 4t of the selected sinusoidal component of the surface tex-
ture. (See also Fig. 7.) Itis further shown in [29] that the bounds
2g(%s, yi) = ag(@i, yi) exp(Py (s, yi)) (20) on both the tilt and slant parameters are high when the center
frequencies of the observed nonhomogeneous components are
through the 2-D Hilbert transform [20], [21]. However, the 2-Dow. The bounds rapidly decrease as the spatial frequencies be-
Hilbert transform, [20], is uniquely defined only in cases whereome higher. Hence, the selection rule selects the highest energy
the signal energy is concentrated in the first and third quadraotsmponent among those components whose spatial frequency
of the spectral domain. More specifically, [BY, (w, v) denote is away from DC. In other words, it may very well be, that a

M[]=+JH[]) (22)

d,(x;, vi). Conversely, it is clear thatl,(z;, ;) =

d(l(xiv yl) = A(I COS((I)q(xiv yz)) (19)
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higher frequency component will be chosen even ifits amplitudenere(x1, 1) is a point on the line that connedtsy, o) with
is lower than that of a lower frequency component. Moreovel;, v;). Thenth order differentiali” ®(x, v) about(xg, yo) is
the filtering associated with the 2-D Hilbert transform can causkefined by

significant distortions if there is large energy in the low frequen-

glhe;u(lr&eser tar:VeOi[()j(éL..Hence, usage of a low frequency compon%atq)(xo? o) = | (@i — xO)axi 4 (g — yO)ayi (0, 10)-

The selection result is verified using the CRLB by substi- (25)
tuting the estimates obtained based on the alternative choiceket V(i y;) denote the numerator of the phase function ex-
into the CRLB equations. The estimate that provides the lowd¥gssion in (23), and let
CRLB is chosen.

Once the definition of the analytic signal and the associated D(z;, yi) = — 1 i . (26)
instantaneous amplitude and phase are given, we can return sino(z;cosT +yisint) + f coso
to the basic question posed at the beginning of this secti
i.e., whether®,(z;, %) in (11) satisfies the conditions so(Wé therefore have that
that exp(j®,(xz;, v;)) is an analytic signal, or in other words % +D D (20, yo)
whether the Fourier transform ekp(j®,(x;, v;)) vanishes W
for w < 0 and forr < 0. This condition guarantees that v
the selected component indeed admits the representation,fkre we define
the form (19). In practice, the process of isolating a single
component of (10), such that its frequency is away from DC £ = cos 7 sino (28)
implies that all low frequency components are filtered out in the sin o(xo cos7T + yosinT) + fcoso
conversion process. As a consequence, the Fourier transfeimal
of the resulting complex valued monocomponent signal is sin 7 sin o (29)
guaranteed to vanish far < 0 and forr < 0. > din o(xocosT +yosinT) + fcoso’

= (=)®O(k + D1 t5 D (o, wo)  (27)

Lemma 1: The general term of the Taylor series expansion

V. TILT AND SLANT ESTIMATION BASED ON A TAYLOR SERIES O
of D(xz;, v;) is given by

EXPANSION OF THEPHASE
In Section Il it is shown that the perspective transformation 1 D
transforms the homogeneous surface texture into a nonhomop! (@0, %o)
geneous texture in the image plane. Thus under the perspec- = (—1)"D(xq, yo) (t1(x; — xo) + t2(y; — y0))" . (30)
tive transformation the phase of a harmonic component whose

phase function is given, in surface coordinates®yz., v.) Proof: Using equation (27) we have that
= wzx; + rys + ¢ becomes after expressing andy; in terms

) . usi 1
of x; andy; using (8) ~ d"D (0, yo)
(i, vi) _1ly <”) %ﬁ),yo) (2; — 20)" (3 — o)}

x;(tcosT—vcososin )+, (i sin T+ cos g cosT) n! o\l 0x}~ Ay}

= . . @
sino(x;cosT + y;sinT) 4+ fcoso (—1)" n n\ .,
23) = 7 D(x0, 1) Zm(l)tl ‘)

=0

L n—ls. l
in the coordinate system of the observed image. (@i = 20)" (i — w0)

In this section we present a computationally efficient algo- = (—1)"D(zo, %o) (t1(w; — x0) +t2(y: — w0))" - (31)
rithm for estimating the slant and the tilt of the planar surface
directly from the estimated polynomial model of the phase func- u

tion ®(z;, y;). In order to do so we assume that the estimated Expanding (26) into a Taylor series abdity, yo), while
polynomial of total degred is in fact, theKth order Taylor Keeping terms up to th&'th order, we obtain
series expansion of the phase.

Let us assume for a moment that andy; are continuous Drc (i, yi)

variables. Since the phase function (23) is infinitely differen- K . N
tiable it can be expanded into a Taylor series alfout o). = D(z0, yo) |1 + Z(—l) (t1(zi — o) +t2(¥i — vo))
Hence n=1
(32)
K
(zi, 4;) = P(z0, Yo) + Z 1 d"®(z0, yo) Since the numerator is a polynomial of total-degree 1, its
o n! Taylor series expansion is given by
1 -
A" (1, y1) (24)

1 N(wi, yi) = ¢+ (i = wo)er + (i —go)ez (33)

K+1)!
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where we define expansion of the phase functiob(x;, v;). Then,
€1 =% COST — UCos osinT, (34) e(n, m) =—c(n — 1, m)ty — c(n, m — 1)to,
Cco =USInT + VCoOsSTCOST (35) n+m>2 and n,m>0 (40)
and H H
¢ = 10 + 210, (36) wherec(n, m) = 0 whenn < 0 orm < 0.

Proof: By induction. We first consider the case wherg
Let®(z:, y;) denote thei th order Taylor series expansion2 andm = 0. Evaluating the right hand-side of (40) using (39)

of the phase function (23). Since the expansio@f;, ;) into we have
a Taylor series form about, vo) is unique, an expression for
® (24, y;) can now be found by multiplying the Taylor series
expansion of the phase numeratdi(x;, v;), by D (z;, v:),
and adding to it the constant phase test(Note that the mul-
tiplication produces an additional term of ord€r+ 1 which is
omitted.) Using (31) and (33) we conclude tlgt (x;, ;) has
the general form

e(n—1, 0)t; = D(zo, yo)(—1)" [ct? — clt:’fl] =¢(n, 0).

(41)
For the case where: > 2 andn = 0, a similar substitution
yields

—c(0, m — 1)t2
= D(xg, yo)(=1)™ [ct’Q"—cthnfl] =c¢(0, m). (42)

Cpc(wi, yi) = ) i — o) (yi —yo)™ (37 .
K (@i, i) Z e(n, m)(z: = 0)"(yi =~ wo) 37) For the general case, i.e.,> 1 andm > 1, we have

(n,m)el
where —c(n —1, m)t; —c(n, m — 1)ty
= D(.’L'(), yo)(_l)n-i—rnc
I={0<n,m and n+m<K}. (38) —<n+m—1>+<ﬂ+m—1>_tntm
) 12
The coefficients(n, m) are a result of collecting all the compo- L n n—1 /]
nents that includér; — x0)" (y; — yo)™ after the multiplication — D(z0, yo)(-1)" "1
of N(x;, ;) and Dk (z;, v;). More specifically, as shown in J(nt+m-—2 (" +m —2\] gn—Lym
(39) at the bottom of the page. I\ n-2 n—1 /)] 2
Our goalin this section is to find the slant and the tilt of the ob- — D(z0, %0)(=1)"* "¢
served planar surface using only the estimated expansion coeffi- - ’ q
. o . . n+m-—2 n+m—2 a1
cientse(n, m). Substituting the estimated coefficients:, m), 1 tit,
(n, m) € I, into (39) we obtain a system of equations which is A " :
= ¢(n, m) (43)

highly nonlinear in the tilt and slant parameters. Note however
that in order to find the tilt and slant angles it is sufficient to o i .
evaluatet; andt», ast; andt, are functions of the unknown Where the last equality is due to the identity
tilt and slant angles, and other known quantities. (Observe that <l> 4 < l ) B <l + 1) (44)
c1 andc, are functions of the unknown tilt and slant, as well as k k+1)  \k4+1/)
of the unknown frequency parameteiis ©. These parameters, -
however, are not part of the problem of finding the orientation sjnce in practice the coefficients of the Taylor series expan-
of a planar surface.) S _ _ sion are unknown, they have to be replaced by their estimates.
The next theorem establishedirgear and recursiveelation  n order to do so we assume that the estimated polynomial of
between the coefficients of the Taylor series expansion of th§a| degred is in fact, theKth order Taylor series expansion

phase and the unknown quantittgsandt. This linear relation of the phase. Hence, in this case (40) holds only approximately.
enables us to derive a computationally efficient algorithm faf,ys, rewriting (40) we have

estimating the tilt and the slant from the expansion coefficients.
Theorem 2: Let K be some positive integer, and &t., m), e(n, m) =—c(n — 1, m)ty —c(n, m — 1)ty — c(n, m),
(n, m) € I be the coefficients of th&'th order Taylor series n+m>2 and n,m>0 (45)

c(n, m) =D(xo, yo)
(=nn [Ct? - Clt?_l] ) n>1,m=0

m m m—1 _
(=)™ [ty — oty 7], m>1,n=0 (39)

-1 -1
(=1)*m {a(” :m)t’ftfj” —a <” :Tl )t?ltf;’ — <” J”: )t’ftg"l} , nxlm>1
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wherec(n, m) = 0 whenn < 0 orm < 0. Here,e(n, m) VI. IMPROVING THE ACCURACY OF THETAYLOR SERIES
denotes the approximation error. BASED ALGORITHM

— T
LetT = [t: %] Also, let The inaccuracy of the estimation algorithm that employs the

Taylor series expansion of the phase function, is due to the im-

(1, 0) 0 (2, 0) plicit assumption that the 2-D polynomial phase estimated using
«(0,1) (1,0 c(1,1) the PD algorithm is, in fact, th&'th order Taylor series expan-
C— 0 (0, 1) b — (0, 2) 46 sion of the phase. Improved estimation algorithms are required
=-1¢c2,0) 0 = | (3, 0) (46)

in cases where the performance of the Taylor series expansion
: : : based algorithm is not acceptable. This algorithm can then serve
0 (0, k—1) «0, k) to initialize a computationally more complex algorithm.

In the case of continuous index fields, the local spatial fre-
We thus obtain the followininear system of equations guencies are the partial derivatives of the local phase function.
In [14] the relation between the local spatial frequency in the
image coordinate system; = [u;, v;]*, and the local spatial
frequency in the surface coordinate system,= [w, »|?, is

derived. This relation is given by
wheree is the approximation error vector. The desired parame-

terst; andt, can now be found by minimizing the sum of the w, =Vo(x;) = V [[x,(x:)]" u,]
squared approximation error. The solution to this linear least

CT-b=e (47)

o dzs  Oys
squares problem is given by ai ay‘
= | T 0Ty, (52)
T = [C"WC] ' CTWb (48) O, Oy,
B dyi Oy
whereW is an optional weighting matrix. where the operatdv is defined by
Having estimated there are four possible pairs of slant and 9 917
tilt angles that satisfy (28) and (29) V= . (53)
Or; Oy
T, 01 Inverting (52) we have
- T, 01+ 7
T = T+ 7, —01 (49) = Hu; (54)
Tn+7T, —01+7
where
wheres; andr; are given by sin o T Ui
H = - 7 7
Zo—xssino | 0 0
t
1 = arctan <i) (50) 4 / . |:COE r;*itlzlojf cosC ZSSiTnT . (55)
and 20 — TSN
oy = arccotF <Sm no_ 10 COST1 — Yo sin ﬁ)} . (51) Thus, assgming fora mome_flitandyi to b_e Continuqus vari-
2 ables the estimated local spatial frequencies of the signal are the

partial derivatives of its estimated local phase functigs; ) of
However, only asinglesolution out of the four possible ones sattotal-degreek, i.e.,
isfies the conditiord < o < 7 /2. This solution is the required

one. wils, 1) = — O (i, yi)

We have thus established a computationally efficient algo- ’ 27 A
rithm for estimating the tilt and the slant angles of the observed — 1 Z ek, Ozt 1yt
planar surface. Having estimated the 2-D polynomial model of s (k, )€ {1<k; 02 s 1 <h+L< K} ! ’
the observed signal phase using the PD algorithm, the original, - T (56)

highly nonlinear, slant and tilt estimation problem is reduced to
the linear least-squares problem (48). The computational attrﬁg

tiveness of the proposed algorithm is due to the fact that estimay; (z;, ;) = 1 M

tion of the phase model parameters is accomplished using FFTs. 2 Yy

The estimation of the tilt and slant in the second stage requires = L Z ok, g)gx;vyf—l_
only the solution of a linear system of equations, whose coeffi- 2r (k, ) C{0<k; 1< 1 <h4HL< K}

cients are the estimated coefficients of the polynomial phase. In (57)

particular, there is no need for an iterative solution. However, as
we show in Section VII, the algorithm though computationall{iaving estimated the polynomial phase model coefficients,
efficient, has a relatively high error variance. {c(k, £)}, we obtain by substituting the estimated parameters
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into (56) and (57) an estimate of the spatial frequencies of thdnich is mapped by the perspective projectiorig, v;). The
selected harmonic component. focal length of the camera i = —60 mm, zo = 6 m, and the

By assumption, in the surface coordinate system, the spatage plane dimensions a36 mm x 30 mm, with the origin
tial frequenciesv andr of the selected harmonic componenbeing located at the center of the image plane.
are constants. Thus the improvement algorithm searches for th®efine
o andr values that result in a minimal variation af. More 42
specifically, for any hypothesized value of the surface orienta- SNRp = _123 (60)
tion o, 7, we back-project the estimated spatial frequengy a
of the selected image component onto the hypothesized plap@iere A, is the amplitude of the selected harmonic component
surface using (54) and compute the variance obn the entire (the dominant one in this example) amdlis the variance of the
planar surface. The values@findr that minimize the variance observation noise. In this example we demonstrate the operation
provide the estimate of the surface orientation. The cost fung-the proposed algorithms onéd x 64 image taken from the

tion which is to be minimized is given by center of the image in Fig. 2, where SNR= 20 dB.
9 Fig. 3 depicts the discrete Fourier transform (DFT) of the
“ 1 N 64 x 64 image taken from the center of the image in Fig. 2.

Vo, r = iy Y1) T A7 i Ji i i i
’ ;; [w(x w) N ;; @l v )] It is clear that the harmonic structure of the Fourier transform

9 of the homogeneous surface texture does not exist anymore in
N 1 N the Fourier transform of the observed nonhomogeneous image.
+ > ll/(wm vi) =~ > M, yi)] 58) 10 the initial step of the proposed algorithms thge selected hzgr-
monic componentis separated from the other components of the
whered(z;, y;) ando(z;, y;) are the results of back-projectingsignal, and transformed into an analytic signal. To isolate the se-
the estimated spatial frequenciegz;, y;) andwv;(z;, y;) of lected component of the signal and to convert itinto the complex
(56) and (57), evaluated at some image coordifatey; ), onto  form exp(j®(z;, v;)) the image is filtered by the filter whose
the hypothesized planar surface using (54). HAtelenotes the design procedure is described in Section IV. In the absence of
number of samples of the observed image, used to evaluatenhéese, the root mean squared error between the complex valued
mean. (Clearly, the mean can be evaluated using the entire imagkected component of the signal calculated analytically and the
of the observed surface.) signal produced by the filtering procedure is 0.15% of the signal
To reduce the computational load required by such an exhaosggnitude.
tive multidimensional grid search we apply the Taylor series To illustrate the operation of the phase estimation algorithm,
based estimation procedure to obtain an initial approximated &83. 4 depicts the observed and estimated phase of the selected
timate of the problem parameters. The minimization procedutemponent of the nonhomogeneous signal. Note the continuity
is then applied only in a small neighborhood of the estimated the estimated phase despite thediscontinuities of the ob-

LiyYi Tiy Yi

parameters to refine these estimates. served phase. The estimated polynor’rﬁ%(lq:i , ¥;), is of total-
degree 3. The left hand-side of Fig. 5 shows a noise free image
VIl. NUMERICAL EXAMPLES of the selected component. The right hand-side image shows

A~

In this section we illustrate the performance of the propos%dE signakin(P(z;, y;)) estimated using the PD algorithm, in

parametric methods for estimating the tilt and slant of a textured. Prooence of noise. The results indicate that the synthesized

; ; : image is indistinguishable from the original. Having estimated
planar surface by applying the algorithms to synthetic as well . .
; . . e phase, we can apply the proposed algorithms to estimate the
as to photographed images. Monte-Carlo simulations are P&

formed to analyze the statistical properties of the algorithms rfand the slant of the observed surface.
y brop 9 * 1) Algorithm 1—Tilt and Slant Estimation Based on a Taylor

A. Application of the Algorithms of Synthetic Data Series Expansi_onUs_ing this glgorithm, the orier?tation of the
) ] ] lanar surface is estimated directly from the estimated polyno-
Fig. 2 shows an image of a planar surface sl_anted l|ntq theal phase coefficient&(n, m), obtained by the PD algorithm.
page such that = 60° andr = 90°. The observation noise is |, Tapje |, we compare the estimated coefficients with the Taylor
a zero mean, additive white Gaussian noise. The surface textiiGes expansion coefficients evaluated using (39). The expan-
has six harmonic components and is given by sion coefficients are evaluated around the origin of the image
coordinate system since this is tfte 0) coordinate used by the

t(.’]}s, ys) = Slnl(x.?WO + ysl’O) + %Sln(&qﬁswo + 3ysl’0) PD algorithm, as well.
+ 5 sin(5z5wo + Sys10) + sin(—wswo + Ysvo) Comparing the estimated coefficients with the coefficients of
+ %sin(—iixswo + 3ys1o) the Taylor series expansion it can be seen that the assumption
+ L sin(—5z.wo + 5ys10) (59) that the estlmat.ed polynomlaﬁ(xi, ;) approximates a third
order Taylor series expansion of the phase, holds better for coef-
where (wg, 19) = (0.15, 0.15) cycles/cm. To generate theficients in lower layers of the phase model while larger errors are

image of the planar surface, the intensity of each pixel in thieund in higher layers. Substituting the estimated coefficients to
image plane was evaluated by projecting the intensity levels(@B)—(51) we obtaimr = 58.66° andT = 89.56°.

the surface texture using (8). More specifically, the intensity 2) Algorithm 2—Improving the Accuracy of Algorithm 1
of each image pixelz;, y;) is that of the surface coordinateThrough the Minimization of a Cost Functiorthis algorithm
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searches for the andr pair that minimizes an estimate of the o :::;-:::l_:-;:.-:..-—..
variance of the local spatial frequency of the surface texture }';:?EEEEEEEEEE:::::-:—:‘:‘—:
using (58). To reduce the computational load required by such o e e
an exhgustive multidimensi.opgl grid_ search we use the resu'lts _‘:—:::: :_:::: :_: :1:'.'..-:"
of the first algorithm as an initial estimate. Thus, the search is o
performed only in a region a£10° around the estimated, 7 = -l'-:'l*,_ S s T O
produced by the first algorithm. Fig. 6 depicts the cost function A
V5. - in the region searched by the algorithm. e e e e -

The algorithm performs the grid search in few iterations, "".-. "',-. "'..,,"",.."'...'-' ..-."
where in each iteration the resolution is divided by 4. In B o o 4 9 A
the specifi ' . > B B W

pecific example shown here, the estimated values are > > > > »

o = 60.33° andT = 89.85°. s & & @ 4
B. Statistical Performance Analysis of the Estimation Fig. 2. Noisy image of a planar surface slanted into the pageawith 60°.
Algorithms The algorithms are applied only to the pixels in the center square.

In this subsection we illustrate the performance of the pro-
posed parameter estimation algorithms using Monte Carlo sin 1200
ulations. We compare the variance of the estimation errors «
the suggested algorithms with the CRLB derived in [29]. The 1000
surface texture being considered in this example has three sir
soidal components and is given by

600

Magnitude

t(xs, ys) = sin(xswo + ysto) + %Sin(ﬁixswo + 3ys1o)
+ Lsin(5x,wo + 5y.10) (61) 400

5

200
where(wg, 1) = (0.25, 0) cycles/cm. The surface orientation

parameters are = 30° andr = 90°. The observation noise 0.
is a zero mean, additive white Gaussian noise. We investiga 9%
the performance of the algorithms as a function of the selecte
component signal to noise ratio S¥Rand as a function of the
dimensions of the observed image.
The experimental standard deviation results depicted in Fig.
are based on 500 independent realizations of the image for ea
SNRp and data dimensions. Since the CRLB is a lower bound
on the error variance of any unbiased estimator of the problem Fig. 3. Fourier transform of the image.
parameters, the Monte Carlo results in Fig. 7 are depicted only
for cases where the experimental bias is much smaller than H?&orithms were applied to@é x 64 segment of each original
sf[andard deV|at|qn. For smallervglues of Siénd data_t dlmen- 128 x 128 image. Fig. 8 shows the images, the estimated orienta-
slons, POth 3'99””‘”‘5 bec‘?me biased. T.he resul_ts QOate_tﬁgﬁ produced by each of the proposed algorithms, the measured
the refined estimates obtained by applying the iterative minis, e orientation and an ellipse that illustrates the estimation
mization procedure are considerably less biased and are of Io‘?@srults of Algorithm 2. Note that the measured-iitand slant
error variance than the initial estimates obtained using the algjoT- are subject to a measurement error O£ .
rithm based on the Taylor series expansion. The experimental results suggest that both algorithms are
From Fig. 7 we conclude that even for low SNRs and mogiseq| for estimating the orientation parameters of planar tex-

erate dimensions of the observed image k 40 pixels), the o surfaces, for textures containing structural components.
error variance of Algorithm 2 is about 6—7 dB away from thﬂlote however that as — 0 the tilt is loosing its physical

CRLB. The Taylor series expansion based algorithm (Algorithmeaning. Moreover, analysis of the CRLB on estimating the
1), is considerably less accurate and its error variance is arOLfﬁidand slant angles, [29], indicates that the lower bound on
20dB away from the C_:RLB' We therefore recommend to useégtima\ting the tilt angle becomes very high as the slant tends
only to initialize Algorithm 2. to zero. We therefore emphasize that estimated tilt values

) . should be considered meaningless when the corresponding
C. Experimental Results with Photographed Textured Surfacg§imated slant values tend to zero. (Thus, in Fig. 8 such cases

In this subsection we evaluate the performance of the alre indicated by = —.) As previously concluded from the

gorithms by applying them to photographed textured surfacesatistical performance analysis of the algorithms, the accuracy
The images are those used in [14]. The prior knowledge refthe algorithm based on the Taylor series expansion is lower,
quired in order to apply the algorithms is the focal length of thisut it is computationally much more attractive than the iterative
camera and the image coordinate system in common units. Fecedure.
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~1004. -

~Variance

-300

Fig. 4. Observed and estimated phase functions of the selected componen
the image plane nonhomogeneous texture.

1 T

Fig. 5.

(Left) Image of a planar surface where the surface texture compris
only the selected harmonic component. (Right) Synthesized surface im:

obtained from the phase estimated using the PD algorithm.

TABLE |

COMPARISON BETWEEN THE POLYNOMIAL PHASE COEFFICIENTS AND THE
TAYLOR SERIES EXPANSION COEFFICIENTS

Layer || Coefficient || The estimated coeflicients || Theoretical Taylor coefficients
0 ¢(0,0) —4.99462 - 107! —5.04156 - 1071
1 ¢(1,0) —3.46070 - 107! —3.48256 - 107!
1 ¢(0.1) 7.49375- 107! 7.52529 - 1071
2 ¢(2,0) ~4.92818 - 1075 0
2 c(1.1) 2.21451 - 1073 2.33407 - 1072
2 c(0,2) —4.75581 - 1073 —5.04359 - 1073
3 ¢(3,0) 3.03372-1077 0
3 c(2,1) 9.55789- 1077 0

3 c(1,2) —1.03960 - 10~° ~1.56434 - 1073

3 «(0,3) 2.09085 - 1075 —2.26554 - 1077

D. Orthogonalization of a Perspective Viewed Image

Once the tilt and slant angles of the observed surface hdggormance after the iterative refinement stage (Algorithm 2).
been estimated it becomes possible to recover the homogeneous
surface texture form the perspective viewed image of that sur- ¢
face, through nonuniform re-sampling of the observed image. *
Applying this procedure to the entire image, which the textured
surface is part of, considerably simplifies further processing
such as content-based indexing and retrieval of images. In thes
following we summarize the main steps of an algorithm for “or-
thogonalizing” the observed image so that the effect of the per-
spective projection is eliminated, and provide examples demon- ¢
strating the applicability of the proposed procedure to complex
real-world colored images where the textured patch employed
by the algorithm is only a small part of the entire image. The
main steps of the orthogonalization procedure are as follows.
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Fig. 7. Performance of the proposed algorithms as a function of ;sNR

and data dimensions in comparison with the corresponding CRLB. Solid
line denotes the CRLB, dotted line denotes the performance of the Taylor

series

expansion based algorithm (Algorithm 1), while dashed line denotes the

Estimate the orientation of the planar surface.

Using the inverse coordinate transformation, (8), find the
coordinates of the image boundaries, expressed in surface
coordinates (at the desired scaling).

Uniformly sample the surface coordinate system.

Using (7) evaluate the image coordinatg that corre-
sponds to eack, on the surface sampling grid.

For each of the RGB planes, the gray level of each sample
in the surface coordinate system is set to the gray level of
the corresponding observed image sampl@ising inter-
polation since in general the resulting andy; are not
integers).
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Fig. 8. The images and the corresponding estimated tilt and slant parameters:Herdg, denote the estimated tilt and slant produced by the Taylor series
expansion based algorithm, white ando» denote the estimated tilt and slant produced after the iterative refinement stage. The measyreddilslant+ are
given in the first row. Based on the estimated tilt and slant we depict the orientation of the surface normal as seen in the image plane. Thereligsskallua
circle drawn on the planar surface would appear in the image plane, based on the estimated tilt and slant.

Note that for the purpose of orthogonalizing the perspectitieat since the building image in the middle column of Fig. 9 is
projected image, knowledge of the focal length is not requirecomposed of two planar surfaces, the image was manually seg-
Hence, anarbitrary focal length can be assumed ifthe focal lengtiented and the orthogonalization procedure was independently
isunknown. Thisis easilydeducedusing (8) asthefocallength tesplied to each one of them in order to obtain the image in the
only a uniform scaling effect on the mapping between the imaga@ddle of the bottom row. It is easily seen that the recovered
coordinatex; and the surface coordinategthat we would like textures are indeed nearly homogeneous.
to recover. Hence, assuming an arbitrary focal lerfgisults in Fig. 10, left column, depicts two aerial images taken from an
recovering the same surfagrg, however in a different scale. Be-unknown angle. Both images contain homogeneous textured re-
cause the decision onthe dimensions of the orthogonalized imaggns that appear nonhomogeneous due to the perspective pro-
isanyway an arbitrary user’s choice, this scaling has no effect. @ation. Parts of these regions, marked using white squares, are
the other hand, knowledge of the optical center of the image is nployed to estimate the orientation of the surfaces. In the case
quired by the orthogonalization procedure. of the stadium image the texture is that of cars parked in a

The results of applying this procedure to three real-world inparking lot, while in the case of the pier image the texture is
ages taken from the VisTex library are shown in Fig. 9. Notomposed of an array of rectangular structures. Since in these
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<iililiiiries fromsurface toimage coordinates, due to the perspective projec-
“inesioiiiizee tion, uniquely transforms each homogeneous sinusoidal compo-
eci.iiilllZlD 0 nentof the surface texture into a sinusoid whose frequency is a

-==:==2:  function of location in the image coordinate system. Since the
Prrrecrereriiii sinusoid phase is a continuous function of the field coordinates
.iilliiiiiiiss itcanbe approximated by a 2-D polynomial function of the field
e coordinates. Using the 2-D Hilbert transform and the PD algo-
rithm we fit a constant-amplitude, polynomial-phase model to
a sinusoidal component of the observed texture, such that the
concepts of 2-D instantaneous phase, frequency, and amplitude
are well defined. We then establish a linear recursive relation
between the model parameters and the unknown slant and tilt.
A linear least squares solution of the resulting system provides
the slant and tilt estimates. To improve accuracy, an iterative re-
finement procedure is applied in a small neighborhood of these
Fig. 9. Recovered homogeneous surface textures (bottom row) from @gtimates. The performance of the proposed algorithms was in-
observed perspective projected images (top row). vestigated. It is shown that the combined two-stage algorithm
produces estimates that are close to the CRLB.

Ly
LR R U HE

images the optical center is unknown, we have arbitrarily as-

sumed it to be in the middle of the image. To realize that the APPENDIX
proposed procedure indeed produce the desired results, notd fQUENESS OF THERELATION BETWEEN THE PHASE AND THE
example that in the stadium image the cars get smaller at the SURFACETILT AND SLANT ANGLES

tOp Of the I’ea| image but are in a Uniform Size in the Orthogonal- In (11) |t iS Shown that the phase function Of an harmonic
izedimage. Also, inthe orthogonalized image the stadium upp&mponent of the surface texture is transformed by the perspec-
contour is symmetric and oval; the white field lines are eithgfe projection into

orthogonal or parallel to each other, contrary to their appear-

ance in the perspective projected original. Note however thq,t(xi’ i) =

since our modeling assumption is that the observed surface is_ ", . . . i .
Z; (WcosT—vcososinT) y; (4sinT+7cosocosT)

flat and planar, objects of nonnegligible height relative to their — + =

distance from the camera, cannot be perfectly orthogonalized byf coso f coso +
the proposed procedure. For example consider the surface gen- tano <ﬁ cos7 + L sin T) +1

erated by the spectators seats. This surface is not in the plane f f

of the parking lot, nor in a parallel plane. Hence, in the orthog- (62)

onalized image the surface of the spectators seats is not sym-

metrical as one would expect from a truly orthogonal imageeasured in the image plane.

The pier images illustrates some additional features of the proLet &, (z;, v;) and ®2(z;, v;) be two such phase function
posed orthogonalization algorithm. Note in particular that theith parametersy, o1, 11, 91, @1 andrs, o3, @2, U2, @2, re-
rounded structures on the top right of the pier image are sesyectively. To simplify the notations let us rewrite (z;, v;)

in the real image as small oval structures while in the recoveradd ®»(z;, ;) in the following form:

image they appear as circles. Also, the oval shaped tracks on the

top left part of the image, that can be hardly seen in the perspec- i al + Y by
tive viewed image, are clearly observed in the orthogonalized Oy (zy, yi) = bit bit + o (63)
image. Moreover, as an illustration of the accuracy of the tilt and e Zi e+ Yi dy+1
slant estimation procedure as well as that of the orthogonaliza- h h
tion procedure, observe that the field of rectangular structures T; Yi

. ; . . . . —azx+ == bo
that is used for estimating the orientation of the surface indeed _fe f2

_ o Qo(zi, wi) = 4 ‘ + @a. (64)

became a field of rectangular structures, as opposed to its dis- L+ Y dy+1
torted, perspective projected appearance in the observed image. J2 P

Finally note that, as expected, in the orthogonalized image the
distance of the pier from the parallel pier where the rectangularTheorem 3: Assumef, = f2, w1 = uz andv, = @. Then,
structures are located, is equal at any point along the pier. ®1(zi; ¥i) = ®a2(wi, yi) for all z;, y; if and only if 7y = 75
ando; = o,.
Proof: Using the notations of (63) and (64) we have to

show that®,(z;, v;) = ®2(z;, y;) for all x;, y; if only if

We have presented a parametric solution to the problem[af, b;, ¢1, di, w1] = [a2, ba, ¢, da, @o].
estimating the orientation in space of a planar textured surfacelt is easy to check that if[a1, b1, c1, di, p1] =
from a single, noisy, observed image of it. The proposed solutify, b2, c2, d2, 2] then &y (z;, ;) = P2(x;, y;) for all
is based on the observation that the coordinate transformatign ;.

VIIl. CONCLUSIONS
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Fig. 10. (Left) Original and (right) orthogonalized aerial images. (Top row) “Stadium.” (Bottom row) “Pier.”

On the other hand, let us assume thbt(z;, v;) = Expressing the equalities = ¢, andd; = d» in terms of
Oy(z;, y;) for all z;, y;. Hence in particular®; (0, 0) = the original problem parameters we have
$,(0, 0). We therefore conclude that; = ¢,. The assump-
tion &1 (x;, ;) — ®2(z;, y;) = 0 implies that for allz;, v;:

tan o{cosTy = tanop cos T (66)
9 9 tanoysinTy = tanoosinT. (67)
T; i
<?> (a1c2 — ager) + <y?) (brdy — bady)
. ’ Hence
+ 7 7(a1d2 +bica —azdy — bacr) + 7 (a1 — az)
n % (by = b2) = 0. (65) cot 71 = cot 7. (68)

Thereforers = 71 or 9 = 73 + 7. Sincel < o < 7/2,
This polynomial is identically zero if and only if its co-tans; andtan o, are positive. Hence, the signs of baibs 7
efficients are zero. Hence, we have, b1, c1, di, ¢1] andcos 7, must be identical. This rules out the possibility that
= [CLQ, ba, c2, da, (pg]. 79 = 71 + 7. Thusm = 71 ando; = o3. |
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