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Abstract

Imposing a total-order on a 2-D discrete random �eld induces an orthogonal decom-

position of the random �eld into two components: A purely-indeterministic �eld and a

deterministic one. The purely-indeterministic component is shown to have a 2-D white-

innovations driven moving-average representation. The 2-D deterministic random �eld can

be perfectly predicted from the �eld's \past" with respect to the imposed total order de�-

nition. The deterministic �eld is further orthogonally decomposed into an evanescent �eld,

and a remote past �eld. The evanescent �eld is generated by the column-to-column inno-

vations of the deterministic �eld with respect to the imposed non-symmetrical-half-plane

total-ordering de�nition. The presented decomposition can be obtained with respect to any

non-symmetrical-half-plane total-ordering de�nition, for which the non-symmetrical-half-

plane boundary line has rational slope.
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1. Introduction

Recently, there has been a growing interest in nonstationary one-dimensional and multi-dimensional

processes. In the present paper we study the structure of 2-D nonhomogeneous discrete random

�elds, and show that any 2-D regular random �eld can be represented as a sum of three mutu-

ally orthogonal components: purely indeterministic, evanescent, and a remote past component.

This study generalizes the Wold decomposition of nonstationary random processes which was

derived by Cramer [C2], to the case of 2-D nonhomogeneous discrete random �elds. The results

proven in this paper establish a formalism for analysis and parameter estimation methods of

such �elds. The analysis is carried out in the context of the 2-D linear prediction problem

for a non-symmetrical-half-plane (NSHP) support. For homogeneous random �elds analysis, a

similar type of support was used by Whittle [W], as well as by Ekstrom and Woods [EW], to

develop the concept of 2-D spectral factorization; by Marzetta [M], to describe a theoretical

solution of the 2-D normal equations by a 2-D Levinson-type algorithm; and in [FMP2], [FNW]

to implement an analysis/synthesis procedure for homogeneous texture �elds.

Helson and Lowdenslager [HL2] proved some of the results contained in sections 3 and 4

for the case of homogeneous random �elds using the character group approach. However,

frequency domain analysis is applicable only to homogeneous random �elds, since it relies

upon a spectral representation in the form of a Fourier-Stieltjes integral, both for the �eld

variables and for the associated covariance functions. In this paper we use constructions in

the spatial domain, so the theorems and their proofs are applicable to nonhomogeneous as

well as to homogeneous 2-D discrete random �elds. Thus the known results on the 2-D Wold

decomposition for homogeneous random �elds become a special case of those presented here for

nonhomogeneous random �elds. In [KL], Korezlioglu and Loubaton presented a spatial domain

reformulation to Helson and Lowdenslager results on the decomposition of homogeneous random

�elds, using Hilbert space representations. They de�ne \horizontal" and \vertical" total-orders

and derive the corresponding decompositions of the homogeneous random �eld.

In section 5 we de�ne a set of NSHP total-ordering de�nitions and show that the results

of sections 2,3,4 hold for any de�nition in the set. These NSHP total-ordering de�nitions
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are obtained by rotating the \conventional" NSHP support by angles having rational tangent,

rather than considering only the vertical and horizontal orientations. Thus, the random �eld

decomposition can be obtained with respect to any non-symmetrical-half-plane total-ordering

de�nition, for which the non-symmetrical-half-plane boundary line has rational slope. However,

contrary to the homogeneous case [FMP1], the orthogonal decomposition of the �eld into

purely-indeterministic and deterministic components is not unique, but NSHP total-ordering

dependent.

2. De�nitions and Fundamental Properties

In the sequel we shall assume the 2-D random �eld fy(n;m)g to be real, with zero mean. We

shall also assume that the random �eld has �nite second-order moments, i.e.,

sup
(n;m)2ZZ2

E[y2(n;m)] <1 (1)

and that E[y2(n;m)] > 0 for at least one (n;m) 2 ZZ2.

Let H be the Hilbert space formed by the random variables y(n;m), such that (n;m) 2 ZZ2,

with the inner product of any two random variables x; y being de�ned by E[xy]. Let ŷ(n;m)

be the projection of y(n;m) on the Hilbert space spanned by those samples of the �eld that

are in the \past" of the (n;m)th sample, where the \past" is de�ned with respect to the totally

ordered, non-symmetrical-half-plane support, i.e.,

(i; j) � (s; t) i� (i; j) 2
�
(k; `)jk = s; ` < t

�[�
(k; `)jk < s;�1 < ` <1

�
: (2)

Since in this paper we consider other total-order de�nitions as well, we shall denote this

order de�nition by o = (1; 0). The reason for this notation is explained in Section 5. The

results given in this section, as well as in sections 3 and 4, are with respect to o = (1; 0). Let
o

HY
(n;m)= Spfy(s; t)j(s; t) � (n;m)g � H. This de�nition implies the nesting property of the

Hilbert spaces, i.e., whenever (s; t) � (n;m),
o

HY
(s;t)�

o

HY
(n;m). The innovation with respect to

the de�ned support and total order is given by u(n;m) = y(n;m)� ŷ(n;m). By the orthogonal

projection theorem, u(n;m) is orthogonal to every vector in
o

HY
(n;m�1).
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We show �rst that the projection of y(n;m) on the Hilbert space
o

HY
(n;m�1) can be approxi-

mated by a predictor which is based on a �nite half-plane support. Let the �nite support SN;M

be de�ned by

SN;M = f(k; l)jk = 0; 0 < l �Mg [ f(k; l)j1 � k � N; �M � l �Mg (3)

where N and M are positive integers. Let also the support SN be de�ned by

SN = f(k; l)jk = 0; 0 < l <1g [ f(k; l)j1 � k � N; �1 < l <1g : (4)

Correspondingly, let
o

HY
(n;m);SN;M= Sp fy(n� k;m� l)j(k; l) 2 fSN;M [ f(0; 0)gg g.

ŷSN;M (n;m), the projection of y(n;m) on
o

HY
(n;m�1);SN;M is given by

ŷSN;M(n;m) =
X

(k;l)2SN;M

g(n;m)(k; l)y(n� k;m� l) : (5)

ŷSN (n;m) is the projection of y(n;m) on
o

HY
(n;m�1);SN, where

o

HY
(n;m);SN= Sp fy(n� k;m� l)j(k; l) 2 fSN [ f(0; 0)gg g.

Theorem 1:

lim
N!1

lim
M!1

E[ŷ(n;m)� ŷSN;M (n;m)]2 = 0 : (6)

Proof: See Appendix A.

De�nition 1: A 2-D random �eld is called regular if there exists at least one (n;m) 2 ZZ2 such

that E[y(n;m)� ŷ(n;m)]2 > 0. Hence, a discrete 2-D random �eld is regular if its innovation

�eld fu(n;m)g does not vanish.

3. The 2-D Wold-Like Decomposition

Theorem 2: Let fy(n;m)g be a 2-D regular random �eld. Then fy(n;m)g can be uniquely

represented by the following orthogonal decomposition

y(n;m) = w(n;m) + v(n;m) (7)
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where

w(n;m) =
X

(0;0)�(k;l)

a(n;m)(k; l)u(n� k;m� l) (8)

=
1X
l=0

a(n;m)(0; l)u(n;m� l) +
1X
k=1

1X
l=�1

a(n;m)(k; l)u(n� k;m� l) :

a(k;l)(s; t) is given by:

a(k;l)(s; t) =

8>>><
>>>:

E[y(k;l)u(k�s;l�t)]
E[u2(k�s;l�t)]

if E[u2(k � s; l � t)] > 0

0 if E[u2(k � s; l � t)] = 0

(9)

where if E[u2(k � s; l� t)] = 0, a(k;l)(s; t) is arbitrarily set to zero.

Also,

(a)
P

(0;0)�(k;l)
a2(n;m)(k; l)E[u

2(n � k;m� l)] <1

(b) E[v(n;m)] = 0

(c) E[u(n;m)u(s; t)] = 0 ; (n;m) 6= (s; t)

(d) E[u(n;m)v(s; t)] = 0 ; 8 (n;m); (s; t)

(e) w(n;m) 2
o

HY
(n;m)

(f) v(n;m) 2
o

HY
(n;�1) where the Hilbert space

o

HY
(n;�1) is de�ned by

o

HY
(n;�1)=

1T
m=�1

o

HY
(n;m).

(g) If for all (n;m) 2 ZZ2, E[u2(n;m)] > 0, the sequences fu(n;m)g and fa(s;t)(n;m)g are

unique, i.e., there is only one 2-D sequence of random variables fu(n;m)g and only one

2-D sequence of constants fa(s;t)(n;m)g satisfying the previously stated results. However,

if there are (n;m) 2 ZZ2, such that E[u2(n;m)] = 0, the uniqueness of the sequence

fa(s;t)(n;m)g may be achieved by the arbitrary setting of the corresponding elements of

the sequence a(s;t)(n;m) to zero.

Proof: We shall �rst prove (c). From the orthogonal projection theorem, u(n;m) is orthogonal

to every vector in
o

HY
(n;m�1). Using the nesting property we deduce that u(n;m)?

o

HY
(s;t) for
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all (s; t) � (n;m). Because u(s; t) 2
o

HY
(s;t) for all (s; t), we conclude that u(n;m)?u(s; t) for

all (s; t) � (n;m). By interchanging the role of indices we also have that u(s; t)?u(n;m) for

all (n;m) � (s; t), and this completes the proof of (c).

We shall now prove (a). Let the support S0 be de�ned by S0 = SN;M [ f(0; 0)g. We shall

look at the following expression:

0 � E

"
y(n;m)�X

S0
a(n;m)(k; l)u(n� k;m� l)

#2
(10)

= E[y2(n;m)]� 2
X
S0

a(n;m)(k; l)E[y(n;m)u(n� k;m� l)]

+
X
S0

X
S0

a(n;m)(k; l)a(n;m)(s; t)E[u(n� k;m� l)u(n� s;m� t)]

= E[y2(n;m)]� 2
X
S0

a2(n;m)(k; l)E[u
2(n� k;m� l)] +

X
S0

a2(n;m)(k; l)E[u
2(n� k;m� l)]

= E[y2(n;m)]�X
S0

a2(n;m)(k; l)E[u
2(n� k;m� l)] :

By assumption sup
(n;m)2ZZ2

E[y2(n;m)] <1. We therefore conclude that

X
S0

a2(n;m)(k; l)E[u
2(n� k;m� l)] � sup

(n;m)2ZZ2
E[y2(n;m)] <1 : (11)

This sum is bounded for any N and M by an expression which is neither a function of N nor

M . Therefore, the positive series converges since the sequence of its partial sums is bounded.

This completes the proof of (a).

In (8) w(n;m) was de�ned as: w(n;m) =
P

(0;0)�(k;l)
a(n;m)(k; l)u(n� k;m� l). Using (a) and

(c) we conclude that

E[w2(n;m)] =
X

(0;0)�(k;l)

a2(n;m)(k; l)E[u
2(n� k;m� l)] <1 : (12)

From (8), w(n;m) is in the linear manifold spanned by u(i; j) such that (i; j) � (n;m). Because

u(s; t) 2
o

HY
(s;t) for all (s; t) and

o

HY
(s;t)�

o

HY
(n;m) whenever (s; t) � (n;m), w(n;m) is a linear

combination of elements in
o

HY
(n;m). Since its second moment is �nite, w(n;m) 2

o

HY
(n;m), as

stated in (e).

The proof of (b) follows immediately from the de�nition of v(n;m) as

v(n;m) = y(n;m)�w(n;m) : (13)
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We shall now turn to prove (d). For every (s; t) � (n;m) such that E[u2(s; t)] > 0 we have

E[v(n;m)u(s; t)] = E[y(n;m)u(s; t)]� X
(0;0)�(k;l)

a(n;m)(k; l)E[u(n� k;m� l)u(s; t)] (14)

where it follows from the de�nition of a(n;m)(n � s;m� t) that E[y(n;m)u(s; t)] = a(n;m)(n �
s;m� t)E[u2(s; t)]. Since

X
(0;0)�(k;l)

a(n;m)(k; l)E[u(n� k;m� l)u(s; t)] = a(n;m)(n� s;m� t)E[u2(s; t)] (15)

we have that E[v(n;m)u(s; t)] = 0.

For the case in which E[u2(s; t)] = 0, we have using the Cauchy-Schwarz inequality that

0� jE[v(n;m)u(s; t)]j2 � E[v2(n;m)]E[u2(s; t)] = 0: (16)

Hence, E[v(n;m)u(s; t)] = 0 in this case as well.

For (n;m) � (s; t) we have by using (13), and since both w(n;m) and y(n;m) 2
o

HY
(n;m),

that v(n;m) 2
o

HY
(n;m). Since u(s; t)?

o

HY
(s;t�1) and since

o

HY
(n;m)�

o

HY
(s;t�1) whenever (n;m) �

(s; t� 1), we have that for every (n;m) � (s; t); u(s; t)?v(n;m). Combining the two cases, we

conclude that for every two pairs of indices (s; t) and (n;m), u(n;m)?v(s; t).
In order to prove (f), de�ne Sp fu(n;m)g as the subspace of

o

HY
(n;m) spanned by the vec-

tor u(n;m). From the orthogonal projection theorem, u(n;m)?
o

HY
(n;m�1) and therefore

o

HY
(n;m)=

o

HY
(n;m�1) �Sp fu(n;m)g. Since v(n;m)?u(n;m) and v(n;m) 2

o

HY
(n;m) it follows

that v(n;m) 2
o

HY
(n;m�1). By induction v(n;m) 2

o

HY
(n;�1).

Let us now prove (g). From the orthogonal projection theorem it follows that u(n;m) is

unique. This holds for every (n;m) and therefore the �eld fu(n;m)g is unique. If for all (n;m) 2
ZZ2, E[u2(n;m)] > 0, then since for every (n;m) and (s; t) such that (s; t) � (0; 0), y(n;m) and

u(n� s;m� t) are elements in the Hilbert space
o

HY
(n;m) where the inner product is de�ned as

E[xy], the uniqueness of fu(n;m)g implies the uniqueness of fa(s;t)(n;m)g. However, if there
are (n;m) 2 ZZ2, such that E[u2(n;m)] = 0, the uniqueness of the sequence a(s;t)(n;m) may be

achieved by the arbitrary setting of the corresponding elements of the sequence a(s;t)(n;m) to

zero.
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4. Properties Of The 2-D Wold-Like Decomposition

De�nition 2: A �eld fy(n;m)g is called deterministic if for all (n;m) 2 ZZ2, E[y(n;m) �
ŷ(n;m)]2 = 0. This means that for all (n;m), y(n;m) can be perfectly predicted as a linear

combination of elements of its past (or as a limit of such), i.e., elements of
o

HY
(n;m�1).

De�ne
o

HU
(n;m)= Sp fu(s; t)j(s; t) � (n;m)g,

o

HV
(n;m)= Sp fv(s; t)j(s; t) � (n;m)g,

o

HW
(n;m)=

Sp fw(s; t)j(s; t) � (n;m)g.

De�nition 3: A regular �eld fy(n;m)g is called purely indeterministic if for all (n;m)
o

HY
(n;m)=

o

HU
(n;m), i.e., if its deterministic component fv(n;m)g vanishes, so that fy(n;m)g

can be represented completely by the moving average term of (8):

y(n;m) =
X

(0;0)�(k;l)

a(n;m)(k; l)u(n� k;m� l) : (17)

Theorem 3: Let fy(n;m)g be a 2-D regular random �eld. Its component fw(n;m)g is purely-
indeterministic and regular.

Proof: Let us rewrite (8) as

w(n;m) = a(n;m)(0; 0)u(n;m) +
X

(0;0)�(k;l)

a(n;m)(k; l)u(n� k;m� l): (18)

IfE[u2(n;m)] > 0, then a(n;m)(0; 0) = 1. We have already proved that w(n;m) and u(n;m) 2
o

HY
(n;m),

that u(n;m)?
o

HY
(n;m�1), and that

P
(0;0)�(k;l)

a(n;m)(k; l)u(n� k;m � l) 2
o

HY
(n;m�1). Therefore,

the orthogonal projection theorem and the uniqueness of both the projection and the residual,

together with the above representation of w(n;m), imply that ŵ(n;m), which is the projection

of w(n;m) on
o

HY
(n;m�1), is given by

ŵ(n;m) =
X

(0;0)�(k;l)

a(n;m)(k; l)u(n� k;m� l): (19)

Clearly (19) holds also if E[u2(n;m)] = 0, since in that case w(n;m) = ŵ(n;m), and both are

elements of
o

HY
(n;m�1).

In order to prove that fw(n;m)g is a purely-indeterministic random �eld we show that
o

HW
(n;m)=

o

HU
(n;m). Since w(n;m) is a linear combination of the elements u(k; l) where (k; l) �
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(n;m),
o

HW
(n;m)�

o

HU
(n;m). On the other hand, ŵ(n;m) 2

o

HY
(n;m�1). Hence, there exists a

sequence of constants fc(n;m)(k; l)g such that ŵ(n;m) is represented by

ŵ(n;m) =
X

(0;0)�(k;l)

c(n;m)(k; l)y(n� k;m� l) (20)

or by a limit of such expression. Using (7), we can rewrite (20):

ŵ(n;m) =
X

(0;0)�(k;l)

c(n;m)(k; l)w(n� k;m� l) +
X

(0;0)�(k;l)

c(n;m)(k; l)v(n� k;m� l) : (21)

From (19), ŵ(n;m) 2
o

HU
(n;m�1). Also, since

o

HW
(n;m�1)�

o

HU
(n;m�1), we have thatP

(0;0)�(k;l)
c(n;m)(k; l)w(n � k;m � l) 2

o

HU
(n;m�1). However, Theorem 2 (d) implies that for all

(0; 0) � (k; l), v(n � k;m � l)?
o

HU
(n;m�1). Hence (21) holds if and only if for all (0; 0) �

(k; l), v(n � k;m � l) � 0. Therefore, ŵ(n;m) =
P

(0;0)�(k;l)
c(n;m)(k; l)w(n � k;m � l). This

implies that ŵ(n;m) 2
o

HW
(n;m�1)�

o

HW
(n;m). From (18), u(n;m) = w(n;m) � ŵ(n;m) and

therefore u(n;m) 2
o

HW
(n;m) for all (n;m), so that

o

HU
(n;m)�

o

HW
(n;m). We �nally conclude that

o

HW
(n;m)=

o

HU
(n;m).

Since ŵ(n;m) 2
o

HW
(n;m�1), we conclude that fu(n;m)g is the innovation �eld of fw(n;m)g

as well. Therefore if fy(n;m)g is a regular �eld, then fw(n;m)g is also a regular �eld.

Corollary:
o

HY
(n;m) has a direct sum representation

o

HY
(n;m)=

o

HU
(n;m) �

o

HV
(n;m) (22)

Proof: The de�nition of fw(n;m)g (8), and Theorem 2 (d) imply that w(n;m)?v(s; t) for
all (n;m) and (s; t). By Theorem 2, for all (n;m), y(n;m) can be represented uniquely as

y(n;m) = w(n;m) + v(n;m), where w(n;m) 2
o

HU
(n;m) and v(n;m) 2

o

HV
(n;m). Since the two

subspaces
o

HU
(n;m) and

o

HV
(n;m) are orthogonal, it follows that

o

HY
(n;m)=

o

HU
(n;m) �

o

HV
(n;m) for

all (n;m).

Theorem 4: Let fy(n;m)g be a 2-D regular random �eld. Its component fv(n;m)g is a

deterministic random �eld.

Proof: The direct sum representation (22), implies in particular that
o

HY
(n;m�1)=

o

HU
(n;m�1)

�
o

HV
(n;m�1). By Theorem 2 (f), v(n;m) 2

o

HY
(n;�1)�

o

HY
(n;m�1). Since v(n;m)?u(s; t) for all
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(n;m) and (s; t), it follows that v(n;m)?
o

HU
(n;m�1). Finally, because v(n;m) 2

o

HY
(n;m�1) and

v(n;m)?
o

HU
(n;m�1), we conclude that v(n;m) 2

o

HV
(n;m�1), i.e., fv(n;m)g is a deterministic

random �eld.

De�ne
o

HY
(�1;�1)=

T
(n;m)2Z2

o

HY
(n;m) : The Hilbert space

o

HY
(�1;�1) is called the remote

past space w.r.t. the NSHP total-order de�nition o. It is spanned by the intersection of all the

Hilbert spaces spanned by samples of the regular �eld fy(n;m)g at all (n;m), with respect to

the speci�c order de�nition denoted by o.

Before we proceed to prove a much stronger result concerning the properties of the de-

terministic component fv(n;m)g of the regular �eld, we will elaborate on the meaning of

\determinism" in the framework of 2-D random �elds. The following example is illustrative.

Let f�(i)j �1 < i <1g be an in�nite two sided sequence of i.i.d. Gaussian random variables

with zero mean and unit variance. De�ne the 2-D random �eld fy(k; l)g as y(k; l) = �(k). It is

clear that ŷ(k; l) = y(k; l� 1) = �(k) = y(k; l). Therefore u(k; l) � 0 and the �eld fy(k; l)g is
deterministic. On the other hand it is obvious that y(k; l) is not predictable from

o

HY
(k�1;m) for

any m, since the Hilbert space
o

HY
(k�1;m) is spanned by f�(i)j �1 < i � k � 1g which contains

no information about �(k). Therefore although fy(k; l)g is a deterministic 2-D �eld it is not in
o

HY
(�1;�1).

Let
o

HV
(n;�1)=

1T
m=�1

o

HV
(n;m). In order to prove the next theorem we shall �rst prove the

following lemma.

Lemma 1:
o

HY
(n;�1)=

o

HU
(n;�1) �

o

HV
(n;�1).

Proof: Let z be any vector in
o

HY
(n;�1). Hence, z 2

o

HY
(n;m) for any m 2 ZZ. Because

o

HY
(n;m)=

o

HU
(n;m) �

o

HV
(n;m), z can be uniquely written, for all m, in the form z = un(m) +

vn(m), where un(m) 2
o

HU
(n;m) and vn(m) 2

o

HV
(n;m). In order to prove that this unique repre-

sentation of z is the same for allm, we show that for all k and l, un(l) = un(k) and vn(l) = vn(k).

Assume that un(l) 6= un(k), and without any loss of generality that l < k. The unique

representation of z implies that for both k and l, z can be uniquely represented as

z = un(k) + vn(k) ; un(k) 2
o

HU
(n;k) and vn(k) 2

o

HV
(n;k) (23)

z = un(l) + vn(l) ; un(l) 2
o

HU
(n;l) and vn(l) 2

o

HV
(n;l) : (24)

11



Since
o

HU
(n;l)�

o

HU
(n;k) it follows that un(l) 2

o

HU
(n;k). Because by the above assumption

un(l) 6= un(k), un(k) can be written as un(k) = un(l) + x, where x 6= 0 and x 2
o

HU
(n;k). We

can therefore rewrite equation (23): z = un(l) + x + vn(k). If we compare this with equation

(24), it must be that vn(l) = x + vn(k). But this cannot hold since x 2
o

HU
(n;k), while vn(l)

and vn(k)?
o

HU
(n;k). Therefore, un(l) = un(k) and vn(l) = vn(k) for any k and l. Hence, we

can write z = un + vn, where un = un(m) and vn = vn(m) for all m. Also, un 2
o

HU
(n;m) for

all m implies that un 2
1T

m=�1

o

HU
(n;m)=

o

HU
(n;�1) and similarly vn 2

o

HV
(n;m) for all m implies

that vn 2
1T

m=�1

o

HV
(n;m)=

o

HV
(n;�1). Because

o

HU
(n;�1)�

o

HU
(n;m) and

o

HV
(n;�1)�

o

HV
(n;m), the

orthogonality of
o

HU
(n;m) and

o

HV
(n;m) implies that

o

HU
(n;�1) ?

o

HV
(n;�1). Since the unique rep-

resentation of z as z = un+ vn holds for any z 2
o

HY
(n;�1), we conclude using the orthogonality

of
o

HU
(n;�1) and

o

HV
(n;�1) that

o

HY
(n;�1)�

o

HU
(n;�1) �

o

HV
(n;�1).

On the other hand, let u0 be any vector in
o

HU
(n;�1) and let v0 be any vector in

o

HV
(n;�1).

Therefore, for all m, u0 2
o

HU
(n;m) and v0 2

o

HV
(n;m). Since the subspaces

o

HU
(n;m) and

o

HV
(n;m)

are orthogonal it follows that for all m, u0 + v0 2
o

HU
(n;m) �

o

HV
(n;m)=

o

HY
(n;m). Hence, u

0+ v0 2
1T

m=�1

o

HY
(n;m); where by de�nition

1T
m=�1

o

HY
(n;m)=

o

HY
(n;�1). Therefore,

o

HU
(n;�1) �

o

HV
(n;�1)

�
o

HY
(n;�1).

Theorem 5: Let fv(n;m)g be the deterministic component of a regular �eld. Then,
o

HV
(n;m)=

o

HV
(n;�1) for all m.

Proof: By the de�nition of
o

HV
(n;�1), it follows that

o

HV
(n;�1)�

o

HV
(n;m) for every m. We now

have to show that for everym;
o

HV
(n;m)�

o

HV
(n;�1). Using Theorem 2 (f) we have v(n;m) 2

o

HY
(n;�1).

It follows from Lemma 1 that
o

HY
(n;�1)=

o

HU
(n;�1) �

o

HV
(n;�1). Since v(n;m)?u(s; t) for any

(s; t) we get that v(n;m)?
o

HU
(n;�1). Because v(n;m) 2

o

HY
(n;�1) and v(n;m)?

o

HU
(n;�1)

it must be that v(n;m) 2
o

HV
(n;�1). The same argument holds for every k � m, so that

we can conclude that v(n; k) 2
o

HV
(n;�1) for every k � m. Recall that by de�nition

o

HV
(n;m)=

Sp fv(k; l)j(k; l) � (n;m)g, and that all the elements v(s; t) such that s < n are both in
o

HV
(n;m)

and
o

HV
(n;�1). Thus all of the vectors that span

o

HV
(n;m) are in

o

HV
(n;�1), so

o

HV
(n;m)�

o

HV
(n;�1).

From Theorem 5 we can now conclude that the knowledge of the values of the deterministic

12



component fv(n;m)g at all points of the columns preceding the present one, which is denoted

by the index n, and the knowledge of its values up to a point which is as far in the \past" as

we wish in the present column, are su�cient to achieve a perfect prediction of v(n;m) for any

m.

By reapplying Theorem 5 to each of the columns, we have that for every s � n and for all

t;
o

HV
(s;t)=

o

HV
(s;�1). We can thus extend the above observation and conclude that a perfect

prediction of the (n;m)-th sample of the deterministic component is guaranteed, given the

complete knowledge of fv(s; t)g for all s � s0, where s0 is an arbitrarily small integer, and the

values of fv(s; t)g for all t < t0, where t0 is also an arbitrarily small integer, for s such that

s0 < s � n.

De�ne
o

HV
(�1;�1)=

T
(n;m)2ZZ2

o

HV
(n;m) and

o

HU
(�1;�1)=

T
(n;m)2ZZ2

o

HU
(n;m).

Lemma 2:
o

HY
(�1;�1)=

o

HV
(�1;�1).

Proof: Let z be any vector in
o

HY
(�1;�1). Hence, z 2

o

HY
(n;m) for all (n;m) 2 ZZ2. Because

o

HY
(n;m)=

o

HU
(n;m) �

o

HV
(n;m), z can be uniquely written, for all (n;m), in the form z = unm+vnm,

where unm 2
o

HU
(n;m) and vnm 2

o

HV
(n;m). In order to prove that this unique representation of z

is the same for all (n;m), we show that for all (i; j) and (k; l), ukl = uij and vkl = vij.

Assume that ukl 6= uij, and without any loss of generality that (i; j) � (k; l). The unique

representation of z implies that for both (i; j) and (k; l), z can be uniquely represented as

z = uij + vij ; uij 2
o

HU
(i;j) and vij 2

o

HV
(i;j) (25)

z = ukl + vkl ; ukl 2
o

HU
(k;l) and vkl 2

o

HV
(k;l) : (26)

Since
o

HU
(i;j)�

o

HU
(k;l) it follows that uij 2

o

HU
(k;l). Because by the above assumption uij 6= ukl,

ukl can be written as ukl = uij + x, where x 6= 0 and x 2
o

HU
(k;l). We can therefore rewrite

equation (26): z = uij + x+ vkl. If we compare this with equation (25), it must be that vij =

x+ vkl. But this cannot hold since x 2
o

HU
(k;l), while vij and vkl?

o

HU
(k;l). Therefore, uij = ukl

and vij = vkl for any (i; j) and (k; l). Hence, we can write z = u+v, where u = unm and v = vnm

for all (n;m). Also, v 2
o

HV
(n;m) for all (n;m) implies that v 2 T

(n;m)2ZZ2

o

HV
(n;m)=

o

HV
(�1;�1) and

similarly u 2
o

HU
(n;m) for all (n;m) implies that u 2 T

(n;m)2ZZ2

o

HU
(n;m)=

o

HU
(�1;�1). However,

13



Theorem 2 implies that
o

HU
(�1;�1)= f0g and hence u � 0. Therefore, for any z 2

o

HY
(�1;�1),

z = v 2
o

HV
(�1;�1). Hence,

o

HY
(�1;�1)�

o

HV
(�1;�1).

On the other hand, let v0 be any vector in
o

HV
(�1;�1). Therefore, for all (n;m), v0 2

o

HV
(n;m)�

o

HY
(n;m).

Hence, v0 2 T
(n;m)2ZZ2

o

HY
(n;m)=

o

HY
(�1;�1). Therefore,

o

HV
(�1;�1)�

o

HY
(�1;�1).

o

HV
(n;�1) and

o

HV
(n�1;m) are subspaces of

o

HV
(n;m), the Hilbert space spanned by the deter-

ministic component of the regular �eld. De�ne,
o

HV
n= Sp

�
vjv 2

o

HV
(n;�1); v?

o

HV
(n�1;�1)

�
.

We can thus write
o

HV
(n;�1)=

o

HV
(n�1;�1) �

o

HV
n.

Theorem 6:
o

HV
(n;m)=

o

HV
(n;�1)=

o

HY
(�1;�1) �

nM
l=�1

o

HV
l (27)

Proof: We �rst show that for all k 6= l,
o

HV
l ?

o

HV
k. Assume there is a vector z such

that z 2
o

HV
l, z 2

o

HV
k and assume k < l. Since z 2

o

HV
l, we have that z 2

o

HV
(l;�1) and

z?
o

HV
(l�1;�1). Since by assumption z 2

o

HV
(k;�1)�

o

HV
(l�1;�1), z � 0.

Let x 2
o

HY
(�1;�1). Hence for all (n;m) x 2

o

HV
(n;m); x 2

o

HV
(n�1;m). Assume that there

exists some n for which x 2
o

HV
n as well. By the de�nition of

o

HV
n, x?

o

HV
(n�1;m). Hence,

x � 0. Therefore,
o

HY
(�1;�1) ?Ln

l=�1

o

HV
l. Since each of the Hilbert spaces in the right hand

side of (27) is a subspace of
o

HV
(n;m), we conclude that

o

HY
(�1;�1) �Ln

l=�1

o

HV
l�

o

HV
(n;m).

On the other hand, let y 2
o

HV
(n;m)=

o

HV
(n;�1), and assume that y?

o

HY
(�1;�1) �Ln

l=�1

o

HV
l.

By de�nition,
o

HV
(n;�1)=

o

HV
(n�1;�1) �

o

HV
n. Since y 2

o

HV
(n;�1), and is orthogonal to

o

HV
n by

assumption, we have that y 2
o

HV
(n�1;�1). Repeating the above argument, we conclude that

for all k � n, y 2
o

HV
(k;�1). Since for all k > n,

o

HV
(n;�1)�

o

HV
(k;�1) and since by assumption

y 2
o

HV
(n;�1), we have that for all k > n, y 2

o

HV
(k;�1). Hence,

y 2
1\

k=�1

o

HV
(k;�1)=

1\
k=�1

0
@ 1\
l=�1

o

HV
(k;l)

1
A =

\
(k;l)2ZZ2

o

HV
(k;l)=

o

HY
(�1;�1) (28)

where the last equality follows from Lemma 2. We therefore have that y � 0.

We thus conclude that
o

HY
(�1;�1) is the orthogonal complement of

Ln
l=�1

o

HV
l in the Hilbert

space
o

HV
(n;m) spanned by the deterministic component of the regular �eld. The subspace
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Ln
l=�1

o

HV
l is spanned by the column to column innovations of the deterministic �eld. The

�eld fy(n;m)g = �(n) of the previous example belongs to the subspace
Ln

l=�1

o

HV
l and for

each l;dim
o

HV
l= 1.

We shall conclude this section with the following de�nition, after [HL2].

De�nition 4: A 2-D deterministic random �eld feo(n;m)g is called evanescent w.r.t. the NSHP
total-order o if it spans a Hilbert space identical to the one spanned by its column-to-column

innovations at each coordinate (n;m) (w.r.t. the total order o).

As mentioned in Section 2, all de�nitions and theorems are stated w.r.t. the NSHP total-

ordering de�nition induced by (2). In the following section we shall generalize the previously

obtained results for other NSHP total-ordering de�nitions.

5. The Total-Order Selection

The NSHP support de�nition which results from the total-order de�nition in (2) is not the

only possible one of that type on the 2-D lattice. In [KL], Korezlioglu and Loubaton de�ne

\horizontal" and \vertical" total-orders and describe the horizontally and vertically evanes-

cent components of homogeneous random �elds. Kallianpur et al. [KMN], as well as Chiang

[C1], employ similar techniques to obtain four-fold orthogonal decompositions of regular and

homogeneous random �elds. In the following we introduce a family of NSHP total-ordering

de�nitions in which the boundary line of the NSHP has a rational slope. Note that it is only

the total-order imposed on the random �eld that is changed, but not the 2-D discrete grid itself.

De�nition 5: Let �; � be two coprime integers, such that � 6= 0. Let us de�ne a new NSHP

total-ordering by rotating the NSHP support which was de�ned with respect to (2), through a

counterclockwise angle � about the origin of its coordinate system, such that tan � = �=�.

Let the coordinates (n�;m�) be de�ned by

0
B@ n�

m�

1
CA =

0
B@
p
�2 + �2 0

0 1=
p
�2 + �2

1
CA
0
B@ cos � � sin �

sin � cos �

1
CA
0
B@ n

m

1
CA (29)

15



where (n;m) are the original coordinates, and0
B@ cos � � sin �

sin � cos �

1
CA ;

0
B@
p
�2 + �2 0

0 1=
p
�2 + �2

1
CA

are the rotation transformation matrix and the normalization matrix, respectively. The normal-

ization matrix is such that the indices n� of the \columns" under the new total-order de�nition

are consecutive integers and the distance between two neighboring samples on the same \col-

umn" is one. Thus, the new coordinates (n(�;�);m(�;�)) of the original point (n;m) are given

by

n(�;�) = n�

m(�;�) = m� � c(n(�;�)) : (30)

c(n(�;�)) is a correction term which guarantees that m(�;�) be an integer as well. For each �xed

column index n(�;�) of the new total-order, c(n(�;�)) is determined by c(n(�;�)) = arg min
(n�;m�)

fjm�jg,
i.e ., c(n(�;�)) is set equal to the m� of the least absolute value in the n(�;�) column. For � = �=2

the transformation is obtained by interchanging the roles of columns and rows. The total-order

in the rotated system is de�ned similarly to (2), i.e.,

(i(�;�); j(�;�)) � (s(�;�); t(�;�)) i�

(i(�;�); j(�;�)) 2
�
(k; `)jk = s(�;�); l < t(�;�)

�[�
(k; l)jk < s(�;�);�1 < ` <1

�
: (31)

Let us denote by O the above de�ned set of all possible NSHP total-ordering de�nitions on the

2-D lattice, in which the boundary line of the NSHP has a rational slope, i.e.,

O =
�
(�; �)j�; � are coprime integers

�
: We shall call such support rational non-symmetrical

half-plane (RNSHP). An example is illustrated in Fig. 1. Note the way the \column" is de�ned.

(The NSHP total-ordering o = (1; 0) used in the previous sections, corresponds to � = 0).

The results proved in the previous sections are valid for any RNSHP total-ordering de�nition,

since the proofs require only such a total-order de�nition and �niteness of the second-order

moments of the random �eld. Note however that contrary to the homogeneous case [FMP1],

the regularity and determinism properties are total-order dependent and hence a �eld which is

regular with respect to one NSHP total-ordering de�nition might be deterministic with respect

to another de�nition, as the next example shows.
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θ

PAST

PRESENT

FUTURE

n

m

Figure 1: RNSHP total-order de�nition.

Let 
 be a Gaussian random variable with zero mean and unit variance. De�ne the random

�eld fy(k; l)g such that y(k; l) = 0 for all (k; l) � (0; 0), and y(k; l) = 
 for all (k; l) � (0; 0).

Using the NSHP total-ordering de�nition o = (1; 0), we conclude that the �eld fy(k; l)g is

regular since for (k; l) = (0; 0), we have E[u2(0; 0)] = 1 > 0. On the other hand, if we rotate

this order de�nition by � = �, i.e., we change the roles of \past" and \future", the �eld fy(k; l)g
is deterministic, since every vector y(k; l) can be represented as a linear combination of \past"

samples.

Nevertheless, Theorem 6 implies that under each total-order de�nition o 2 O, at most one

evanescent �eld can be resolved: The �eld that generates the column-to-column innovations

of the deterministic component with respect to the order de�nition o. Hence, if one is inter-

ested in detecting an evanescent component of a 2-D nonhomogeneous random �led, where

the evanescent component is not necessarily aligned with the \conventional" orientation of the

NSHP support, an RNSHP total-ordering of the above type must be used.

6. Summary and Discussion

We have presented here a three-fold Wold-like decomposition for nonhomogeneous, regular 2-D

discrete random �elds. The presented decomposition can be obtained with respect to any RN-

SHP total-ordering de�nition. A construction in the spatial domain was used in order to prove

and to discuss the properties of the regular �eld decomposition into purely-indeterministic,

remote-past, and evanescent random �elds. In [FMP1] it was shown that for regular and

17



homogeneous random �elds the decomposition into purely-indeterministic and deterministic

components is NSHP-support invariant. This property results in a countably-in�nite-fold de-

composition of the regular �eld. However, since for regular nonhomogeneous random �elds the

decomposition into purely-indeterministic and deterministic components is not invariant to the

choice of NSHP-support, the results in [FMP1], cannot be extended to the case of nonhomoge-

neous �elds.
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A Proof of Theorem 1

Since
o

HY
(n;m);SN�1

�
o

HY
(n;m);SN , and since

o

HY
(n;m�1)=

1S
N=0

o

HY
(n;m�1);SN , then, for every vector

in
o

HY
(n;m�1) , and in particular for ŷ(n;m) , there is a sequence fx(N)g with x(N) 2

o

HY
(n;m�1);SN

such that E[x(N)� ŷ(n;m)]2 ! 0 as N !1.

Let E[y(n;m)� ŷSN(n;m)]2 = d2(n;m);N and let E[y(n;m)� ŷ(n;m)]2 = d2(n;m). Since E[x
(N)�

y(n;m)]2 � d2(n;m);N � d2(n;m), we have by the triangle inequality

d(n;m) � d(n;m);N �
�
E[x(N)� y(n;m)]2

�1=2 � �E[x(N) � ŷ(n;m)]2
�1=2

+
�
E[ŷ(n;m)� y(n;m)]2

�1=2
:

(32)

However, the right hand side of (32) tends to d(n;m) as N !1, and therefore

lim
N!1

E[x(N)� y(n;m)]2 = lim
N!1

d2(n;m);N = d2(n;m) : (33)

Also,

E[x(N) � y(n;m)]2 = E[x(N)� ŷSN (n;m)]2 + E[ŷSN (n;m)� y(n;m)]2 (34)

since [x(N)�ŷSN(n;m)] 2
o

HY
(n;m�1);SN , while [y(n;m)�ŷSN (n;m)] is orthogonal to every vector

in
o

HY
(n;m�1);SN . Because both E[x(N) � y(n;m)]2 and E[y(n;m)� ŷSN (n;m)]2 tend to d2(n;m)

as N !1, we conclude that E[x(N) � ŷSN (n;m)]2 ! 0 as N !1.
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However,

�
E[ŷ(n;m)� ŷSN (n;m)]2

�1=2 � �E[ŷ(n;m)� x(N)]2
�1=2

+
�
E[x(N) � ŷSN (n;m)]2

�1=2
: (35)

Because the two terms on the right hand side of (35) tend to zero as N !1, we conclude that

E[ŷ(n;m)� ŷSN (n;m)]2 ! 0 as N !1.

We now show by a similar technique that when we �x N

lim
M!1

E[ŷSN (n;m)� ŷSN;M (n;m)]2 = 0 : (36)

Let E[y(n;m)� ŷSN;M (n;m)]2 = d2(n;m);N (M) and recall that E[y(n;m)� ŷSN(n;m)]2 = d2(n;m);N .

Since
o

HY
(n;m);SN;M�1

�
o

HY
(n;m);SN;M , and since

o

HY
(n;m�1);SN=

1S
M=0

o

HY
(n;m�1);SN;M , there is a

sequence fz(M)g with z(M) 2
o

HY
(n;m�1);SN;M such that E[z(M) � ŷSN (n;m)]2 ! 0 as M !1.

By the triangle inequality

�
E[z(M)� y(n;m)]2

�1=2 � �E[z(M)� ŷSN (n;m)]2
�1=2

+
�
E[ŷSN (n;m)� y(n;m)]2

�1=2
: (37)

However, E[z(M) � y(n;m)]2 � d2(n;m);N(M) � d2(n;m);N , while the right hand side of (37)

tends to d(n;m);N as M !1. Therefore

lim
M!1

E[z(M)� y(n;m)]2 = lim
M!1

d2(n;m);N (M) = d2(n;m);N : (38)

Also,

E[z(M)� y(n;m)]2 = E[z(M) � ŷSN;M (n;m)]2 + E[ŷSN;M (n;m)� y(n;m)]2 (39)

since [z(M)� ŷSN;M (n;m)] 2
o

HY
(n;m�1);SN;M , while [y(n;m)� ŷSN;M(n;m)] is orthogonal to every

vector in
o

HY
(n;m�1);SN;M . Because both E[z(M)� y(n;m)]2 and E[y(n;m)� ŷSN;M (n;m)]2 tend

to d2(n;m);N as M !1, we conclude that E[z(M)� ŷSN;M(n;m)]2 ! 0 as M !1.

However,

�
E[ŷSN (n;m)� ŷSN;M (n;m)]2

�1=2 � �E[ŷSN (n;m)� z(M)]2
�1=2

+
�
E[z(M)� ŷSN;M (n;m)]2

�1=2
:

(40)

Because the two terms on the right hand side of (40) tend to zero as M ! 1, we conclude

that E[ŷSN (n;m)� ŷSN;M (n;m)]2 ! 0 as M !1, for a �xed N .
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Finally,

�
E[ŷ(n;m)� ŷSN;M (n;m)]2

�1=2 � �E[ŷ(n;m)� ŷSN (n;m)]2
�1=2

+
�
E[ŷSN (n;m)� ŷSN;M (n;m)]2

�1=2
;

(41)

and hence when we �rst let M tend to in�nity for a �xed N , and then N tends to in�nity, the

theorem follows.
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