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Abstract—We consider the problem of jointly estimating the
number as well as the parameters of two-dimensional (2-D) si-
nusoidal signals, observed in the presence of an additive white
Gaussian noise field. Existing solutions to this problem are based
on model order selection rules and are derived for the parallel
one-dimensional (1-D) problem. These criteria are then adapted to
the 2-D problem using heuristic arguments. Employing asymptotic
considerations, we derive a maximum a posteriori (MAP) model
order selection criterion for jointly estimating the parameters of
the 2-D sinusoids and their number. The proposed model order
selection rule is strongly consistent. As an example, the model
order selection criterion is applied as a component in an algorithm
for parametric estimation and synthesis of textured images.

Index Terms—Model order selection, maximum
estimation, random fields, 2-D parameter estimation, 2-D sinu-
soids, texture parametric model.

I. INTRODUCTION

WE consider the problem of jointly estimating the number
as well as the parameters of two-dimensional (2-D) si-

nusoidal signals observed in the presence of an additive white
Gaussian noise field. This problem is, in fact, a special case of
a much more general problem: From the 2-D Wold-like decom-
position [6], we have that any 2-D regular and homogeneous
discrete random field can be represented as a sum of two mutu-
ally orthogonal components: a purely-indeterministic field and
a deterministic one. The deterministic component is further or-
thogonally decomposed into a harmonic field and a countable
number of mutually orthogonal evanescent fields. In this paper,
we consider the special case where the deterministic component
consists of a finite (unknown) number of harmonic components,
while the purely-indeterministic component is assumed to be a
white noise field.

A solution to this problem is an essential component in many
image processing and multimedia data processing applications.
For example, in indexing and retrieval systems of multimedia
data that employ the textural information in the imagery compo-
nents of the data, e.g., [23], the identification of similar textured
surfaces, is highly sensitive to errors in estimating the orders
of the models of the deterministic components of the textures.
More specifically, this indexing approach employs the 2-D Wold
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decomposition based parametric model of each textured seg-
ment in the image as the index to this segment. Therefore, an
accurate and robust procedure for estimating the orders as well
as the parameters of the models of the deterministic components
of the textures is an essential component in any such indexing
and retrieval system. Similar requirements are posed by para-
metric content-based image coding and representation methods.

The same type of problem, i.e., joint estimation of the model
order and the parameters for a sum of 2-D sinusoidal signals ob-
served in additive noise, naturally arises in processing 2-D SAR
data, and in space time adaptive processing (STAP) of airborne
radar data. In these problems, however, the observed random
field is complex valued, where for each scatterer one frequency
parameter corresponds to the range information, whereas the
second frequency parameter is the Doppler.

Many algorithms have been derived to estimate the param-
eters of sinusoids observed in additive white Gaussian noise.
Most of these assume the number of sinusoids is a priori known.
However this assumption does not always hold in practice. In
the past three decades the problem of model order selection for
1-D signals has received considerable attention. Existing model
order selection rules can be classified to two classes: algebraic
criteria and information-theoretic criteria. The algebraic criteria
(see, e.g., [8], [24], [25], [27], and the references therein) em-
ploy the eigenvalue or the singular value decomposition to the
sample covariance matrix of the data to determine the number of
dominant sinusoidal components. Information theoretic model
order selection rules are based (directly or indirectly) on three
popular criteria: The Akaike information criterion (AIC) [1], the
minimum description length (MDL) [19], [20], and the max-
imum a posteriori (MAP) probability criterion [21]. All these
criteria have a common form composed of two terms: a data
term and a penalty term, where the data term is the log-likeli-
hood function evaluated for the assumed model.

However, most of the papers dedicated to the problem of
model order selection are concerned with various models of one-
dimensional (1-D) signals, while the problem of modeling mul-
tidimensional fields has received considerably less attention. To
the best of our knowledge no such criterion has been rigorously
developed, and adaptation of existing solutions that were de-
rived for 1-D data models may be misleading. Stoica et al., [22]
proposed a cross-validation selection rule and demonstrated its
asymptotic equivalence to the Generalized Akaike Information
Criterion (GAIC). The suggested criterion is not derived for any
specific model. The penalty term is given by , where
is the number of model parameters, is the length of the ob-
served data vector, and is some penalty term, which is a
function of . In [16], this criterion is employed to detect the
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number of sinusoids in 1-D and 2-D signals. The penalty term
for 2-D signals is the same as in the 1-D case. The penalty pa-
rameter is chosen as , where . Stoica
et al. in [22] and Li et al. in [16] arrived at this choice of
by using consistency arguments based on [10], [11]. However, in
[10] and [11], consistency of an order-selection criterion for au-
toregressive moving average (ARMA) models is proved, while
the model considered in [16] is that of sinusoids in noise. More-
over, for the data model of 1-D sinusoids observed in white
noise, Quinn [17] derives conditions for strong consistency of
any model order selection criterion. The penalty term of the cri-
terion in [16] does not satisfy Quinn’s consistency conditions,
even for the 1-D problem.

Djuric [5] proposed a MAP order selection rule for 1-D sinu-
soids observed in additive white noise. Kavalieris and Hannan
[13] prove strong consistency of a criterion that indirectly em-
ploys the MDL principle. In this framework the observation
noise is modeled as an autoregression of an unknown order. In
the special case where the noise process in [13] is assumed to
be a white noise process, the resulting criterion is identical to
the MAP criterion derived in [5]. In this paper, following the
information theoretic approach and the Bayesian methodology,
we derive a MAP model order selection criterion for jointly es-
timating the number and the parameters of 2-D sinusoids ob-
served in the presence of an additive white Gaussian noise field.
Moreover, in [15], the strong consistency of the derived crite-
rion is established.

This paper is organized as follows: In Section II, we define
our notations, whereas in Section III, we formally define the
MAP model order selection problem. The MAP model order
selection criterion is derived in Section IV. In Section V, we pro-
vide some numerical examples and Monte Carlo simulations to
better illustrate the performance of the proposed criterion. In
Section VI, we present and analyze texture estimation and syn-
thesis results obtained by applying the proposed model selection
rule to a number of natural textures. In Section VII, we provide
our conclusions.

II. NOTATIONS AND DEFINITIONS

Let , where
is the observed 2-D

real valued random field such that

(1)

The field is a 2-D zero mean, white Gaussian field
with finite variance . The field is the harmonic
random field

(2)

where are the spatial frequencies of the th harmonic.
The ’s and ’s are the unknown amplitudes of the sinu-
soidal components in the observed realization. Obviously, it is
assumed that .

Let us define the following matrix notations:

(3)

The vectors and are similarly defined. Rewriting (1), we
have . Let denote the covariance matrix of the
observed field. Thus, , where is an

identity matrix, and . In addition, define

(4)

Let

(5)

and let us define the following matrix:

Re Im Re Im Re Im

(6)

Using the foregoing notations. we have that

(7)

Let be a sequence of rectangles such that
.

Definition 1: The sequence of subsets is said to tend
to infinity (we adopt the notation ) as if

, and . To sim-

plify notations, we will omit in the following the subscript .
Thus, the notation implies that both and
tend to infinity as functions of and at roughly the same rate.

Let denote the parameter vector of the harmonic
field, i.e.,

(8)

where for all are real and bounded. Assume further that
, where or

for . Hence, the parameter space is a subset of the
dimensional Euclidian space. By the above assumption, we

further conclude that has rank and that the corresponding
Gram matrix is of rank as well.

III. MAP MODEL SELECTION CRITERION

Let denote the a priori probability of the th model,
where denotes the unknown number of sinusoidal components
in the data model given by (1) and (2).

It is assumed that there are competing models, where
( being the actual number of sinusoidal components) and

where each model is equiprobable. That is

(9)
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where

(10)

The MAP estimate of is the value of that maximizes
the a posteriori probability , where . More
specifically

(11)

where denotes the marginal probability of , given that
there are sinusoidal components in the data.

Let

(12)

In addition, let denote the positive real line, and let
. Thus, we have that , and .

Using these notations, the marginal probability density
is expressed by

(13)

where is the a priori probability of , and ,
given that there exist sinusoidal components in the observed
data.

IV. DERIVATION OF THE CRITERION

A. Priors Selection

Inspecting (11) and (13), we conclude that finding ,
using the observed data only, requires that some assumptions
be made regarding the prior distribution of the model parame-
ters . Clearly, our goal is to derive a model selec-
tion rule based on a noninformative prior about the parameters.
In other words, the selected prior should be chosen such that it
represents the lack of a priori knowledge of the values of the
problem parameters, before the data is observed. (See, e.g., [2]
for a detailed discussion of the problem of choosing noninfor-
mative priors).

Clearly

(14)

Since the sinusoidal frequencies are assumed independent of
each other (i.e., that they are not harmonically related), the lack
of a priori knowledge of the frequencies is modeled by as-
suming the frequencies to be uniformly distributed in

. Thus

(15)

Given that and are known, is also known, and the ob-
servation model (7) becomes a linear regression model, where
the observations are subject to a zero mean white Gaussian ob-
servation noise with variance , such that are independent
but unknown. Hence

(16)

For this problem, it is shown in [2] that in the space defined
by and , the shape of the likelihood function (given here
by ) is “data translated,” i.e., it is invariant to
translations that result from the different values these parame-
ters assume in different realizations of the observed data. Hence,
the idea that little is known a priori relative to the information
contained in the observed data is expressed by choosing a prior
distribution such that and are locally
uniform [2] or, equivalently, that

(17)

and

(18)

where is some finite positive constant, and is some finite
positive function of , which is a constant for any given . How-
ever, (17) and (18) result in improper prior distribution (16), if
assumed valid on . We therefore emphasize that (17)
and (18) represent only the local behavior of the prior distribu-
tion in the region where the likelihood function is appreciable
and not over the entire admissible range. This clearly follows
from the assumptions on the boundedness of both the ampli-
tudes of the sinusoids and the noise variance. In other words,
the priors (17) and (18) represent the true priors only over the
range where the likelihood function is appreciable, whereas, in
fact, the priors decay to zero outside this range to ensure they
represent proper probability density functions. We further elab-
orate on this point in the next subsection, where the likelihood
function is employed.

B. Evaluation of the a Posteriori Distribution

In this subsection, we derive an approximate expression for
the a posteriori probability distribution given in (13).
Since the noise field is Gaussian, we have, using (7)

(19)

Let

(20)

and let denote the projection matrix defined by

(21)
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Using these notations, we have that

(22)

Applying the priors and evaluating the marginal distribution, we
have

(23)

It is well known that

(24)

Hence, for every , there exists such that for all

(25)

Let . Following the discussion in the pre-
vious subsection, it is assumed that on , the prior on the
amplitude vector is a constant given by (17) for any given ,
whereas outside this subset, it decays to zero to ensure that it
represents a proper probability density function. Hence, we have
that

(26)

where the last inequality results from bounding the integral
using (24) and (25). On the other hand

(27)

Since is arbitrarily small is approximated to an
arbitrarily small error by

(28)

Next, we evaluate . Substituting (28) and using
similar considerations, we have

(29)

where is the standard Gamma function (see, e.g., [9] for
the integration result).

Finally, to obtain an expression for the conditional probability
, we have to evaluate

(30)

Since a direct analytic solution of this integration problem does
not exist, we derive an approximate solution, employing the
Laplace integration method (see, e.g., [4] and [26]). The Laplace
method considers an integral of the form

where are vectors, is a large positive parameter, and
is real. The approximation is based on the observation that

if has a maximum at and when
, whereas ; then, for large , the modulus of the

integrand will have a sharp maximum at a point very close to
, and most of the contribution to the integral will arise from

the immediate vicinity of this maximum point. The integral can
then be evaluated approximately by expanding both and in
the neighborhood of .

Rewrite (29) in the following form:

(31)
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where is
a function of only. Let denote the ML estimate of for
the observed realization, based on the data model (1) and (2)
and assuming the model order is . In addition, let and
denote the matrices and , respectively, with substituted
by its ML estimate . It is well known that for the data model
(1) and (2), the maximum likelihood estimate of is obtained
through minimization of the quadratic form . Hence, the
minimum point of is obtained by substituting
with its ML estimate.

Substituting (31) into (30), we observe that for any given real-
ization of , the integration is carried out over , while the ob-
servations vector is treated as a vector of known constants. Due
to its definition, it is clear that is full rank and that
is a continuous function of the unknown frequency parameters.
Since the approximate solution is a function of , we employ
the almost sure convergence of to the correct value of (see
Lemma 2 in Appendix A) to actually evaluate (30). Since con-
verges a.s. to the correct value of is a.s. full rank. Hence,

a.s. Therefore, for each realization, the condi-
tions required to employ the Laplace asymptotic approximation
to evaluate (30) around the ML estimate of obtained for this
realization are satisfied (as in a standard deterministic problem).
Thus, as

(32)

where we have

...
...

...

(33)

which denotes the Hessian matrix of . When eval-
uated at , it will be denoted by . Using the next
lemma, the computation is completed.

Lemma 1:

a.s. (34)

where denotes some “generic” constant, whose exact value is
of no importance to us in the current context (and may vary from
usage to usage).

Proof: See Appendix A.

Substituting (34) and the explicit expression of into
(32), we have

a.s. (35)

It is possible to further simplify (35) by observing that
. [See (56) in Appendix A

for the derivation of a similar conclusion]. Since
a.s., and since is a continuous function of , we
have that a.s. Furthermore,
employing the asymptotic properties of the Gamma function
the contribution of the is approximated by

(see, e.g., [3]).
Substituting these approximations into (35), the final form

of the model selection criterion can be readily established for

(36)

where in the third equality, the term is omitted
because it is not a function of , while is
asymptotically negligible compared with the other terms, since
they are increasing functions of . Finally, is
approximated by as .

Furthermore, recall that denotes the correct number of si-
nusoids in the field. Then, it is proved in [15] that as

a.s. (37)

V. NUMERICAL EXAMPLES

To illustrate the performance of the proposed model order se-
lection rule, we present some numerical examples. In the exam-
ples below, the data field was generated with five equiamplitude
sinusoidal components, and we define

SNR (38)
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TABLE I
PERFORMANCE OF MAP CRITERION FOR VARIOUS VALUES OF SNR : NUMBER

OF TIMES MODEL ORDER k WAS DECIDED, OUT OF 100 EXPERIMENTS

The noise is a white Gaussian noise field with variance
, which is chosen to yield the desired signal-to-noise

ratio (SNR). In these experiments, the signal-to-noise ratio
of each component SNR varies in the range of dB
to dB, in steps of 1 dB. For each SNR, 100 Monte
Carlo experiments are performed. The data field dimen-
sions are 64 64. The frequencies of the sinusoidal com-
ponents are

. The amplitudes are
given by . The performance results
of the proposed MAP selection criterion are summarized in
Table I for various values of SNR . The simulation results,
which are tested for model orders ranging from 0 to 100,
demonstrate that even for modest dimensions of the observed
field, and relatively low SNRs, i.e., as low as 14 dB, the error
rates of the MAP model order selection criterion are very low.
In all the experiments, the MAP criterion never estimated the
model order to be higher than 5. (Hence, Table I lists the results
only for .)

VI. EXPERIMENTAL RESULTS

In this section, we present some experimental results to illus-
trate the performance of the suggested order selection algorithm
on images of natural textures. In [7], a parametric texture model
that is based on the 2-D Wold decomposition was presented. It
was shown that the Wold decomposition based texture model
is successful in estimating the texture parameters and in repro-
ducing the original texture using only the estimated parameters.
However, for estimating the number of harmonic components
in the given texture field an ad-hoc procedure was adopted. It is
based on a search for the isolated peaks of the magnitude of the
transfer function of the observed texture field linear predictor. In
this section, we demonstrate the performance of the texture anal-
ysis/synthesis procedure when the ad-hoc model order selection
rule is replaced by the MAP order selection rule proposed in the
previous sections.

In general, the assumption that the purely indeterministic
component is a white noise field does not hold for natural
textures. However, for structured textures where the harmonic
component is much stronger than the purely indeterministic
component, we can assume only for the purpose of estimating

Fig. 1. Natural texture with 15 estimated sinusoids. (a) Original texture.
(b) Residual component. (c) Synthesized texture. (d) Synthesized purely
indeterministic component. (e) Magnitude of DFT of original texture.
(f) Magnitude of DFT of synthesized texture.

the order of the model that the purely indeterministic compo-
nent is a white noise field and apply the MAP model order
selection rule derived in the previous sections to estimate the
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Fig. 2. Natural texture with 22 estimated sinusoids. (a) Original texture.
(b) Residual component. (c) Synthesized texture. (d) Synthesized purely
indeterministic component. (e) Magnitude of DFT of original texture.
(f) Magnitude of DFT of synthesized texture.

number of harmonic components. Nevertheless, achieving
high-quality synthesis from the estimated parameters requires

modeling and estimation of the colored nature of the purely
indeterministic component. Thus, in the following, we assume
that the purely indeterministic component is a real-valued
Gaussian AR field

(39)

where
. The driving noise of the AR model is a

zero-mean white Gaussian field. In all the examples, we assume
an NSHP AR model for the purely indeterministic com-
ponent since it is large enough to provide high-quality synthesis
results for the tested textures.

All the textures presented here are natural textures, and hence,
the true parameters are unknown. The synthesis algorithm re-
constructs the original textures using only the estimated param-
eters. In all the examples presented, the original image is such
that it can be bounded by a 84 112 pixel box.

The MAP order selection rule involves the evaluation of a
ML estimate of the model parameters. In [7], a conditional max-
imum-likelihood algorithm for jointly estimating the parameters
of the harmonic, evanescent, and purely indeterministic compo-
nents of the texture was developed. However, this algorithm re-
quires the solution of a nonlinear least-squares (NLLS) problem
for the spectral support parameters of the harmonic components.
Due to the required multidimensional search, this estimator is
computationally demanding. We therefore use, in this paper, a
suboptimal (relative to the maximum likelihood estimator) but
computationally efficient algorithm (since no multidimensional
search in the parameter space is required), for estimating the tex-
ture model parameters. The algorithm that we use is an iterative,
periodogram-based estimation algorithm. In the first stage, the
parameters of the harmonic component are estimated, and their
contribution to the observed realization is removed. Ideally, the
obtained residual is the purely indeterministic component of the
texture. In a second stage, a 2-D AR model of the residual is es-
timated. Note that in this case, where all the deterministic com-
ponents have already been removed, the procedure of obtaining
a maximum-likelihood estimate of the AR model parameters is
reduced to a solution of a linear least squares problem.

Figs. 1 and 2 depict examples of natural textures and the re-
sults of the synthesis algorithm that employs the estimated pa-
rameters. The proposed MAP order selection algorithm is em-
ployed to estimate the number of sinusoids in each texture. The
number of estimated sinusoids in the textures of Figs. 1 and 2
are 15 and 22, respectively.

VII. CONCLUSION

In this paper, we have presented a solution to the problem
of jointly estimating the number as well as the parameters of
2-D sinusoidal signals observed in the presence of an additive
white Gaussian noise field. Following the Bayesian method-
ology and employing asymptotic considerations, a strongly con-
sistent MAP model order selection criterion has been developed.
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Similar to criteria derived for 1-D problems, the proposed crite-
rion has a log-likelihood term and a penalty term.

The performance of the proposed algorithm for finite-dimen-
sional data is illustrated using Monte Carlo simulations. The
simulation results demonstrate that even for modest dimensions
of the observed field and relatively low SNRs, the error rates of
the MAP model order selection criterion are very low. The MAP
order selection rule is applicable to a wide variety of problems in
which 2-D harmonic components are observed in the presence
of an additive Gaussian noise field. Using the derived model
order selection rule, we present an improved solution for the
problem of parameter estimation and synthesis of natural tex-
tures. The synthesis results obtained by the suggested algorithm
are both visually and statistically very similar to the originals
and, in some cases, indistinguishable.

APPENDIX A

Lemma 1:

a.s. (40)

where denotes some “generic” constant whose exact value is
of no importance to us in the current context.

In the Proof of Lemma 1, we will use the following results.
Lemma 2: Let and denote the ML estimates of the pa-

rameter vector of the harmonic component and the variance
of the noise field in the data model given by (1), (2). Then,

as

a.s. (41)

a.s. (42)

Proof: The data model given by (1), (2) is the special case
of the more general model given in [18]. Therefore, this lemma
is a straightforward result of Theorems 1 and 2 in [18].

Lemma 3: Let be a real-valued 2-D Gaussian white
noise field with zero mean and variance . Then, for any
and any integer

(43)

Proof: This lemma is the result of a straightforward ma-
nipulation of Lemma 3 [18].

In addition, in the sequel, we will use the following asymp-
totic results that hold for for any integer

(44)

We are now in a position to prove Lemma 1.

Proof: Taking the first and second partial derivatives of
with respect to and and evaluating their

values at the ML estimate of , we have

(45)

and

(46)

Since is the ML estimate of , it is also an extremal point of
. Hence

(47)

Substituting (47) into (46), we can rewrite in the fol-
lowing form:

(48)

where

...
...

...
(49)

denotes the Hessian matrix of evaluated at .
Next, let

(50)

and define as the block diagonal matrix

...
...

. . .
...

(51)

In addition, let

(52)

where is defined in (5), and denotes the element by element
conjugate of . We therefore have that

(53)

Since is real valued, , where is the
conjugate transpose of . As the column spaces of and are
identical, the projection matrix is also given by

(54)
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where is given by (55), shown at the bottom of the
page. Evaluating the elements of , we have that for

, whereas for
and , where we have used (44) and the separa-
bility of the 2-D exponentials.

Hence, from (55), (44), and Lemma 2, we have

a.s.

a.s. (56)

where is the matrix with substituted by its ML estimate
.
To simplify notations, we will, in the following (without

limiting the generality of the derivation) evaluate all required
derivatives with respect to . Thus

(57)

where

(58)

and

(59)

where

(60)

Hence, using (55), we have (61) and (62), shown at the bottom
of the page. Using (54), we have

(63)

Next, we evaluate each of these terms. From (56), we have that
a.s. Since the limit as

of the product of any two sequences, where each

...
...

...
...

. . .
...

...

(55)

...
...

(61)

...
...

(62)
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tends to a finite limit, is the product of the limits of the individual
sequences

a.s. (64)

Let

(65)

Rewriting the terms of (64), we have

(66)

and

(67)

From (56)–(60), (43), (44), and Lemma 2, we have

a.s. (68)
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a.s. (69)

Using (44) and Lemma 3, we conclude that a.s.
Similarly

(70)

and hence, a.s. By substituting (68)–(70) into (64),
we have

a.s. (71)

Next

(72)

From (44) and Lemmas 2 and 3, we have

a.s. (73)

Similarly

a.s.

a.s.

a.s.

a.s.

a.s. (74)

In addition, from (44) and Lemma 2

(75)

and similarly

(76)

Using its definition in (72)
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(77)

Since by (75) and (76) all squared terms on the of (77) tend to
zero a.s. as a.s.

Similarly to (76)

(78)

Hence

(79)

Since, by (78), all squared terms on the right-hand side of (79)
tend to zero a.s. as a.s. Hence, as

a.s.
Similarly, using (73)–(76), we have

(80)

As a.s.
In addition

a.s. (81)

Let denote again some “generic” constant whose exact
value is of no importance to us in the current context. Substi-
tuting the above results into (63), we conclude that

a.s. (82)

Deriving similar asymptotic expressions for all the other nor-
malized elements of , we have, as

a.s.

a.s.

a.s.

a.s.

a.s.

a.s.

a.s. (83)

Finally, let denote a -dimensional vector, such
that all its entries are 1, and let us define the diag-
onal matrices , and

. Since can be rewritten
as

(84)

we conclude by substituting (83) into (84) that

(85)

Hence

a.s. (86)
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