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Abstract—We consider the problem of least squares estimation of the
parameters of two–dimensional (2-D) exponential signals observed in the
presence of an additive noise field, when the assumed number of exponen-
tials is incorrect. We consider both the case where the number of exponen-
tial signals is underestimated, and the case where the number of exponen-
tial signals is overestimated. In the case where the number of exponential
signals is underestimated, we prove the almost sure convergence of the least
squares estimates (LSE) to the parameters of the dominant exponentials. In
the case where the number of exponential signals is overestimated, the es-
timated parameter vector obtained by the least squares estimator contains
a subvector that converges almost surely to the correct parameters of the
exponentials.

Index Terms—Least squares estimation, model-order selection, random
fields, strong consistency, two–dimensional (2-D) exponentials, 2-D param-
eter estimation.

I. INTRODUCTION

In this correspondence, we consider the problem of estimating the
parameters of two–dimensional (2-D) exponential signals, observed in
the presence of an additive noise field. This problem is, in fact, a spe-
cial case of the more general problem of estimating the parameters of
a 2-D regular and homogeneous random field from a single observed
realization of it, Francos [5], Francos et al. [3]. This modeling and es-
timation problem has fundamental theoretical importance, as well as
various applications in texture estimation of images (see, e.g., [4] and
the references therein) and in wave propagation problems (see, e.g.,
[18] and the references therein).

The problem of estimating 2-D exponential signals has been inten-
sively investigated in the literature (see, e.g., Priestley [16], Lang and
McClellan [13], Kumaresan and Tufts [11], Hua [8], Yang and Hua
[20], Chun and Bose [1], Kay and Nekovei [9], Kundu and Gupta [12],
Rao et al. [17], Francos et al. [3], Li and Stoica [14], Li et al. [15]).
Recently, Rao et al. [17] have studied the asymptotic properties of the
maximum-likelihood estimator (MLE) of 2-D exponential signals ob-
served in noise. In this framework, the strong consistency of the least
squares estimates (LSE) of the parameters of 2-D exponentials ob-
served in the presence of complex white circular Gaussian noise, has
been proved. Kundu and Gupta [12] have extended the result of [17]
to the case where the observation noise is not necessarily Gaussian. In
both papers, as well as in most of the previous studies, it is assumed
that the number of exponentials is known. However, this assumption
does not always hold in practice.

In this correspondence, we consider the problem of least squares es-
timation of the parameters of 2-D exponential signals observed in the
presence of an additive noise field, when the assumed number of expo-
nentials is incorrect. Let P denote the number of exponential signals in
the observed field and let k denote their assumed number. In the case
where the number of exponential signals is underestimated, i.e., k < P ,
we prove the almost sure convergence of the LSE to the parameters of
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the k dominant exponentials. In the case where the number of expo-
nential signals is overestimated, i.e., k > P , we prove the almost sure
convergence of the estimates obtained by the least squares estimator to
the parameters of the P exponentials in the observed field. The addi-
tional k � P components, assumed to exist, are assigned by the least
squares estimator to the dominant components of the periodogram of
the noise field.

A solution to the problem addressed here, is an essential compo-
nent in the error analysis of the least squares (LS) algorithm for esti-
mating 2-D exponentials in noise and in analyzing the performance of
the model order selection criterion [10].

II. NOTATIONS, DEFINITIONS, AND ASSUMPTIONS

Let fy(n;m)g be a complex valued field

y(n;m) =

P

i=1

a0i e
j(! n+� m) + u(n;m) (1)

where 0 � n � S � 1; 0 � m � T � 1 and for each i; a0i is nonzero.
Due to physical considerations it is further assumed that for each i; ja0i j
is bounded.

We make the following assumptions.

Assumption 1: The field fu(n;m)g is an independent and identi-
cally distributed (i.i.d.) complex-valued zero-mean random field. Let

u(n;m) = <(u(n;m)) + j=(u(n;m))

where uR(n;m) = <(u(n;m)) and uI(n;m) = =(u(n;m)) are the
real and imaginary parts of u(n;m), respectively. Both uR(n;m) and
uI(n;m) are zero mean with finite second-order moment �

2
. The real

and imaginary parts are independent.

Assumption 2: The spatial frequencies

(!0i ; �
0
i ) 2 (0; 2�)� (0; 2�); 1 � i � P

are pairwise different. In other words, !0i 6= !0j or �0i 6= �0j , when
i 6= j.

Define the loss function due to the error of the kth-order regression
model

L(a1; . . . ; ak; !1; �1; . . . ; !k; �k)

=
1

ST

S�1

n=0

T�1

m=0

y(n;m)�

k

i=1

aie
j(n! +m� )

2

: (2)

Let f	ig be a sequence of rectangles such that

	i = f(n;m) 2 Z2 j 0 � n � Si � 1; 0 � m � Ti � 1g:

Definition 1: The sequence of subsets f	ig is said to tend to infinity
(we adopt the notation	i!1) as i!1 if limi!1min(Si; Ti)=1
and 0 < limi!1(Si=Ti) <1. To simplify notations, we shall omit in
the following the subscript i. Thus, the notation	(S; T )!1 implies
that both S and T tend to infinity as functions of i, and at roughly the
same rate.

Definition 2: Let �k be a bounded and closed subset of the 3k-di-
mensional space Ck � ((0;2�)� (0; 2�))k where for any vector

�k = (a1; . . . ; ak; !1; �1; . . . ; !k; �k) 2 �k

the coordinate ai is nonzero and absolutely bounded for every 1 �
i � k while the pairs (!i; �i) are pairwise different, so that no two
regressors coincide. We shall refer to �k as the parameter space.

From the model definition and the above assumptions it is clear that

�0k = (a01; . . . ; a
0
k; !

0
1 ; �

0
1 ; . . . ; !

0
k; �

0
k) 2 �k:
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A vector �̂k 2 �k that minimizes L is called the least square esti-
mate (LSE). In the case where k = P , the LSE is a strongly consistent
estimator of �0P (see, e.g., [12] and the references therein). In the fol-
lowing sections, we establish the strong consistency of this LSE when
the number of exponentials is underestimated or overestimated.

III. CONSISTENCY OF THE LSE FOR AN UNDERESTIMATED

MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k < P . For any � > 0, define the set �� to be a subset of
the parameter space �k such that each vector �k 2 �� is different
from the vector �0k by at least �, at least in one of its coordinates, i.e.,

�� =

k

i=1

Ai� [

k

i=1

Wi� [

k

i=1

Vi� (3)

where

Ai� = �k 2 �k : ai � a
0
i � �; � > 0 (4)

Wi� = �k 2 �k : !i � !
0
i � �; � > 0 (5)

Vi� = �k 2 �k : �i � �
0
i � �; � > 0 : (6)

To prove the main result of this section we shall need an additional
assumption and the following lemmas.

Assumption 3: For convenience, and without loss of generality, we
assume that the exponentials are indexed according to a descending
order of their amplitudes, i.e.,

a
0
1 � a

0
2 � � � � a0k > a

0
k+1 � � � � a

0
P > 0 (7)

where we assume that for a given k; ja0kj > ja0k+1j to avoid trivial
ambiguities resulting from the case where the kth dominant component
is not unique.

Lemma 1:

lim inf
	(S;T )!1

inf
� 2�

L(�k)�L(�0k) > 0 a.s. (8)

See Appendix A for the proof.

Lemma 2: Let fxn; n � 1g be a sequence of random variables.
Then

Prfxn � 0 i.o.g � Prflim infn!1xn � 0g (9)

where the abbreviation i.o. stands for infinitely often.

See Appendix B for the proof.
The next theorem establishes the strong consistency of the least

squares estimator in the case where the number of the regressors is
lower than the actual number of exponentials.

Theorem 1: Let Assumptions 1–3 be satisfied. Then, the k-regressor
parameter vector �̂k = (â1; . . . ; âk; !̂1; �̂1; . . . ; !̂k; �̂k) that mini-
mizes (2) is a strongly consistent estimate of

�
0
k = (a01; . . . ; a

0
k; !

0
1 ; �

0
1 ; . . . ; !

0
k; �

0
k)

as 	(S; T ) ! 1. That is,

�̂k ! �
0
k; a.s. as 	(S; T )!1: (10)

Proof: The proof follows an argument proposed by Wu [19,
Lemma 1]. Let �̂k = (â1; . . . ; âk; !̂1; �̂1; . . . ; !̂k; �̂k) be a parameter
vector that minimizes (2). Assume that the proposition �̂k ! �0k
a.s. as 	(S; T )!1 is not true. Then, there exists some � > 0, such
that [2, Theorem 4.2.2, p. 73]

Pr(�̂k 2 �� i.o.) > 0: (11)

This inequality together with the definition of �̂k as a vector that mini-
mizes L implies

Pr inf
� 2�

(L(�k))� L �
0
k � 0 i.o. > 0: (12)

Using Lemma 2, we obtain

Pr lim inf
	(S;T )!1

inf� 2� L (�k)�L �
0
k � 0

� Pr inf
� 2�

L(�k)�L �
0
k � 0 i.o. > 0 (13)

which contradicts (8). Hence,

�̂k ! �
0
k a.s. as 	(S; T )!1: (14)

IV. CONSISTENCY OF THE LSE FOR AN OVERESTIMATED

MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k > P . Without loss of generality, we can assume that k = P+1
(as the proof for k � P +1 follows immediately by repeating the same
arguments). Let the periodogram of the field fu(n;m)g be given by

Iu(!; �) =
1

ST

S�1

n=0

T�1

m=0

u(n;m)e�j(n!+m�)

2

: (15)

The parameter spaces �P ;�P+1 are defined as in Definition 2.
To prove the main result of this section we need an additional as-

sumption.

Assumption 4: The real and imaginary components of u(n;m) are
such that

E[uR(0; 0)
2 log juR(0; 0)j] <1

and

E[uI(0; 0)
2 log juI(0; 0)j] <1:

(For example, a white Gaussian noise field satisfies this assumption.)

Theorem 2: Let Assumptions 1, 2, and 4 be satisfied. Then, the pa-
rameter vector

�̂P+1 = (â1; . . . ; âP ; âP+1; !̂1; �̂1; . . . ; !̂P ; �̂P ; !̂P+1; �̂P+1)

2 �P+1

that minimizes (2) with k = P + 1 regressors as 	(S; T ) ! 1 is
composed of the vector

�̂P = (â1; . . . ; âP ; !̂1; �̂1; . . . ; !̂P ; �̂P )

which is a strongly consistent estimate of

�
0
P = (a01; . . . ; a

0
P ; !

0
1 ; �

0
1 ; . . . ; !

0
P ; �

0
P )
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as 	(S; T ) ! 1; of the pair of spatial frequencies (!̂P+1; �̂P+1)
that maximizes the periodogram of the observed realization of the field
fu(n;m)g, i.e.,

(!̂P+1; �̂P+1) = arg max
(!;�)2(0;2�)

Iu(!; �) (16)

and of the element âP+1 that satisfies

jâP+1j
2 =

1

ST
Iu(!̂P+1; �̂P+1): (17)

Proof: Let

�P+1 = (a1; . . . ; aP ; aP+1; !1; �1; . . . ; !P ; �P ; !P+1; �P+1)

be some vector in the parameter space �P+1. The LS function with
P + 1 regressors will be denoted LP+1 and the LS function with P

regressors will be denoted LP . We have

LP+1(�P+1)

=
1

ST

S�1

n=0

T�1

m=0

y(n;m)�

P+1

i=1

aie
j(n! +m� )

2

=
1

ST

S�1

n=0

T�1

m=0

y(n;m)�

P

i=1

aie
j(n! +m� )

2

+
1

ST

S�1

n=0

T�1

m=0

aP+1e
j(n! +m� )

2

� 2<
1

ST

S�1

n=0

T�1

m=0

y(n;m)

�

P

i=1

aie
j(n! +m� )

aP+1e
j(n! +m� )

�

= LP (�P ) + jaP+1j
2 � 2<

1

ST

S�1

n=0

T�1

m=0

u(n;m)

� aP+1e
j(n! +m� )

�

� 2<
1

ST

S�1

n=0

T�1

m=0

P

i=1

a
0
i e
j(n! +m� )

�

P

i=1

aie
j(n! +m� )

aP+1e
j(n! +m� )

�

= H1(�P+1) +H2(�P+1) +H3(�P+1) (18)

where �P = (a1; . . . ; aP ; !1; �1; . . . ; !P ; �P ) 2 �P and

H1(�P+1) = LP (a1; . . . ; aP ; !1; �1; . . . ; !P ; �P )

= LP (�P ) (19)

H2(�P+1) = jaP+1j
2 � 2<

1

ST

S�1

n=0

T�1

m=0

u(n;m)

� aP+1e
j(n! +m� )

�

(20)

H3(�P+1) = �2<
1

ST

S�1

n=0

T�1

m=0

P

i=1

a
0
i e

j(n! +m� )

�

P

i=1

aie
j(n! +m� )

aP+1e
j(n! +m� )

�

:

(21)

Let �̂P = (â1; . . . ; âP ; !̂1; �̂1; . . . ; !̂P ; �̂P ) be a vector in �P that
minimizes H1(�P+1) = LP (�P ). From [12] (or using Theorem 1 in
the previous section)

�̂P ! �
0
P a.s. as 	(S; T )!1: (22)

The function H2 is a function of aP+1; !P+1; �P+1 only. Evalu-
ating the partial derivatives of H2 with respect to these variables, it is
easy to verify that the extremum points of H2 are also the extremum
points of the periodogram of the realization of the noise field. More-
over, let ae; !e; �e denote an extremum point of H2. Then at this point

H2(a
e
; !

e
; �

e) = �
Iu(!

e; �e)

ST
: (23)

Hence, the minimal value of H2 is obtained at the coordinates
aP+1; !P+1; �P+1 where the periodogram of fu(n;m)g is maximal.
Let âP+1; !̂P+1; �̂P+1 denote the coordinates that minimize H2.
Then we have

(!̂P+1; �̂P+1) = arg min
(!;�)2(0;2�)

H2(aP+1; !P+1; �P+1)

= arg max
(!;�)2(0;2�)

Iu(!; �) (24)

and

âP+1 =
1

ST

S�1

n=0

T�1

m=0

u(n;m)e�j(n!̂ +m�̂ ) (25)

By Assumption 4 [7, Theorem 2.2], we have

sup
!;�

Iu(!; �) = O(logST ): (26)
Therefore,

H2(âP+1; !̂P+1; �̂P+1) = O
logST

ST
: (27)

Let �̂P+1 2 �P+1 be the vector composed of the elements of the
vector �̂P 2 �P and of âP+1; !̂P+1; �̂P+1, defined above, i.e.,

�̂P+1 = (â1; . . . ; âP ; âP+1; !̂1; �̂1; . . . ; !̂P ; �̂P ; !̂P+1; �̂P+1):

We need to verify that this vector minimizes LP+1(�P+1) on �P+1

as 	(S; T ) ! 1.
Recall that for ! 2 (0; 2�)

N�1

n=0

e
j!n = O(1): (28)

Hence, as N ! 1

1

logN

N�1

n=0

e
j!n = o(1) (29)

and consequently

1

N

N�1

n=0

e
j!n = o

logN

N
: (30)

Next, we evaluate H3. Consider the first term in (21). By (30) and
unless there exists some i; 1 � i � P , such that (!P+1; �P+1) =
(!0i ; �

0
i ), we have as 	(S; T ) ! 1

1

ST

S�1

n=0

T�1

m=0

P

i=1

a
0
i e
j(n! +m� )

� aP+1e
j(n! +m� )

�

= o
logST

ST
(31)

for any set of values aP+1; !P+1; �P+1 may assume.
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Fig. 1. Error variance (dashed line) in estimating the frequency of the dominant exponential when the model order is underestimated, compared with the
corresponding exact CRB (solid line).

Assume now that there exists some i; 1 � i � P , such that
(!P+1; �P+1) = (!0i ; �

0
i ). Since, by assumption, there are exactly P

exponentials, while there are no two different regressors with identical
spatial frequencies, it follows that one of the frequency pairs in the
estimated vector �P+1, say (!i; �i), will have to coincide with a noise
peak. As indexing of the components is arbitrary, by interchanging
the roles of (!P+1; �P+1) and (!i; �i), and repeating the above
argument, we conclude that this term has the same order as in (31).
Similarly, for the second term in (21): By (30) and unless there exists
some i; 1 � i � P , such that (!P+1; �P+1) = (!i; �i), we have as
	(S; T ) ! 1

1

ST

S�1

n=0

T�1

m=0

P

i=1

aie
j(n! +m� )

� aP+1e
j(n! +m� )

�

= o
logST

ST
: (32)

However, such i for which (!P+1; �P+1) = (!i; �i) cannot exist, as
this amounts to reducing the number of regressors from P +1 to P , as
two of them coincide. Hence, for any �P+1 2 �P+1 as	(S; T )!1

H3(�P+1) = o
logST

ST
: (33)

On the other hand, the strong consistency (22) of the LSE under the
correct model order assumption implies that as 	(S; T ) ! 1 the
minimal value of LP (�P ) = �2 almost surely, while from (27) we
have for the minimal value ofH2 thatH2(�P+1) = O((logST )=ST ).
Hence, the value of H3(�P+1) at any point in �p+1 is negligible even

relative to the valuesLP (�P ) andH2(�P+1) assume at their respective
minimum points. Therefore, evaluating (18) as 	(S; T )!1 we have

LP+1(�P+1)

= LP (�P ) +H2(aP+1; !P+1; �P+1) +H3(�P+1)

= LP (�P ) +H2(aP+1; !P+1; �P+1) + o
logST

ST
: (34)

Since LP (�P ) is a function of the parameter vector �P and is
independent of aP+1; !P+1; �P+1, while H2 is a function of
aP+1; !P+1; �P+1 and is independent of �P , the problem of min-
imizing LP+1(�P+1) becomes separable as 	(S; T )!1. Thus,
minimizing (34) is equivalent to separately minimizing LP (�P ) and
H2(aP+1; !P+1; �P+1) as 	(S; T )!1. Using the foregoing
conclusions, the theorem follows.

V. NUMERICAL EXAMPLES

To illustrate the results of the previous sections, we next present
some numerical examples. In the following experiments, the error vari-
ances in estimating the exponentials frequencies are compared with the
corresponding exact Cramer–Rao bound (CRB) which is computed for
the correct model order, [6].

In the first example, the data field is composed of two exponential
signals (P = 2) observed in noise, i.e.,

y(n;m) = a01e
j(! n+� m) + a02e

j(! n+� m) + u(n;m):

To illustrate the performance of the LSE when the model order is under-
estimated, the LS estimate is computed assuming the existence of only
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Fig. 2. Error variance (dashed line) in estimating the frequency of an actual exponential when the model order is overestimated, compared with the corresponding
exact CRB (solid line).

a single exponential in the observed field (k = 1). The signal-to-noise
ratio (SNR) for the first component is defined by

SNR = 10 log10
a01

2

�2
dB: (35)

The noise field fu(n;m)g is a complex-valued zero-mean white
Gaussian noise field with variance �2 (the real and imaginary parts
are independent real valued Gaussian white noise fields, each with
variance (�2=2)) which is chosen to yield the desired SNR. In
this experiment, the data field dimensions range from 10 � 10 to
40 � 40. The experiment was performed for four different SNR
values. For each data size and each SNR value, 200 Monte Carlo
experiments were performed. The frequencies of the exponential
signals are !0

1 = �01 = 2�0:13 and !0
2 = �02 = 2�0:31. The

amplitudes are chosen such that ja01j
2 = 3 and ja02j

2 = 1. Initial-
ization of the nonlinear LS minimization procedure, in search for the
unknown frequencies, is implemented by evaluating the maximum
of the periodogram of the zero-padded observation. The variance of
the estimation error of the !0

1 frequency parameter of the dominant
exponential is shown on Fig. 1 for various data sizes.

In the second example, the data field is composed of a single expo-
nential signal (P = 1) observed in noise, i.e.,

y(n;m) = a01e
j(! n+� m) + u(n;m)

with parameters identical to those of the first example. The assumed
number of exponential signals is two (k = 2). The variance of the
estimation error of the !0

1 frequency parameter of the exponential is
shown in Fig. 2 for various data sizes.

Both experiments indicate that despite the incorrect assumptions on
the model order, even for modest data dimension and relatively low
SNR values the error variance of the LSE achieves the corresponding

exact CRB—computed for the correctmodel order. Moreover, note that
for the first exponential, the foregoing theoretical results imply the al-
most sure convergence of the estimated parameters to the correct ones
both in the case where the model order is underestimated, as well as in
the case where the model order is overestimated. Indeed, it is clear that
the LSE performance illustrated in Figs. 1 and 2 is almost identical, de-
spite the different assumptions regarding the model order in each case.

Nevertheless, we note that the above examples provide only an in-
direct intuition for the results proven earlier, rather than a direct illus-
tration. It is obvious that it is impossible to illustrate almost sure con-
vergence by finite sample examples with finite precision computations.
The essence of almost sure convergence is that it tells us that as data
size tends to infinity the set of events in which incorrect estimates are
obtained is of zero probability. This implies that if one conducts an in-
finite number of experiments, at most a finite number of estimates will
deviate from the correct parameters. However, since the parameters of
the exponentials are bounded, the almost sure convergence implies con-
vergence in the mean-square sense. Hence, based on the results proven
in the previous sections, and the normality of the noise field in this
example, one can expect to observe the convergence of the estimation
error variances to the CRB, as has been demonstrated by the above ex-
amples.

VI. DISCUSSION AND CONCLUSION

We have considered the problem of least squares estimation of the
parameters of 2-D exponential signals observed in the presence of an
additive noise field, when the assumed number of exponentials is incor-
rect. In the case where the number of exponential signals is underesti-
mated, we have proved the almost sure convergence of the LSE to the
parameters of the dominant exponentials. This result can be intuitively
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explained using the basic principles of least squares estimation: Since
the least squares estimate is the set of model parameters that minimizes
the `2 norm of the error between the observations and the assumed
model, it follows that in the case where the model order is underesti-
mated the minimum error norm is achieved when the k most dominant
exponentials are correctly estimated. Similarly, in the case where the
number of exponential signals is overestimated, the estimated param-
eter vector obtained by the least squares estimator contains a 3P -di-
mensional subvector that converges almost surely to the correct param-
eters of the exponentials, while the remaining k � P components as-
sumed to exist, are assigned to the k�P most dominant spectral peaks
of the noise power to further minimize the norm of the estimation error.

APPENDIX A

Lemma 1:

lim inf
	(S;T )!1

inf
� 2�

L(�k)� L �
0
k > 0 a.s. (36)

Proof: In the following, we first show that on �� the sequence
L(�k) � L(�0k) (indexed in S; T ) is uniformly lower-bounded by a
strictly positive constant as 	(S; T ) ! 1. Since the sequence ele-
ments are uniformly lower-bounded by a strictly positive constant, the
sequence of infimums, inf� 2� (L(�k)� L(�

0
k)) is uniformly lower-

bounded by the same strictly positive constant as 	(S; T ) ! 1, and
hence,

lim inf
	(S;T )!1

inf
� 2�

(L(�k)�L(�
0
k)):

Thus, we first prove that the sequence L(�k)� L(�0k) is uniformly
lower-bounded away from zero on �� as 	(S; T )! 1
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=I1 + I2 + I3: (37)

Thus, to check the asymptotic behavior of the left-hand side of (37), we
have to evaluate lim	(S;T )!1(I1+ I2 + I3) for all vectors �k 2 ��
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Recall that for 0 < jaj < 1

lim
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uniformly on any closed interval in (0; 2�). Hence, due to Assumption
2 and (39), we have
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independently of �k .
Also,
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Since the pairs (!i; �i) are pairwise different, then on any closed in-
terval in (0; 2�) the sequence of partial sums
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converges uniformly to zero as 	(S; T ) ! 1.
Hence,

M2 =

k

i=1

jaij
2 (42)

uniformly on �� as 	(S; T ) ! 1.
Leaving M3 unchanged, we obtain
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uniformly on �� .
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Using similar considerations to those employed in the evaluation of
(40) we obtain
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By a straightforward extension of [12, Lemma 1] we have
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Hence, I3 ! 0 almost surely as 	(S; T ) ! 1 uniformly on �� .
Using (43)–(45) we conclude that almost surely
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uniformly on �� .
To complete the evaluation of the uniform lower bound, we consider

all the vectors �k 2 �� . Let us initially consider the subset Aq� � ��

for some q; 1 � q � k. Thus, the coordinate aq of each vector in
this subset is different from the corresponding coordinate a0q by at least
� > 0. Consider first the case where all the other elements of the vector
�k 2 Aq� are identical to the corresponding elements of �0k . Since by
this assumption !l = !0l ; �l = �0l for 1 � l � k, and al = a0l , for
1 � l � k; l 6= q, on this set we have
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uniformly in aq , where the second equality is due to Assumption 2 and
by following the same arguments employed to obtain (42).

Assume next that �k 2 Aq� (i.e., the coordinate aq is different from
the corresponding coordinate a0q by at least �) and that in addition,

there exists an element at of �k , such that 1 � t � k; t 6= q and
jat � a0t j � �; � > 0 while all the other elements of the vector �k
are identical to the corresponding elements of �0k . Following a similar
derivation to the one in (47) we conclude that

lim
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uniformly in aq and at.
Finally, consider the case where �k 2 Aq� while there exists an

element !l of �k, such that j!l � !0l j � �; � > 0 and all the other
elements of the vector �k are identical to the corresponding elements
of �0k . Following a similar derivation to the one in (47), we conclude
that
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uniformly in aq and !l.
From the above analysis it is clear that almost surely

lim	(S;T )!1(L(�k)� L(�
0
k)) is lower-bounded by �2 uniformly

on Aq� .
Following similar reasoning, the next subset we consider is

Wq� [ Vq� . We first consider a subset of this set

� = �k 2Wq� [ Vq� : 9p; k + 1 � p � P; (!q; �q) = !
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This subset includes vectors in �k , such that their coordinate pair
(!q; �q) is different from the corresponding pair of �0k and equal
to some pair (!0p; �

0
p) where p � k + 1. As above, the minimum

is obtained when all the other elements of �k are identical to the
corresponding elements of �0k . Hence, uniformly on �, we have
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where the last inequality is due to Assumption 3.
On the complementary set
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we have
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Let �q = min(�2; ��; �� ). Collecting (47), (51), and (53) together
we conclude that almost surely the sequence L(�k)�L(�0k) is lower-
bounded by �q > 0 uniformly on Aq� [Wq� [Vq� as 	(S; T )!1.

By repeating the same arguments for every q; 1 � q � k, and by
letting � = min(�1; . . . ; �k), we conclude that almost surely . the se-
quence L(�k) � L(�0k) (indexed in S; T ) is lower-bounded by � > 0
uniformly on �� as 	(S; T ) ! 1.
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Hence, it follows that sequence inf� 2� (L(�k)�L(�
0
k)) (indexed

in S; T ) is also asymptotically lower-bounded by � > 0, i.e.,

inf
� 2�

L(�k)�L �
0
k � � a.s. (54)

as 	(S; T ) ! 1.
Hence, by the definition of lim inf
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APPENDIX B

Lemma 2: Let fxn; n � 1g be a sequence of random variables.
Then

Prfxn � 0 i:o:g � Prflim inf
n!1

xn � 0g: (56)

Proof: Let (
;�; p) be some probability space. Let fxn(!);
n � 1g be a sequence of random variables. Let fAn 2 �; n � 1g be
a sequence of subsets of 
, such that An = f! 2 
 : xn(!)� 0g.
Define

A
m
n =

1

n=m

f! : xn � 0g: (57)
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Hence,
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Consider the right-hand side of (59), and let ym(!) = infn�m xn.
Since for all ! 2 1

m=1f! : infn�mxn � 0g; ym(!) � 0 for all
m, then by definition supm ym(!) � 0 as well. On the other hand,
if supm ym(!) � 0, then for all m; ym(!) � 0. Hence, we have the
following set equality:
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Rewriting (59) we have
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where the equality on the right-hand side of (61) follows from the def-
inition of lim infn!1( � ) of a sequence xn. Also, by definition,
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Hence (see, e.g., [2, p. 72])
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Due to the monotonicity of the probability measure, the lemma
follows.
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