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We consider the problem of estimating regression models of two-dimensional
random fields. Asymptotic properties of the least squares estimator of the linear
regression coefficients are studied for the case where the disturbance is a homoge-
neous random field with an absolutely continuous spectral distribution and a posi-
tive and piecewise continuous spectral density. We obtain necessary and sufficient
conditions on the regression sequences such that a linear estimator of the regression
coefficients is asymptotically unbiased and mean square consistent. For such
regression sequences the asymptotic covariance matrix of the linear least squares
estimator of the regression coefficients is derived. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we consider the problem of estimating the coefficients of a
regression model of a two-dimensional random field. The disturbance field
is a homogeneous random field with an absolutely continuous spectral
distribution and a positive and piecewise continuous spectral density. In its
simplest form, the problem is reduced to that of estimating the regression
coefficient c where the observed field is given by

yu, v=cju, v+Eu, v (1)

such that ju, v is a given regression sequence and Eu, v is a zero mean homo-
geneous random field. We shall restrict ourselves to estimates of the
regression coefficients that are linear in the observations {yu, v: 0 [ u [M−1,
0 [ v [N−1}. In the case where the noise Eu, v is Gaussian, linear estimates



are optimal. However, in many cases Eu, v will not be normal and there will
be nonlinear estimates of c better than the linear estimates. Nonetheless,
evaluation of the nonlinear estimates are often computationally prohibitive,
especially in the case of multidimensional processes. In such cases the
computational simplicity in evaluating the linear estimates makes them
particularly appealing. The problems of one-dimensional linear and non-
linear regression have been extensively investigated, e.g., [1, 3, 6, 8, 12].
More recently, a necessary condition for the consistency of l1 estimates in
linear regression models was derived in [2]. Estimation of multivariate
regression functions of stationary random processes with errors-in-
variables is addressed by Elias, [4], where the problems of strong consis-
tency of the estimates and their uniform convergence rate are explored.
Nonlinear regression models and the conditions for the consistency of la
estimators are considered in [11].
The problem of estimating the parameters of multidimensional processes
has received considerably less attention. Moreover, most of the of literature
is concerned with estimating the regression models when the observation
noise is uncorrelated. Leonenko [13], and more recently Ivanov and
Leonenko [14], studied the properties of least-squares estimates of the
linear regression coefficients for the case where a random field is observ-
able on a system of subsets whose dimensions tend to infinity, and the dis-
turbance field is homogeneous. An expression for the asymptotic nor-
malized covariance of the estimates was developed, assuming the regressors
are square-integrable functions on each of the subsets. In [15], Leonenko
has introduced conditions under which distributions of functionals of least
squares estimators for linear regression coefficients converge to distribu-
tions of the functionals of some Gaussian random field.
In this paper we derive necessary and sufficient conditions on the regres-
sion sequences such that a linear estimator of the regression coefficients is
asymptotically unbiased and mean square consistent. As shown in the next
section, for a linear estimator of the regression coefficients to be mean
square consistent, the regressors should not belong to l2. For such regres-
sion sequences the asymptotic covariance matrix of the linear least squares
estimator of the regression coefficients is derived. In [13, 14], on the other
hand, by concentrating on regression functions that are square-integrable
on the above system of subsets an expression for the asymptotic normalized
covariance of the regression coefficients estimates, is derived. Thus the
resulting linear least-squares estimates of the regression coefficients are not
necessarily mean square consistent. Therefore, the results of [13–16],
though related, are not directly applicable to the framework of mean
square consistent linear estimators for two-dimensional random fields,
addressed in this paper. Moreover, the approach adopted in this paper is
different from that of [13, 14], as we first establish conditions on the
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regressors such that the linear estimator of the regression coefficients is
asymptotically unbiased and mean square consistent. Then, for this class of
regressors we derive the asymptotic normalized covariance matrix of the
linear least squares estimator of the regression coefficients. The result is
established for the case where the spectral density function of the distur-
bance field is piecewise continuous and has no common discontinuities
with the discontinuities of the spectral distribution function of the
regression vectors, while the results in [13, 14] are given for the more
restricted case where this spectral density is continuous.
Let y, j, e denote the observation, regression, and disturbance column
vectors, respectively, where

y=[y(0, 0), ..., y(M−1, 0), y(0, 1), ..., y(M−1, 1), ..., ...,

y(0, N−1), ..., y(M−1, N−1)]T,

and j, e are similarly defined. Let C denote the covariance matrix of e and
hence of y as well. Thus,

C=R
C (0) C (−1) · · · C (1−N)

C (1) C (0) · · · C (2−N)

x x · · · x

C (N−1) C (N−2) · · · C (0)

S , (2)

where

C (k)=R
r0, k r−1, k · · · r1−M, k
r1, k r0, k · · · r2−M, k
x x · · · x

rM−1, k rM−2, k · · · r0, k

S . (3)

In the following, the meaning of the notation M, NQ., used through-
out, is that min(M, N)Q..

Theorem 1. Suppose there exists a sequence of linear estimates cM, N of c
where

cM, N= C
M−1

u=0
C
N−1

v=0
a (M, N)u, v yu, v. (4)

Assume also that the spectral density f(w, n) of the disturbance field is
bounded away from zero. A necessary condition for cM, N to be both mean
square consistent and asymptotically unbiased estimate of c is that

lim
M, NQ.

C
M−1

u=0
C
N−1

v=0
|ju, v |2=.. (5)
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Proof. By the next identity (see Appendix A for the proof) we have that

E |cM, N− c|2=E |cM, N−E(cM, N)|2+|E(cM, N)− c|2

=F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
a (M, N)u, v e

i2p(wu+nv) :2 f(w, n) dw dn

+|c|2 : C
M−1

u=0
C
N−1

v=0
a (M, N)u, v ju, v−1:

2

. (6)

For cM, N to be a consistent estimate of c, the R.H.S. of (6) has to tend to
zero. Hence,

lim
M, NQ.

C
M−1

u=0
C
N−1

v=0
a (M, N)u, v ju, v=1. (7)

Using (4), (7), and (1) we conclude that cM, N is an asymptotically unbiased
estimate of c. By Parseval’s equality

F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
a (M, N)u, v e

i2p(wu+nv) :2 f(w, n) dw dn

\min
w, n
f(w, n) C

M−1

u=0
C
N−1

v=0
|a (M, N)u, v |

2.

Hence, assuming f(w, n) is bounded away from zero, for cM, N to be a
consistent estimate of c we must have

lim
M, NQ.

C
M−1

u=0
C
N−1

v=0
|a (M, N)u, v |

2=0. (8)

Since by the triangle inequality

: C
M−1

u=0
C
N−1

v=0
a (M, N)u, v ju, v : [ C

M−1

u=0
C
N−1

v=0
|a (M, N)u, v ju, v |, (9)

we have from (7) that

lim
M, NQ.

1 C
M−1

u=0
C
N−1

v=0
|a (M, N)u, v ju, v |2

2

\ 1. (10)
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However, from the Schwartz inequality we have that

1 C
M−1

u=0
C
N−1

v=0
|a (M, N)u, v ju, v |2

2

[ 1 C
M−1

u=0
C
N−1

v=0
|a (M, N)u, v |

22 1 C
M−1

u=0
C
N−1

v=0
|ju, v |22 .

(11)

Thus, using (8)–(11) we conclude that

lim
M, NQ.

C
M−1

u=0
C
N−1

v=0
|ju, v |2=. (12)

is a necessary condition for cM, N to be a mean square consistent estimate of c.
L

Theorem 2. Assume the disturbance spectral density f(w, n) is bounded
and strictly positive. Let

cM, N=
;M−1
u=0 ;N−1

v=0 j̄u, v yu, v
;M−1
u=0 ;N−1

v=0 |ju, v |
2 . (13)

Then cM, N is an unbiased estimate of c and (5) is a necessary and sufficient
condition for cM, N to be a mean square consistent estimate of c.

Proof. See Appendix B.

In the foregoing discussion we have concentrated on the case where the
observed field is expressed in terms of a single regressor and an additive
disturbance. In the more general case, the observation is a linear
combination of some numberP <<min(M, N) of regressors and an additive
disturbance such that

y=Fc+e,

where c=[c1, c2, ..., cP]T, F=[j (1), j (2), ..., j (P)] is MN×P matrix of
known constants such that

j (j)=[j (j)0, 0, j
(j)
1, 0, ..., j

(j)
M−1, 0, ..., j

(j)
M−1, N−1]

T.

Thus Ey=Fc.
Let c=[c1, ..., cP]T denote the linear least squares estimate of c.
Provided that FHF is non-singular the least squares estimate

cL=(FHF)−1 FHy (14)
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is an unbiased estimator of c. Furthermore, if C is non-singular then
among all the linear estimators, there exists an optimal one

co=(FHC−1F)−1 FHC−1y. (15)

2. THE REGRESSION SPECTRUM

Consider for a fixed r the sequence

F (r)M, N= C
M−1

u=0
C
N−1

v=0
|j (r)u, v |

2 (16)

From (5) we have that F (r)M, N approaches infinity with M and N since
otherwise no consistent estimate of c, exists. We further assume that F (r)MN
is a slowly increasing sequence ofM and N, i.e., for every fixed h, k

lim
M, NQ.

F (r)M+h, N+k
F (r)M, N

=1. (17)

Using the Schwartz inequality we have that

: C
M−1

u=0
C
N−1

v=0
j (r)u+h, v+kj̄

(s)
u, v
: [ 1 C

M−1

u=0
C
N−1

v=0
|j (r)u+h, v+k |

22
1
2 1 C

M−1

u=0
C
N−1

v=0
|j̄ (s)u, v |

22
1
2

[ (F (r)M+h, N+k)
1
2 (F (s)M, N)

1
2 (18)

From the slowly increasing property of F (r)MN we have that for 1 [ r, s [ P
and all nonnegative integers h, k the sequence ;M−1

u=0 ;N−1
v=0 j

(r)
u+h, v+kj̄

(s)
u, v/

(F (r)M, NF
(s)
M, N)

1/2 is bounded. We assume that for all 1 [ r, s [ P this sequence
also converges to a limit denoted by R (r, s)h, k , i.e.,

R (r, s)h, k = lim
M, NQ.

;M−1
u=0 ;N−1

v=0 j
(r)
u+h, v+kj̄

(s)
u, v

(F (r)M, NF
(s)
M, N)

1
2

. (19)

In order to deal with negative values of h, k we define j (r)u, v=0 for u < 0
or v < 0. Then for h, k \ 0 we have

;M−1
u=0 ;N−1

v=0 j
(r)
u−h, v−kj̄

(s)
u, v

(F (r)M, NF
(s)
M, N)

1
2

=
;M−1−h
u=0 ;N−1−k

v=0 j̄ (s)u+h, v+kj
(r)
u, v

(F (r)M−h, N−kF
(s)
M−h, N−k)

1
2

×1F
(r)
M−h, N−kF

(s)
M−h, N−k

F (r)M, NF
(s)
M, N

2
1
2

.
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On taking the limits of both sides and using the slowly increasing property
of the sequence F (r)MN we have using (17), (19)

R (r, s)−h, −k=R̄
(s, r)
h, k . (20)

Using similar arguments we also have that

R (r, s)−h, k=R̄
(s, r)
h, −k. (21)

Using matrix notations we have R−h, −k=RHh, k and R−h, k=RHh, −k. We
therefore conclude that Rh, k is an Hermitian series onZ2.
Using the definition of Rh, k we conclude that Rh, k is a double index
positive semi-definite sequence: Indeed let a be an arbitrary P dimensional
vector and consider the quadratic form

sd−m, E−g=aHRd−m, E−ga

= lim
M, NQ.

C
P

r, s=1

ar

(F (r)M, N)
1
2

C
M−1

u=0
C
N−1

v=0
j (r)u+d, v+E j̄

(s)
u+m, v+g

as

(F (s)M, N)
1
2

.

Now let k be any m-vector where m is arbitrary and let r1, r2, ..., rm and
s1, s2, ..., sm be some integers. Then

C
m

i, j=1
k̄isri −rj, si −sjkj= lim

M, NQ.

C
M−1

u=0
C
N−1

v=0

: C
m

i=1
C
P

r=1

k̄iārj
(r)
u+ri, v+si

(F (r)M, N)
1
2

:2 \ 0.

Hence, aHRh, ka is a 2-D positive semi-definite sequence. Thus, employing
the spectral representation theorem, (see, e.g., [9]), there exists a non-
negative 2-D functionMa(w, n) such that

aHRh, ka=F
1
2

−12

F
1
2

−12

e i2p(hw+kn) dMa(w, n). (22)

However, Ma(w, n)=aHM(w, n) a, where M(w, n) is a matrix valued
function of w and n taking as values Hermitian P×P positive semi-definite
matrices whose elements are functions of bounded variation, while the
functions on the diagonal are non-decreasing. It can be shown following
similar arguments to those in [7, p. 45], that Rh, k has a spectral represen-
tation of the form

Rh, k=F
1
2

−12

F
1
2

−12

e i2p(hw+kn) dM(w, n).
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M(w, n) is called the spectral distribution of the regression vectors
j (1), j (2), ..., j (P). In the following we assume thatR0, 0=>1/2−1/2 >1/2−1/2 dM(w, n)
is a nonsingular matrix.

3. ASYMPTOTIC EXPRESSION FOR THE COVARIANCE MATRIX

When estimating the regression coefficients vector c one should theore-
tically use the best linear unbiased estimator (15). In general C is unknown.
Hence, in the following we will be interested in the properties of the
estimator (14) whose form does not depend on C.
The covariance matrix of cL in (14) is given by

E{(cL−c)(cL−c)H}=(FHF)−1 FHCF(FHF)−1. (23)

Define

DM, N=R
(F (1)M, N)

1
2 0 · · · 0

0 (F (2)M, N)
1
2 · · · 0

x x z x

0 0 · · · (F (P)M, N)
1
2

S (24)

Next, we will investigate the asymptotic behavior of the normalized
covariance of cL.

Theorem 3. Assume the disturbance field is a homogeneous random field
with an absolutely continuous spectral distribution and a positive and piecewise
continuous spectral density, f(w, n), such that the set of discontinuity points
of f(w, n) and the set of discontinuity points ofM are disjoint. Then

lim
M, NQ.

DM, NE{(cL−c)(cL−c)H} DM, N=R−10, 0 F
1
2

−12

F
1
2

−12

f(w, n) dM̄(w, n) R−10, 0

(25)

Proof. Forgenerality,weassumethedisturbancefield{Eu, v} isanon-causal
moving average field such that

Eu, v= C
a2

n=−a1

C
b2

t=−b1

an, t gu− n, v−t , (26)

where {gu, v} is white noise field with zero mean and unit variance, while
a1, a2, b1, b2 are positive integers. (Clearly the case of a nonsymmetrical
half-plane (NSHP) moving average field is obtained when a1=0). Using
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(26) we conclude that there exist two positive constants a and b such
that the disturbance spectral density has the following 2-D trigonometric
polynomial representation

f(w, n)= C
a

y=−a
C
b

v=−b
ry, ve−i2p(yw+vn).

This is since the covariances of the disturbance field are nonzero at most
for |y| [ a, |v| [ b.
To evaluate the normalized asymptotic covariance on the L.H.S. of (25),
we first evaluate D−1

M, NF
HCFD−1

M, N. Let

f1(m)=m modM (27)

f2(m)=#
m

M
$ . (28)

We thus have

{D−1
M, NF

HC}t, m= C
N−1

v=0
C
M−1

u=0

j̄ (t)u, vru−f1(m), v−f2(m)
(F (t)M, N)

1
2

(29)

and

{D−1
M, NF

HCFD−1
M, N}t, m

= C
MN−1

l=0

1 C
N−1

v=0
C
M−1

u=0

j̄ (t)u, vru−f1(l), v−f2(l)j
(m)
f1(l), f2(l)

(F (t)M, NF
(m)
M, N)

1
2

2

= C
N−1

e=0
C
M−1

g=0
C
N−1

v=0
C
M−1

u=0

j̄ (t)u, vru−f1(Me+g), v−f2(Me+g)j
(m)
f1(Me+g), f2(Me+g)

(F (t)M, NF
(m)
M, N)

1
2

= C
N−1

e=0
C
M−1

g=0
C
N−1

v=0
C
M−1

u=0

j̄ (t)u, vru−g, v− ej
(m)
g, e

(F (t)M, NF
(m)
M, N)

1
2

=C
a

p=0
C
b

q=0
rp, q C

N−1−q

e=0
C

M−1−p

g=0

j̄ (t)g+p, e+qj
(m)
g, e

(F (t)M, NF
(m)
M, N)

1
2

+ C
−1

p=−a
C
−1

q=−b
rp, q C

N−1+q

v=0
C

M−1+p

u=0

j̄ (t)u, vj
(m)
u−p, v−q

(F (t)M, NF
(m)
M, N)

1
2

+C
a

p=0
C
−1

q=−b
rp, q C

N−1+q

v=0
C

M−1−p

g=0

j̄ (t)g+p, vj
(m)
g, v−q

(F (t)M, NF
(m)
M, N)

1
2

+ C
−1

p=−a
C
b

q=0
rp, q C

N−1−q

e=0
C

M−1+p

u=0

j̄ (t)u, e+qj
(m)
u−p, e

(F (t)M, NF
(m)
M, N)

1
2

. (30)
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Using (19) and the slowly increasing property of the sequence F (r)MN we
have that when M, NQ. each of the four sum terms in (30) tends to a
finite limit of the same form.Collecting the four terms into a single summation
we have

{D−1
M, NF

HCFD−1
M, N}t, m= C

a

u=−a
C
b

v=−b
ru, vR

(m, t)
−u, −v

= C
a

u=−a
C
b

v=−b
ru, vR̄

(t, m)
u, v , (31)

where the last equality is due to (20). Hence, using Parseval’s equality we
have

lim
M, NQ.

D−1
M, NF

HCFD−1
M, N=F

1
2

−12

F
1
2

−12

f(w, n) dM̄(w, n) (32)

where M̄=(MH)T.
Rewriting (19) in matrix form for h=k=0 we obtain

R0, 0= lim
M, NQ.

D−1
M, NF

HFD−1
M, N . (33)

Finally,

lim
M, NQ.

DM, NE{(cL−c)(cL−c)H} DM, N

= lim
M, NQ.

DM, N(FHF)−1 FHCF(FHF)−1 DM, N

= lim
M, NQ.

{DM, N(FHF)−1 DM, N}{D
−1
M, NF

HCFD−1
M, N}

×{DM, N(FHF)−1 DM, N}

=R−1
0, 0 F

1
2

−12

F
1
2

−12

f(w, n) dM̄(w, n) R−1
0, 0 (34)

as R0, 0 is nonsingular. The first equality in (34) is due to (23), while the last
equality is due to the existence of the limits in (32) and (33).
From now on we shall assume that the spectral density f(w, n) is
piecewise continuous and positive. Similarly to the 1-D case, see e.g., [5, 8],
it is assumed that the discontinuities of f(w, n) do not coincide with those
of M(w, n). Let f1(w, n) and f2(w, n) be finite trigonometric polynomials
such that

f1(w, n) [ f(w, n) [ f2(w, n). (35)
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Let us denote the corresponding covariance matrices by C1, C, and C2,
respectively.
From the derivation in Appendix C, we have that for any non-zero
NM×1 arbitrary vector Z

ZHCjZ=F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
Zu, ve i2p(wu+nv) :

2

fj(w, n) dw dn, j=1, 2 (36)

ZHCZ=F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
Zu, ve i2p(wu+nv) :

2

f(w, n) dw dn. (37)

Using (35), (36) and (37) we have

C1 [ C [ C2 . (38)

Note that the R.H.S. of (23) (and hence (34) as well) is a congruence.
Since congruence preserves ordering in the sense of (38), applying this
transformation to (38) while using (34) we conclude that for any non-zero
NM×1 arbitrary vector Z,

ZHR−1
0, 0 F

1
2

−12

F
1
2

−12

f1(w, n) dM̄(w, n) R−1
0, 0Z

[ lim
M, NQ.

ZHDM, NE{(cL−c)(cL−c)H} DM, NZ

[ ZHR−1
0, 0 F

1
2

−12

F
1
2

−12

f2(w, n) dM̄(w, n) R−1
0, 0Z. (39)

Since it is assumed that M has no atoms at the discontinuity points of
f(w, n), max {f2(w, n)−f1(w, n)} can be made arbitrarily small (except in
small neighborhoods with arbitrarily small total measure M of the discon-
tinuity points of f(w, n)) and hence

lim
M, NQ.

DM, NE{(cL−c)(cL−c)H} DM, N

=R−1
0, 0 F

1
2

−12

F
1
2

−12

f(w, n) dM̄(w, n) R−1
0, 0. L (40)

Thus for two-dimensional random fields, (40) provides the asymptotic
covariance matrix of the unbiased and mean square consistent linear least
squares estimator of the regression coefficients. The disturbance is a
homogeneous random field with an absolutely continuous spectral distri-
bution and a positive and piecewise continuous spectral density.
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APPENDIX A

We now prove the identity (6). We first prove the first equality in
(6). A straightforward calculation shows that E |cM, N− c|2=E |cM, N |2

−2 Re{c̄E(cM, N)}+|c|2. Evaluating the R.H.S. of the first equality in (6) in
a similar way, this equality follows.
Evaluating E(cM, N) we have

E(cM, N)=E 3 C
M−1

u=0
C
N−1

v=0
a (M, N)u, v yu, v 4=c C

M−1

u=0
C
N−1

v=0
a (M, N)u, v ju, v . (41)

The spectral representation of the disturbance field {Eu, v} is given by

Eu, v=F
1
2

−12

F
1
2

−12

e i2p(wu+nv) dz(w, n),

where z(w, n) is a doubly orthogonal increments process. Let f(w, n)
denote the spectral density function of {Eu, v}. Then

cM, N−E(cM, N)= C
M−1

u=0
C
N−1

v=0
a (M, N)u, v Eu, v

= C
M−1

u=0
C
N−1

v=0
a (M, N)u, v F

1
2

−12

F
1
2

−12

e i2p(wu+nv) dz(w, n). (42)

Therefore

E{ | cM, N−E(cM, N) | 2}

=E 3 C
M−1

u=0
C
N−1

v=0
a (M, N)u, v F

1
2

−12

F
1
2

−12

e i2p(wu+nv) dz(w, n)

· C
M−1

uŒ=0
C
N−1

vŒ=0
a (M, N)uŒ, vŒ F

1
2

−12

F
1
2

−12

e−i2p(wŒuŒ+nŒvŒ) dz(wŒ, nŒ)4

=F
1
2

−12

F
1
2

−12

C
M−1

u=0
C
N−1

v=0
a (M, N)u, v e

i2p(wu+nv)

× C
M−1

uŒ=0
C
N−1

vŒ=0
a (M, N)uŒ, vŒ e

−i2p(wuŒ+nvŒ) f(w, n) dw dn

=F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
a (M, N)u, v e

i2p(wu+nv) :2 f(w, n) dw dn. (43)

Thus the second equality in (6) follows from (41) and (43).
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To show that cM, N defined in (13) is a mean square consistent estimate of
c, define

a (M, N)u, v =
j̄u, v

;M−1
u=0 ;N−1

v=0 |ju, v |
2 .

Using the same considerations as in (43) and Parseval’s equality we have

E(|cM, N− c|2)

=E{|cM, N−E(cM, N)|2}

=
1

(;M−1
u=0 ;N−1

v=0 |ju, v |
2)2

F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
j̄u, ve i2p(wu+nv):

2

f(w, n) dw dn

[
maxw, n f(w, n);M−1

u=0 ;N−1
v=0 |j̄u, v |

2

(;M−1
u=0 ;N−1

v=0 |ju, v |
2)2

=max
w, n
f(w, n)

1
;M−1
u=0 ;N−1

v=0 |ju, v |
2 . (44)

Thus the condition (5) is sufficient for the R.H.S. of (44) to tend to zero as
N, MQ..

APPENDIX C

Let C be anMN×NM Toeplitz-block-Toeplitz covariance matrix of the
form (2). Let Z be an arbitrary non-zero MN×1 vector, whose elements
are indexed in the following way

Z=[Z0, 0, Z1, 0, ..., ZM−1, 0, Z0, 1, ..., ZM−1, N−1]T (45)

We wish to evaluate the quadratic form ZHCZ. Thus

ZHCZ= C
M−1

u=0
C
N−1

v=0
C
M−1

p=0
C
N−1

q=0
Z̄u, vrp−u, q−vZp, q

= C
M−1

u=0
C
N−1

v=0
C
M−1

p=0
C
N−1

q=0
Z̄u, v F

1
2

−12

F
1
2

−12

e i2p[(p−u) w+(q−v) n]f(w, n) dw dn Zp, q

=F
1
2

−12

F
1
2

−12

C
M−1

u=0
C
N−1

v=0
C
M−1

p=0
C
N−1

q=0
Z̄u, ve i2p[(p−u) w+(q−v) n]Zp, qf(w, n) dw dn

=F
1
2

−12

F
1
2

−12

: C
M−1

u=0
C
N−1

v=0
Zu, ve i2p(wu+nv):

2

f(w, n) dw dn \ 0. (46)
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