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Abstract We consider the problem of estimating the geo-
metric deformation of an object, with respect to some refer-
ence observation on it. Existing solutions, set in the standard
coordinate system imposed by the measurement system,
lead to high-dimensional, non-convex optimization prob-
lems. We propose a novel framework that employs a set of
non-linear functionals to replace this originally high dimen-
sional problem by an equivalent problem that is linear in
the unknown transformation parameters. The proposed so-
lution includes the case where the deformation relating the
observed signature of the object and the reference template
is composed both of the geometric deformation due to the
affine transformation of the coordinate system and a con-
stant amplitude gain. The proposed solution is unique and
exact and is applicable to any affine transformation regard-
less of its magnitude.

Keywords Affine transformations · Registration ·
Parameter estimation · Deformable templates · Linear least
squares

1 Introduction

Registration is the procedure of bringing two or more obser-
vations on the same object (usually, in the form of images)
to a common coordinate system. These images are usually
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referred to as the template (or reference) image, and the ob-
served image. The difficulty of the registration problem re-
sults from its most basic characteristic: although the tem-
plate (or a set of templates) is known, the variability asso-
ciated with the object, such as its location and pose in the
observed scene, the illumination conditions, or its deforma-
tion are unknown a-priori, and only the family of transfor-
mations causing this variability in the observation can be
defined, based for example on the physical characteristics
of the problem. This huge variability in the object signature
(for any single object) due to the tremendous set of possible
deformations that may relate the template and the observed
signature, makes any detection and recognition problem ill-
defined unless this variability is taken into account.

There is a vast literature on registration in general and on
image registration in particular (see, e.g., [2–4] for compre-
hensive surveys). Thus in the following we shall not attempt
to review the entire range of available techniques, but rather
to classify them such that the method proposed in this pa-
per is placed in the proper framework, and its uniqueness is
made clear.

In the following we shall attempt to classify the exist-
ing methods based on two different categorization criteria,
that together enable characterization of the available meth-
ods. These classifications are based on the type of features
used (salient local features vs. global reference to the ob-
ject as a whole); and the approach of estimating the defor-
mation as an explicit or implicit problem. We begin with
a brief definition of the problem to be addressed: Assume
we are observing functions defined on compact supports.
Given a pair of functions, (h(x), g(x)), x ∈ Rn (n = 2 for
planar objects), representing two observations on the same
object, where the two are related by a geometric transforma-
tion such that h(x) = g(ϕ(x)), ϕ ∈ G, and G is the affine
group of transformations, the goal is to find ϕ.
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Local Features vs. Global Reference Intuitively, it seems
that the simplest way to relate any two objects, where one
is assumed to be a deformed version of the other, is by as-
sociating ordered sequences of some salient features, that
can be located on both objects (see, e.g., [3, 15]). These are
usually selected to be line features or point features (thus
much of the information contained in the intensity structure
of the images is being ignored). In this methodology, the
shape of an object is described by the configuration of the
landmarks, projected onto the image plane. The key con-
cept, common to all such methods is the requirement that the
features are labeled such that we know the correspondence
between feature points across different images. Therefore,
to make this approach feasible, the correspondence problem
must be solved first. This approach may be feasible when
the features are easily detectable, the deformation is close
enough to the identity, the number of features is relatively
small (for combinatoric reasons, yet big enough to allow for
a meaningful estimation), and there is a strong contextual
evidence to guide the solution to the correspondence prob-
lem. Yet, in many problems the feature points are not easily
identifiable, and their number may be large—in which case
the correspondence problem rapidly becomes very difficult
to solve. Recently, methods based on identifying local in-
variants such as SIFT [18], MSER [19] (see also [20] and
the references therein) have made the solution to this crucial
problem more feasible and tractable.

A family of methods that attempt to overcome the need
for a perfect solution to the correspondence problem, is the
moment-based invariants approach. In these methods low
order moments of the set of labeled points, or of closed
boundary regions, in both images are computed by integrat-
ing over all combinatorially possible polygons created by
the set of labeled points in order to overcome the need for
an exact solution to the correspondence problem, e.g., [11].
In a second stage the affine transformation parameters can
be computed by solving a linear system of equations based
on the estimated moments. A related approach is based on
computing the dominant eigenvalues and the corresponding
eigenvectors of the labeled points scattering matrix for each
of the objects to be registered, from which the deformation
parameters are evaluated in a second step.

The alternative, global approach, calls for a direct utiliza-
tion of the observed intensity functions in both the reference
and the observed image, without identifying any features in
any of the images. Among the methods in this class of reg-
istration algorithms are those based on the maximization of
the mutual information, e.g., [14]. These methods obtain the
transformation parameters by employing iterative optimiza-
tion procedures, and hence are applicable only when the de-
formation is small, which lowers the risk of obtaining a local
minimum as the solution.

Explicit (or Global) vs. Implicit (or Local, Optimization-
based) Solutions An implicit method is one that finds
some map ψ such that, ideally, ψ(h,g,ϕ) = 0. All registra-
tion methods based on minimizing some metric, are there-
fore implicit. On the other hand, in an explicit solution one
obtains a map H (or an operator) such that the unknown de-
formation can be expressed by ϕ = H(h,g).

The common principle in the implementation of all the
implicit methods is the definition of a cost function pe-
nalizing both the ‘distance’ between a deformed version
of the template and the observation, and a measure of the
‘size’ of the deformation. The aim is then to find the de-
formation that minimizes the cost. More specifically, let
d(h,g) be some metric on the function space that contains
h and g. A solution to the deformation estimation problem
is given by ϕ̂ = arg minϕ∈G(d(h(x), g(ϕ(x))) + D(I,ϕ)),
where D(I,ϕ) is a regularization term specifying some a-
priori knowledge about the distance of ϕ from the identity
[1, 16]. In principle, in order to find the global minimum
of d(h(x), g(ϕ(x))) + D(I,ϕ) one has to check each and
every element of G, which is usually impossible. Neverthe-
less, application of some optimization procedure allows for
finding a local minimum of this type of cost function, in
the affine case [17], as well as for more complex deforma-
tions [4]. Unfortunately, there is no systematic way to obtain
the global minimum. Thus, in general, implicit methods fail
to find the global solution and hence can be considered to be
local methods, as the solution holds only in a small neigh-
borhood of the correct ϕ.

Obviously, an explicit solution is preferable due to many
reasons. These include, computational complexity as opti-
mization is avoided, and more importantly uniqueness of the
solution. Moreover the explicit solution is always global in
nature, since no local minimization operations are involved.
Many such global methods exist (see, e.g., [17] and the ref-
erences therein) however their scope is restricted to a rela-
tively small family of transformations. Thus, there are ex-
plicit methods in the cases of translation only, rotation only,
or scale (moderate factor) only, but they turn into combined
explicit/implicit methods for the combined transformation
of rotation, scaling and translation, [6, 7]. Translation es-
timation is conveniently carried out in the Fourier domain
based on the phase shift of the Fourier transforms of the two
images to be registered, by employing the normalized phase-
correlation algorithm, e.g., [5, 8]. The combined method for
estimating translation, scale and rotation, first transforms the
pair of object images into the Fourier plane. In this domain
the relation between the absolute values of the Fourier trans-
forms is a function of the scale and rotation angle, but is in-
dependent of translations—as translations are related only to
the phase. Estimation of rotation and scale is implemented
iteratively in the polar Fourier domain, [6, 7]. Nevertheless,
to the best of our knowledge no explicit method for estimat-
ing an arbitrary affine deformation was known prior to the
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presentation of preliminary versions of the method proposed
in this paper [10, 24].

For the case where the deformation is affine, while as-
suming the deformation is small and the observations differ-
entiable, a widely used approach is to linearize the problem
using a first order Taylor series expansion. See, e.g.. [21].
The major advantage of this approach is that in case the de-
formation is indeed small, a solution to the problem of es-
timating the affine transformation parameters is formulated
as a solution to a system of linear equations. We shall fur-
ther elaborate on this method in Sect. 5 where we compare
it to the method proposed in this paper. The method pro-
posed here also provides a solution to the problem of finding
the affine transformation parameters by solving a system of
linear equations. However, this new method, that originates
from entirely different considerations, is exact and not ap-
proximate, while being applicable to deformations of any
size.

In the method described in this paper our aim is to find
an explicit global operator H(h,g) such that for every pair
(h, g) for which h(x) = g(ϕ(x)), ϕ ∈ G, where G is the
affine group, we have ϕ = H(h,g). The center of the so-
lution proposed in this paper is a method to replace the
high dimensional and computationally intensive problem of
evaluating the orbit created by applying to a given template
the whole set of transformations in the affine group, by an
equivalent problem which is linear in the unknown parame-
ters of the affine transformation. In this setting, the problem
of finding the parametric model of the affine deformation
is mapped, by a set on non-linear functionals, into a set of
linear equations which is then solved for the affine transfor-
mation parameters.

The basic solution is further extended to include the case
where the deformation relating the observed signature of the
object and the template, is composed both of a geometric de-
formation due to the affine transformation of the coordinate
system and a constant amplitude gain. The proposed solu-
tion is unique and exact, as it provides a closed form expres-
sion for evaluating each of the affine transformation parame-
ters using only measurements of the intensity information of
the observed and reference signals (or images). The solution
is applicable to any affine transformation regardless of its
magnitude. Moreover, in forthcoming papers we show that
the methodology presented here can be extended to handle
groups of deformations that are much larger and richer than
the affine group. These include elastic deformations mod-
eled by the group of homeomorphisms (see, [9, 24, 26]),
and time varying deformations, [25].

The structure of the paper is as follows: We begin by
rigorously defining the scope of the problem of finding the
affine transformation parameters, given an observation h and
a template g of a planar object, where the two are known to
be related through an affine transformation. To simplify the

notations we assume in Sect. 3 that the translation is null and
consider the problem of finding A ∈ GLn(R), given the ob-
servations on h and g. Then, in Sect. 4 we solve using a least
squares approach the problem of estimating the parameters
of the affine transformation model, for the case where the
model is only an approximation of the true physical distor-
tion. In Sect. 5 the algorithm for finding the affine transfor-
mation parameters is extended so that A, and the translation
vector are jointly estimated. In Sect. 6 we further extend the
framework of the model and consider the case where the
observation and template are related by a geometric affine
transformation as well as an amplitude deformation in the
form of an unknown gain that have to be estimated jointly
with the parameters of the affine transformation. In Sect. 8
we present some numerical examples to illustrate the op-
eration and robust performance of the proposed parameter
estimation algorithm to image based object registration, and
for a broad range of deformations. Finally, we provide our
conclusions in Sect. 9.

2 Estimation of Affine Transformations: Problem
Definition

In this section we shall briefly set the mathematical frame-
work we adopt in order to formalize the analysis of the de-
formation estimation problem. This framework enables ac-
curate representation and analysis of our problem, leading
to rigorous criteria on the existence and uniqueness of the
solution, and under some mild restrictions to be explained
below to the derivation of an explicit solution.

We note that due to the inherent physical properties of the
problem, it is natural to model and solve it in the continuous
domain. Inherently, the mapping ϕ of Rn into itself is of a
continuous nature, as is the physical phenomenon of geo-
metric deformation of real-life objects it represents. Thus,
if we impose a discrete model (e.g., x ∈ Zn), we find that,
in general, the natural ϕ to consider is incompatible (as for
“almost all” x ∈ Zn, ϕ(x) /∈ Zn). Thus, the problem and its
solution are formulated in the continuous domain, while the
sampling and quantization effects that accompany the digital
implementation of the method, are handled as noise contri-
butions.

2.1 Group Theory Setting

Let M denote the space of compact support, bounded, and
Lebesgue measurable (or more simply, integrable) functions
from Rn to R, which in our case is the set of objects (real
valued images, where n = 2) on which we observe. Let x be
some vector in Rn.

Let G be a group representing the set of deformations the
objects may undergo—the affine group in the case studied in
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this paper. G is said to act as a transformation group on M

if there is a mapping G × M → M , denoted by (φ,m) �→
m ◦ φ = m(φ(x)) such that (m ◦ φ1) ◦ φ2 = m ◦ (φ1 ◦ φ2)

for every φ1, φ2 ∈ G and m ∈ M ; and if m ◦ e = m for all
m ∈ M , where e is the identity element of G.

For a given m ∈ M , the set {m ◦ φ : φ ∈ G} is called the
orbit of m. It is the entire set of possible observations on the
object—the result of applying to it any of the deformations
in the group.

The stabilizer of the function m ∈ M with respect to
the group G is the set of group elements φ ∈ G such that
m ◦ φ = m, i.e., the set of group elements that map m to
itself.

Thus the group G naturally defines an equivalence rela-
tion on M in terms of the orbits of M induced by the action
of G: Any two functions h and g are equivalent if they are
on the same orbit, i.e., if there exists some φ ∈ G such that
g ◦ φ = h.

Let MAff ⊆ M be the subset of functions in M with no
affine symmetry, i.e., the set of functions in M whose stabi-
lizer is trivial and includes only e, the identity element of G.
Thus, MAff is the subset of functions in M where unique-
ness of the solution to the defined problem is guaranteed in
the sense that if h,g ∈ MAff such that they are on the same
orbit, then there exists a single φ such that g ◦ φ = h.

In contrast, examples of functions with affine symmetry
include any constant function defined on all of Rn; any pe-
riodic function defined on all of Rn; and in the two dimen-
sional case, functions with radial symmetry, such as a circle
(as SO2(R) ⊂ GL2(R)). Note however that functions with
compact support are not translation nor scale invariant.

2.2 Problem Statement

To simplify notations, we first assume that translation is null
and consider the most elementary problem: Let GLn(R) de-
note the group of real valued invertible n × n linear trans-
formations, and let A be some matrix in GLn(R). Then,
given two bounded, Lebesgue measurable functions h, g

with compact supports, and with no affine symmetry, such
that

h : Rn → R

g : Rn → R

where

h(x) = g(Ax), A ∈ GLn(R), x ∈ Rn (1)

the problem is to find the matrix A. In the special case where
h and g are images, we have n = 2, and A is a real valued
invertible 2 × 2 matrix.

The direct approach for solving the problem of finding
the parameters of the unknown transformation A ∈ GLn(R)

is to apply the set of all possible transformations (i.e., every
element of GLn(R)), to the given template g, thus evaluat-
ing the entire orbit of g. Since h and g are affine related,
one of the points on the orbit represents the action of the
desired group element A. Nevertheless, since A is an n × n

matrix it is clear that implementation of such a search on
the orbit requires a search over an n2-dimensional manifold
embedded in an infinite dimensional function space, which
is infeasible.

In this paper we show that the problem of finding the pa-
rameters of the unknown affine transformation, whose di-
rect solution requires a highly complex search in a function
space, can be formulated as an explicit parameter estimation
problem. Moreover, it is shown that the original problem can
be formulated in terms of an equivalent problem which is
expressed in the form of a linear system of equations in the
unknown parameters of the affine transformation. A solu-
tion of this linear system of equations provides the unknown
transformation parameters. To increase noise immunity, it
employs integral operators, rather than differential ones.

3 An Algorithmic Solution

In this section we specify the conditions, and provide a
constructive proof showing that given an observation on
h(x) ∈ MAff and an observation on g(x) ∈ MAff where
h(x) = g(Ax), A can be uniquely determined.

Let x,y ∈ Rn, i.e.,

x = [x1, x2, . . . , xn]T
y = [y1, y2, . . . , yn]T

such that

y = Ax, x = A−1y (2)

Since A ∈ GLn(R), also A−1 ∈ GLn(R). It is therefore pos-
sible to solve for A−1 and the solution for A is guaranteed to
be in GLn(R). Moreover, as shown below, in the proposed
procedure the transformation determinant is evaluated first,
and by a different procedure than the one employed to esti-
mate the elements of A−1. Hence, a non-zero Jacobian guar-
antees the existence of an inverse to the transformation ma-
trix.

Let f ∈ MAff and let
∫
Rn f denote the Lebesgue integral

of f with respect to the Lebesgue measure on Rn. Note that
in the following derivation it is assumed that the functions
are bounded and have compact support, as they are measur-
able (and hence integrable) but not necessarily continuous.
It is further assumed that A ∈ GLn(R) has a positive deter-
minant.

Let us define an auxiliary function space, W , such that
every function w : R → R in W is Lebesgue measurable,
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and vanishes at zero. Next, we define the mapping from the
space of compact support, bounded, measurable functions to
itself induced by the functions in W . More specifically, we
define a mapping from MAff to itself, such that a function
g ∈ MAff is mapped by w ∈ W to some function w(g(x))

∈ MAff . This operator is, in general, non linear.
The first step in the solution is to find the determinant of

the matrix A. Let w : R → R be some Lebesgue measurable
function, such that w(0) = 0, i.e., w ∈ W . Then for every
such function we have by interchanging the variables y =
Ax that
∫

Rn

w(h(x)) =
∫

Rn

w(g(Ax)) =
∣
∣
∣A−1

∣
∣
∣

∫

Rn

w(g(y)) (3)

Hence,

∣
∣
∣A−1

∣
∣
∣ =

∫
Rn w(h(x))

∫
Rn w(g(y))

(4)

and |A−1| = |A|−1. Thus, by an arbitrary choice of the
function w the Jacobian |A−1| is evaluated, as long as∫
Rn w(g(y)) �= 0. For example, for any non-zero, measur-

able g, whose support is not of measure zero, the choice
w(x) = x2 satisfies the requirement.

In the second stage we obtain A−1 itself: For every
Lebesgue measurable function w : R → R, such that
w(0) = 0, we have by interchanging the variables that
∫

Rn

xw(h(x)) =
∫

Rn

xw(g(Ax))

=
∣
∣
∣A−1

∣
∣
∣

∫

Rn

(A−1y)w(g(y))

=
∣
∣
∣A−1

∣
∣
∣A−1

∫

Rn

yw(g(y)) (5)

Repeating this procedure by applying a family of Lebesgue
measurable, left-hand compositions {w�}p�=1 ∈ W , to the
known relation h(x) = g(Ax), and rewriting it in a matrix
form by ordering the columns on the right (left) of (5) next
to each other, yields

|A|
[∫

Rn

xw1(h(x)) · · ·
∫

Rn

xwp(h(x))

]

= A−1
[∫

Rn

yw1(g(y)) · · ·
∫

Rn

ywp(g(y))

]

(6)

Thus let

Gp =
[∫

Rn

yw1(g(y)) · · ·
∫

Rn

ywp(g(y))

]

(7)

and let

Hp =
[∫

Rn

xw1(h(x)) · · ·
∫

Rn

xwp(h(x))

]

(8)

Rewriting (6) we have

|A|Hp = A−1Gp (9)

We have just proved the following theorem:

Theorem 1 Let A ∈ GLn(R). Assume h,g ∈ MAff such
that h(x) = g(Ax). Then, given measurements of h and g,
A can be uniquely determined if there exists a function
w ∈ W such that

∫
Rn w(g(y)) �= 0 and a set of functions

{w�}n�=1 ∈ W , such that the matrix Gn is full rank. Then,
A−1 = |A|HnG−1

n .

Remark 1 Note that the denominator of (4), as well as the el-
ements of the matrix Gn depend only on the template and its
coordinate system and thus have to be evaluated only once.
In fact the denominator of (4) together with the matrix Gn

represent all the information in the template, required for
finding the affine transformation parameters. Thus the de-
nominator of (4) together with Gn form a “sufficient repre-
sentation” of the template (similarly to the notion of suffi-
cient statistics), so that the template itself is not needed for
solving the estimation problem once Gn and the denomina-
tor of (4) have been evaluated.

Remark 2 It should be noted that although we use the term
“estimation” throughout this paper, the solution in Theo-
rem 1 for the affine transformation parameters is exact and
is not an estimate in the usual sense of the word, but rather
a procedure for solving for the transformation.

Remark 3 Inspecting equations (4) and (5) (or more gen-
erally (9)), we see that application of each of the non lin-
ear functionals to the known relation h(x) = g(Ax) amounts
to obtaining a linear constraint on the linear transformation
A between the centers of mass of the functions w�(h(x))

and w�(g(y)) obtained by an identical nonlinear operation
on the amplitudes of h and g. Hence, it can be concluded
that the proposed solution is explicit and global solution that
employs stable “features” (centers of mass) rigorously ex-
tracted such that the correspondence between them is ex-
plicitly known, rather than (in general) unstable features ex-
tracted based on local properties where the difficult corre-
spondence problem has to be solved in a later stage.

Remark 4 The above basic procedure is not directly applica-
ble to binary images. This is because in this case all the
w�’s are equivalent and produce linearly dependent columns
in (7). Thus, the result is a rank-1 system, which cannot be
solved for the deformation parameters.

Remark 5 Note that the solution for A employs only zero
(the Jacobian) and first order constraints (obtained by mul-
tiplying w�(h(x)) by x) and avoids the use of higher or-
der moments. However, imposing such a restriction (which
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is clearly convenient due to the simplicity of the resulting
equations) may result in cases where a system of the type (9)
does not exist, as shown for example, in the previous remark.
It is then obvious that higher order moments are needed to
obtain a system similar to (9) (yet nonlinear) with enough
equations to solve for all the unknowns (for example a sys-
tem of polynomial equations).

Remark 6 The application of a set {w�}n�=1 to g(y) yielding
Gn is in fact a mapping from the space of compact support,
bounded, and measurable functions to the space of n×n ma-
trices. In Theorem 2, we will show that the subset of func-
tions g ∈ MAff , for which there exists a set {w�}n�=1 such
that Gn is full-rank, is dense in MAff in the supremum norm.
Hence, for every g, or for an infinitesimal modification of it,
the matrix Gn is invertible.

In order to simplify the proof and to avoid a lengthy tech-
nical derivation, we restrict our attention to the (practical)
case where g(y) is piecewise continuous. Thus, the range of
g(y) in each of its continuity subsets, is an interval in R.
Referring to Remarks 4 and 5 above, we note that in the
special case where the range of g(y) contains less than n

distinct values, g(y) can be replaced by a modified version
g1(y) = g(y)+q(y), such that q(y) is continuous and ‖q‖∞
is arbitrarily small, as detailed below.

Lemma 1 Let S be some subset of Rn that contains an
open set, and let q(y) : S → R. Then

∫
Rn yq(y) is a vector

in Rn. Moreover, let ε be some arbitrarily small real num-
ber. Then, for any arbitrarily small ball of functions q such
that ‖q‖∞ < ε, the range of the mapping

∫
Rn yq(y) contains

an open ball in Rn.

Proof The orthogonality of the Cartesian coordinate system,
implies the linear independence of its axes, as functions.
Hence the mapping from q to

∫
Rn yq(y) ∈ Rn is a nonsin-

gular linear projection to Rn. Hence the image of an open
ball of functions q is an open ball of vectors in Rn. �

Next, we consider the range of g: Let {Rk} be a partition
into disjoint sets of the range of g, such that no discontinuity
point of g has its image in any interval Rk (i.e., on the pre-
image of Rk , g is continuous). Let Rk = (ak, bk), such that
bk −ak > 2ε. Thus each interval Rk contains an open subset.

Lemma 2 Let g ∈ MAff . Then there exists a set of mea-
surable functions defined on the range of g, {wk}nk=1 ∈ W

with disjoint supports such that for every k the pre-image of
wk(g(y)) contains an open set.

Proof Let wk(x) = x1Rk
, where 1Rk

denotes the indicator
function of the interval Rk . Since for every k, Rk contains

an open set, and since on the pre-image of Rk under g, the
function g is continuous, we conclude that g−1(Rk) contains
an open set. �

Theorem 2 Let g ∈ MAff . Then for every ε > 0, there exist
some function g1 ∈ MAff such that ‖g −g1‖∞ < ε, and a set
{w�}n�=1 such that

G1
n =

[∫

Rn

yw1(g
1(y)) · · ·

∫

Rn

ywn(g
1(y))

]

(10)

is full rank.

Proof If Gn in (7) is full-rank the result is obvious. Other-
wise, choose some n arbitrary intervals from the partition
{Rk}, and re-enumerate them such that {Rk}nk=1. Let ε be
some arbitrarily small real number, and define Rε

k = (ak +
ε, bk − ε). Due to the original definition of the partition, we
have that {Rk}nk=1 are disjoint and hence their pre-images
with respect to g, i.e., {g−1(Rk)}nk=1 are disjoint as well.
Next define q(y) = ∑n

k=1 qk(y)1g−1(Rε
k ), where for every k,

qk(y) is continuous, ‖qk‖∞ < ε and qk(y) is non-zero only
on the support defined by g−1(Rε

k). Let g1 = g + q , and let
wk(x) = x1Rk

. Hence for every column of G1
n we have

∫

Rn

ywk(g
1(y)) =

∫

Rn

ywk(g(y)) +
∫

Rn

yqk(y) (11)

as by the definitions of wk and q , we have that wk(g
1(y)) =

wk(g(y)) + qk(y). Next, define the set of functions

BRε
k
= {qk | ‖qk‖∞ < ε & supp(qk) = g−1(Rε

k)}
Since BRε

k
is an open ball, by Lemmas 2 and 1, its cor-

responding map of
∫
Rn ywk(g

1(y)) contains an open ball
in Rn. Hence, each of the columns of G can be modified
within an open ball, by an additive term, independently of
the modifications of the other columns. This implies that
the matrix G can be modified within an arbitrarily small
open ball in Rn2

. We therefore conclude that arbitrary small
modifications of g (by adding q defined above) result in
an arbitrarily small ball around G. As GLn(R) is dense in
Rn2

this arbitrarily small ball around G contains an element
in GLn(R). This element is G1 and the corresponding func-
tion is the desired g1. �

4 Estimation in the Presence of Model Mismatch

In general, it may happen that there exists a mismatch be-
tween the assumed model and the physical one, for exam-
ple in the presence of noise (of different types: sampling,
quantization, measurement), partial occlusions, or when the
transformation is not affine but close to it in some sense so
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that it is desired to best approximate the deformation by an
affine transformation. Thus, following the above solution,
additional constraints can be added by considering addi-
tional compositions {w�}p�=1 ∈ W with p ≥ n. Hence, (3)
is replaced by
∫

Rn

w�(h(x)) ≈
∫

Rn

w�(g(Ax)) =
∣
∣
∣A−1

∣
∣
∣

∫

Rn

w�(g(y)) (12)

Thus, (12) produces an overdetermined system

⎡

⎢
⎣

∫
Rn w1(h(x))

...∫
Rn wp(h(x))

⎤

⎥
⎦ ≈

∣
∣
∣A−1

∣
∣
∣

⎡

⎢
⎣

∫
Rn w1(g(y))

...∫
Rn wp(g(y))

⎤

⎥
⎦ (13)

which by a least squares solution provides an estimate
for |A|. Similarly, (9) becomes now an overdetermined sys-
tem as p, the number of columns in Gp , is greater than n,
the number of rows. Rewriting (9) in the conventional form
where p is the number of rows yields

GT
p (A−1)T ≈ |A|HT

p (14)

and the solution for A−1 becomes a linear least squares so-
lution

Â−1 = |A|HpGT
p [GpGT

p ]−1 (15)

In [26] where we consider the case of a noisy observation h,
we elaborate on the model mismatch problem in great detail.

Remark 7 As indicated above, the subset of functions g ∈
MAff , for which there exists a set {w�}n�=1 such that Gn is
full-rank, is dense. Hence, augmenting the matrix Gn with
additional columns by employing p > n constraints yields
on the L.H.S. of (14) a matrix which is rank-n. Thus, for
every g ∈ MAff , or for an infinitesimal modification of it,
there exists a least squares solution for A−1.

Remark 8 When model mismatch is considered the ques-
tion of how to optimally choose the set {w�} becomes criti-
cal. While in the ideal case discussed in Sect. 3 any arbitrary
choice of the set {w�} is equally optimal—as long as the
resulting matrix Gn is full rank—the solution to the prob-
lem of how to optimally select the set {w�} in the presence
of model mismatch is entirely different. In the latter case,
effects and models of error sources such as sampling, quan-
tization, noise, and illumination variations, must be incor-
porated into the process of selecting the set {w�}. The rig-
orous analyzes of these issues, and their implications on the
optimal choice of the set {w�} are beyond the scope of the
present paper. In [26] (see also [27–29]), these analyzes have
been carried out and expressions for the first- and second-
order moments of the errors in (13), (14) as functions of the

different error models have been derived. This analysis en-
ables the replacement of the above linear least squares solu-
tion by a weighted linear least squares, which eliminates the
statistical dependencies that result from an arbitrary choice
of the set {w�}. This estimator can be equivalently expressed
in terms of an optimal set {w�}. In the following we briefly
elaborate on the principles that lead to optimal choice of the
set of non-linear operators:

The derivation is based on the understanding that since
our goal is to estimate the geometric transformation, the ap-
propriate noise model for the problem is a model that ex-
plicitly relates the presence of noise and the measures of the
geometric entities in the observed image. In our case these
are the zero- and first-order moments of the observation, af-
ter the nonlinear operator w� was applied to the observa-
tion, namely

∫
Rn w�(h(x)) and

∫
Rn xw�(h(x)). In the above

mentioned analysis we analytically evaluate the first- and
second-order moments of these quantities for each of the dif-
ferent error sources as well as for the combined error model.
Having obtained closed form expressions for the first- and
second-order moments of

∫
Rn w�(h(x)) and

∫
Rn xw�(h(x)),

they can be substituted into the classic equations of the
weighted least-squares estimator to yield the optimal linear
estimator of the deformation parameters. This estimator is
therefore equivalent to optimally calculating the {w�}’s, us-
ing some arbitrary initial choice of the {w�}’s that is only
required to provide a full-rank Gp , when applied to the tem-
plate.

5 Finding the Affine Transformation Parameters
in the Presence of Translation

In this section we extend the solution presented in Sect. 3 by
considering the more general problem where the observed
object is subject to an affine transformation which includes
an unknown translation, i.e., the observation model is given
by

h(x) = g(Ax + c) (16)

In this case the goal is to find the parameters of the affine
transformation including the translation. The transformation
model is thus given by

y = Ax + c, x = A−1y + b (17)

where x, y, A, A−1 are defined as in Sect. 3, while c and b =
−A−1c are n-dimensional vectors of unknown constants,
each representing the translation along a different axis, in
the coordinate transformation model and its inverse, respec-
tively. More specifically, let ỹ = [1, y1, . . . , yn]T . Hence, us-
ing (17)

x = Tỹ (18)

where T = [b|A−1].
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The Jacobian of the transformation (18) is the same as in
the case where there is no translation (analyzed in Sect. 3)
and hence it is found using (4). The evaluation of T is
performed in a similar way to the procedure in Sect. 3:
Applying some composition w ∈ W to the known relation
h(x) = g(Ax + c) we obtain

∫

Rn

xw(h(x))

=
∫

Rn

xw(g(Ax + c)) =
∣
∣
∣A−1

∣
∣
∣

∫

Rn

(A−1y + b)w(g(y))

=
∣
∣
∣A−1

∣
∣
∣A−1

∫

Rn

yw(g(y)) +
∣
∣
∣A−1

∣
∣
∣b

∫

Rn

w(g(y)) (19)

Repeating this procedure by applying a family of left-hand
compositions {w�}p�=1 ∈ W to the known relation h(x) =
g(Ax + b), and rewriting it in a matrix form yields

|A|
[∫

Rn

xw1(h(x)) · · ·
∫

Rn

xwp(h(x))

]

= T
[∫

Rn

ỹw1(g(ỹ)) · · ·
∫

Rn

ỹwp(g(ỹ))

]

(20)

Let

G̃p =
[∫

Rn

ỹw1(g(y)) · · ·
∫

Rn

ỹwp(g(y))

]

(21)

and hence (20) can be written in a more compact form as
|A|Hp = TG̃p . We therefore have the following conclusion:

Theorem 3 Let A ∈ GLn(R). Assume h,g ∈ MAff such
that h(x) = g(Ax + c). Given measurements of h and g,
then A and c can be uniquely determined if there exists
a function w ∈ W such that

∫
Rn w(g(y)) �= 0 and a set of

functions {w�}n+1
�=1 ∈ W such that G̃n+1 is full rank. Then,

T = |A|Hn+1(G̃n+1)
−1.

Remark 9 As in the previous case, the elements of the ma-
trix G̃n+1 depend only on the template and its coordinate
system and thus have to be evaluated only once. Therefore,
the denominator of (4) together with G̃n+1 represent all the
information in the template, required for finding the affine
transformation parameters including the translation. Hence,
the denominator of (4) together with G̃n+1 form a sufficient
representation of the template.

Remark 10 As in Sect. 4, if the model is only an approxi-
mate one due to model mismatch, the Jacobian is determined
by (13), while T is evaluated by a least squares solution ob-
tained by taking p ≥ n + 1. In that case

T̂ = |A|HpG̃T
p [G̃pG̃T

p ]−1 (22)

6 Finding the Affine Transformation in the Presence
of an Unknown Spatially Constant Amplitude Gain

In the analysis carried out so far it has been assumed that
there is no amplitude variation (illumination variation, in
the case of images) between the template and the obser-
vation, and hence the observed deformation is only due to
the geometric distortion of the coordinate system caused by
the affine transformation. In this section we generalize the
proposed solution and address a more general deformation
model where the model given by (1) is replaced by

h(x) = ag(Ax + c)

A ∈ GLn(R), x, c ∈ Rn, a ∈ R, a > 0 (23)

where a, A and c are unknown and need to be determined.
As we prove in this section, the problem of finding the gain
factor amounts to replacing the step in which the Jacobian
of the transformation is being determined in the case where
there is no gain change, by a step in which both the gain and
the Jacobian are jointly determined. More specifically, let
w1,w2 ∈ W be a pair of Lebesgue measurable and separa-
ble functions such that wi(xy) = wi(x)wi(y) (for example,
let w1(x) = x2, w2(x) = x4), and where

∫
Rn wi(g(y)) �= 0.

Since h(x) = ag(Ax + c), we have
∫

Rn

w1(h(x)) = w1(a)

∫

Rn

|A−1|w1(g(y))

= w1(a)|A−1|
∫

Rn

w1(g(y)) (24)

and a similar expression is obtained by applying w2.
Hence,

|A−1|w1(a) =
∫
Rn w1(h(x))

∫
Rn w1(g(y))

(25)

and

|A−1|w2(a) =
∫
Rn w2(h(x))

∫
Rn w2(g(y))

(26)

Thus, both the Jacobian, |A−1|, and the gain factor, a, can be
evaluated using (25)–(26). Having estimated a, the original
problem in (23) can be rewritten as 1

a
h(x) = g(Ax+c). This

however is exactly the problem solved in Sect. 5, with h(x)

replaced by 1
a
h(x). Hence, defining Hp in this case to have

the form

Hp =
[∫

Rn

xw1(
1

a
h(x)) · · ·

∫

Rn

xwp

(
1

a
h(x)

)]

(27)

we obtain along the same lines of arguments that:

Theorem 4 Let A ∈ GLn(R). Assume h,g ∈ MAff such that
h(x) = ag(Ax + c), and a is an unknown real and positive
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gain coefficient. Given measurements of h and g, then A, c
and a can be uniquely determined if there exists a pair of
separable functions {wi}2

i=1 ∈ W such that
∫
Rn wi(g(y)) �=

0 and a set of functions {w�}n+1
�=1 ∈ W such that G̃n+1 is full

rank. Then, T = |A|Hn+1(G̃n+1)
−1.

Remark 11 Similarly to the previous cases, where the gain
is assumed fixed, the denominators of (25) and (26), as well
as the elements of G̃n+1 depend only on the template and its
coordinate system and thus have to be evaluated only once.
Therefore, the denominators of (25), (26) together with the
matrix G̃n+1 represent all the information in the template,
required for finding the affine transformation parameters in-
cluding the translation, in the case where the gain is un-
known. Hence, the denominators of (25) and (26) together
with G̃n+1 form a sufficient representation of the template.

Remark 12 As in Sect. 4, if the model is only an approxi-
mate one due to model mismatch, the solution for A and c
becomes a least squares solution to yield

T̂ = |A|HpG̃T
p [G̃pG̃T

p ]−1 (28)

where Hp is defined in (27), and p ≥ n + 1.

7 Discussion, Analysis and Comparison with Existing
Solutions

As the proposed solution employs evaluation of moments,
and solution to a linear system of equations, it may seem
that it bares similarities with existing linear solutions to the
problem and with moment based methods. In the sequel we
explain in some detail why the methodology presented in
this paper is completely different from these methods, and
how it employs an entirely different approach to the prob-
lem.

7.1 Linear Methods

As indicated earlier, for the case where the affine defor-
mation can be assumed small and the observed functions
are differentiable, a widely used approach is to linearize
the problem using an approximation based on a first order

Taylor series expansion. See, e.g., [21]. In order to sim-
plify the exposition we address the two dimensional case.
More specifically, using the small deformation assumption,
the original problem is approximated by h(x, y) ∼= g(x +
(ax +by + c), y + (dx + ey +f )), where (ax +by + c) and
(dx + ey + f ) are small enough such that for g itself

g(x + (ax + by + c), y + (dx + ey + f ))

∼= g(x, y) + (ax + by + c)
∂g

∂x
(x, y)

+ (dx + ey + f )
∂g

∂y
(x, y) (29)

One may next define the distance between the observation
and the approximating deformed template:

V (a, b, c, d, e, f )

=
∑

(x,y)

[h(x, y) − g(x + (ax + by + c),

y + (dx + ey + f ))]2 (30)

Substitution of (29) into (30) yields

V (a, b, c, d, e, f )

=
∑

(x,y)

[

h(x, y) − g(x, y) − (ax + by + c)
∂g

∂x
(x, y)

− (dx + ey + f )
∂g

∂y
(x, y)

]2

Let Ix = ∂g
∂x

(x, y), Iy = ∂g
∂y

(x, y), Id = g(x, y) − h(x, y).
Minimizing V (a, b, c, d, e, f ) by taking its partial deriva-
tives with respect to the six transformation parameters and
equating each result to zero, one obtains

∂V

∂a
=

∑
2

[

h(x, y) − g(x, y) − (ax + by + c)
∂g

∂x
(x, y)

− (dx + ey + f )
∂g

∂y
(x, y)

]

x
∂g

∂x
(x, y) = 0 (31)

and similarly for the derivatives with respect to the remain-
ing parameters. Reorganization of the six equations of the
form (31) results in the following system of linear con-
straints:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
xIxxIx

∑
yIxxIx

∑
IxxIx

∑
xIyxIx

∑
yIyxIx

∑
IyxIx∑

xIxyIx

∑
yIxyIx

∑
IxyIx

∑
xIyyIx

∑
yIyyIx

∑
IyyIx∑

xIxIx

∑
yIxIx

∑
IxIx

∑
xIyIx

∑
yIyIx

∑
IyIx∑

xIxxIy

∑
yIxxIy

∑
IxxIy

∑
xIyxIy

∑
yIyxIy

∑
IyxIy∑

xIxyIy

∑
yIxyIy

∑
IxyIy

∑
xIyyIy

∑
yIyyIy

∑
IyyIy∑

xIxIy

∑
yIxIy

∑
IxIy

∑
xIyIy

∑
yIyIy

∑
IyIy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a

b

c

d

e

f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
IdxIx∑
IdyIx∑
IdIx∑
IdxIy∑
IdyIy∑
IdIy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)
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Provided that the matrix is invertible, a solution for the
affine transformation parameters is obtained for the case
where the deformation is indeed small. On the other hand,
the linear solution proposed in this paper is exact and is ap-
plicable to any affine transformation regardless of its magni-
tude. Moreover, while in the presence of noise the suggested
method allows for an increase in the number of equations
which leads to a LS solution for the affine transformation
parameters, the linearized approximate solution is based on
only six equations, and no additional linear constraints on
the parameters can be added to the system. Also note that
the linearized approximation requires the evaluation of the
image spatial derivatives. This evaluation is highly prob-
lematic since the observed objects are usually not continu-
ous nor differentiable everywhere. This restriction becomes
even more problematic in the presence of noise. On the other
hand, the method derived in this paper employs only integra-
tion of the observed data and hence is much more robust.

7.2 Moment Based Methods

In this section we briefly describe moment based methods,
their advantages and limitations, in the context of deforma-
tion estimation and registration problems. We then elaborate
on the major conceptual and practical differences between
moment based methods and the solution we proposed in the
previous sections.

Again, in order to simplify the exposition we address
the two dimensional case. Thus the relation between the
template and observation is given by g(x, y) = h((ax +
by + c, dx + dy + f )−1). Define the functional μp,q(h) =∫ ∫

xpyqh(x, y)dxdy. This functional is called the moment
of order (p, q). Thus,

μp,q(h((ax + by + c, dx + ey + f )−1))

=
∫ ∫

xpyqh((ax + by + c, dx + ey + f )−1)dxdy

= 1

Δ

∫ ∫
(ax + by + c)p(dx + ey + f )qh(x, y)dxdy

= 1

Δ
Pp,q(a, b, c, d, e, f,

{
μk,j (h(x, y))

}
k≤p,j≤q

) (33)

where Pp,q is a homogenous polynomial of degree p + q

in a, b, c, d, e, f , linear in {μk,j (h)}k≤p,j≤q and Δ is the
Jacobian of the transformation.

The first two moments μ1,0 and μ0,1 have a special geo-
metric meaning, as they provide the center of mass of the
“object”, h, when normalized by μ0,0. Thus, the centers of
mass of h and g are related linearly by the above analysis,
and therefore we have two linear constraints on the 6 un-
known parameters. Obviously, this is not enough in order to
find all the parameters we are after. We further note that an

increase in the dimension, n, of the space the affine transfor-
mation is defined on, increases the number of parameters as
n2 + n. Yet, the number of first order moments is n. Hence,
we must use higher order moments in order to solve for all
the transformation parameters.

We note that in the special case where it is assumed that
the transformation is composed of only rotation and transla-
tion (so that we are looking for only three parameters: two
for translation and one for rotation), one can derive an ex-
plicit and simultaneous solution for the translation and ro-
tation parameters in terms of moments. However when the
transformation is some unrestricted element of the affine
group, no explicit solution exists.

As a result of the lack of general methods to solve sys-
tems of polynomial equations, the attempt to solve the sys-
tem of polynomial equations obtained by employing high
order moments was generally abandoned. Instead, research
turned to invariant theories in order to find relations be-
tween the moments of the template and observation. See
e.g., [12, 13] and the references therein. These relations en-
able the description of some properties of the function, inde-
pendently of the transformation itself. Hence, such descrip-
tions enable the design of object recognition methods that
are independent of the affine transformation. In conclusion,
moment based methods force us either to skip the problem
of estimating the transformation parameters, or alternatively,
to solve a system of polynomial equations.

On the other hand, the methodology developed in this
paper provides an entirely different view point on how the
problem should be solved. This novel approach allows for an
explicit estimation of the deformation model, while employ-
ing a solution to a linear system of equations obtained by
using only first order moments of various nonlinear opera-
tors applied to the template and observation. In other words,
the application of the nonlinear operators maps the problem
into a new “coordinate system” where now a linear mapping
relates the first order moments of these nonlinear functions
of the observation and the template.

8 Experimental Results

8.1 Numerical Examples

In this section we present some numerical examples to illus-
trate the operation and robust performance of the proposed
parameter estimation algorithm, for a broad range of defor-
mations. Note that in these experiments the applied non-
linear operators {w�} were chosen such that the resulting
system is full rank, yet they are not optimal in any sense.

The examples illustrates the operation of the proposed al-
gorithm on a car image. The template image dimensions are
3100 × 1200. It is shown in the bottom image of Fig. 1. The
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Fig. 1 From bottom to top: Template; Estimated deformed object ob-
tained by applying the deformation estimated from the observation to
the template; Observation on the deformed object

observed deformed image is shown in the upper image of the
figure. The image coordinate system is [−1,1] × [−1,1].
The translation vector is [−0.1,−0.14] and the translation
estimation error vector is [2 · 10−5,2.4 · 10−4]. The deform-
ing transformation is given by

A =
(−0.988 0.454

0.156 −0.891

)

where the estimate obtained by the proposed procedure is

Â =
(−0.987 0.453

0.156 −0.891

)

To provide some measure for the magnitude of the error
in estimating the deformation matrix we list the value of
A−1Â − I:

A−1Â − I =
(

9.943 −2.301
−1.298 0.228

)

· 10−4

Finally, the estimated deformation is applied to the original
template in order to obtain an estimate of the deformed ob-
ject (middle image in Fig. 1) which can be compared with
the deformed observation shown in the upper image.

In [22] a method that employs the commutativity of the
affine and scale operators is employed to estimate the para-
meters of an affine transformation by inducing a series of
scaling operations to the observed image and template. In
[22] an experimental evaluation of the method relative to
other known methods such as the cross-weighted moments
[11] and the moment descriptor method [23] is provided.
Following this evaluation we adopted the same metric used
in [22], i.e.,

d = 1

2

2∑

i=1

‖(A − Â)pi‖
‖Api‖ (34)

where p1 = (1,0)T and p2 = (0,1)T , to compare the per-
formance of the method proposed in this paper to the perfor-
mance of existing ones. Application of the proposed method
yields an average error of 0.001, compared with 0.02, and
0.03 obtained by the scaling-operator based method and
by the moment descriptor method, respectively. Note that
the results achieved by the proposed method, using a sub-
optimal set of operators, yield performance improvement of
a magnitude of order over existing solutions.

The second example employs the same template as the
first one and it is shown in the bottom image in Fig. 2. The
observed deformed image is shown in the upper image of the
figure. This image is both smaller in scale than in the first
example and is observed with lower illumination, such that
the illumination gain is a = 0.58. The error in estimating the
gain is â−a = 0.726 ·10−7. The image coordinate system is
[−1,1]×[−1,1]. The translation vector is [−0.4,−0.5] and
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Fig. 2 From bottom to top: Template; Estimated deformed object ob-
tained by applying the deformation estimated from the observation to
the template; Observation on the deformed object

the translation estimation error vector is [1.85 · 10−3,3.92 ·
10−5]. The deforming transformation is given by

A =
(

0.4854 0.3527
−0.3527 0.4854

)

where the estimate obtained by the proposed procedure is

Â =
(

0.4722 0.3626
−0.353 0.4858

)

while

A−1Â − I =
(

0.81 −2.65
0.001 −0.11

)

· 10−2

Finally, the estimated deformation is applied to the original
template in order to obtain an estimate of the deformed ob-
ject (middle image in Fig. 2) which can be compared with
the deformed observation shown in the upper image.

Evaluation of the estimation results using the metric pro-
posed in [22], yields an average error of d = 0.019, which
is similar to error measurements obtained by the scaling-
operator based method and the moment descriptor method,
when no scaling nor illumination variations are involved.

It should be noted that the estimation errors documented
in the above experiments result from numerical errors in
synthesizing the observation, sampling, quantization effects,
and from approximating integrals by sums. Detailed analy-
sis of the effects of these error sources, on the evaluation
of Hp can be found in [26], where the mean and covari-
ance of the estimates are derived. This detailed analysis en-
ables us to successfully employ the suggested method to es-
timate transformations in realistic scenarios as illustrated in
the next example.

8.2 Implementation in the Presence of Model Mismatch:
Estimation of Orientation in Space

The final example describes a scheme for estimating the ori-
entation in space (pan and tilt angles) of a planar object
(a picture) in a realistic scenario where from a single image,
the orientation angles of the plane need to be determined.
Note, that even at the level of the problem definition, the
current problem deviates from the previously derived ana-
lytic model, as the affine transformations of the observed
planar object are only an approximation to the perspective
deformation induced by the camera. The setting of the ex-
periment is as follows: In each repetition of the experiment
the pan and tilt angles of the plane are drawn at random from
uniform distributions on [−45,45] degrees for the pan and
on [−15,15] degrees for the tilt (these are fed to a computer
controlled stage); an image of the plane is then taken by the
camera (standard consumer grade, 1280 × 1024 pixels) and
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Fig. 3 A set of observations on a planar surface

the pan and tilt angles are evaluated from this single observa-
tion, using the linear least squares procedure derived in the
previous sections. A set of example images taken in this ex-
periment is shown in Fig. 3. To isolate the picture from the
black background, a crud segmentation, based only on the
color range information was employed. The experiment it-
self was performed for 4000 independent trials. The ground
truth measurements vs. the estimated pan and tilt angles, in a
short segment of the experiment are shown in Fig. 4. Since in
this resolution, the graphs overlap we depict in Fig. 5 the er-
ror curves in estimating the surface tilt and pan angles along
the entire sequence of 4000 experiments. For the entire se-
quence of 4000 experiments, the bias in estimating the pan
angle is −2.15 · 10−13 degrees and the standard deviation is
1.13 · 10−2, with a maximally encountered error of 0.45 de-
grees. The bias in estimating the tilt angle is −5.46 · 10−14

degrees and the standard deviation is 7 · 10−3, with a maxi-
mally encountered error of 0.46 degrees. We therefore con-
clude that the estimates of both the pan and tilt angles are
unbiased. For qualitative comparison, recent results, [30], on
estimating the orientation of an object using specular flow
report on average errors between 2.3 and 5 degrees, where
using the proposed solution the maximal encountered error

is less than 0.5 degrees. Moreover, in approximating the real
deformation by an affine deformation and evaluating the er-
ror metric (34) using the true and estimated angles, we ob-
tain an average error measure of 0.0002 in this real-world
setting, which is by two orders of magnitude lower than the
error obtained in synthetic experiments, by [22], and by an
order of magnitude lower than the error measure obtained by
the proposed method using an arbitrary choice of the non-
linear operators. Furthermore, the maximal error in our real-
world experiment when measured by the error metric (34),
is 0.0014, which is by an order of magnitude lower than the
average error of [22] in a synthetic setting. In terms of com-
putational requirements, on a Pentium 3 1.13 GHz system,
using a code written in Matlab, it takes 0.01 s to estimate the
tilt and pan angles for each frame.

Note that the robustness of the proposed solution is
demonstrated by the fact that despite all the mismatches be-
tween the assumed affine deformation model and the defor-
mations encountered in the actual application, namely, the
geometric transformation is only approximately affine (due
to the perspective projection), the spatially varying changes
in the illumination of the object surface due to its move-
ments relative to the light source, and the poor quality of the
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Fig. 4 (Color online) Surface pan and tilt angles: True (blue) vs. estimated (green)

Fig. 5 Surface pan and tilt angles estimation errors along the entire experiment

segmentation procedure—the parametric estimates are unbi-
ased and the standard deviation is in the order of a hundredth
of a degree.

9 Conclusions

In this paper we have considered the problem of finding the
affine transformation relating a given observation on a pla-
nar object with some pre-chosen template of this object. The
direct approach for estimating the transformation is to apply
each of the deformations in the affine group to the template
in a search for the deformed template that matches the ob-
servation. We propose a method that employs a set of non-
linear functionals to replace this high dimensional problem

by an equivalent linear problem, expressed in terms of the
unknown affine transformation parameters. Thus, the prob-
lem of finding the parametric model of the affine deforma-
tion is mapped, by this set of non-linear functionals, into a
set of linear equations which is then solved for the affine
transformation parameters. The proposed solution has been
further extended to include the case where the deformation
relating the observed signature of the object and the tem-
plate, is composed of both a geometric deformation due to
the affine transformation of the coordinate system, and an
unknown amplitude gain factor. The proposed solution is
unique and exact and is applicable to any affine transfor-
mation regardless of its magnitude.

In conclusion, the novel framework for estimating affine
transformations presented in this paper has several advan-
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tages over the existing methods. Although each of the ad-
vantages individually is not unique to this method, the com-
bination of properties is unique and to the best of our knowl-
edge provides superior performance over all known meth-
ods. The method is explicit, global, deals simultaneously
with all the affine transformations, and the map ϕ = H(h,g)

is continuous and involves only elementary linear analysis in
the same dimension as that of the group model. To increase
noise immunity, it employs integral operators, rather than
differential ones. Although in this paper we concentrate on
the solution of the most fundamental problems in this field,
the same framework can be extended to include much more
complicated problems, such as the estimation of elastic de-
formations, [9, 24]. In forthcoming papers we shall extend
the scope of the method presented here, to such problems
as the analysis of its performance in the presence of noise,
the optimal selection of the nonlinear operators in the pres-
ence of noise, and its extensions to various scenarios where
the deformations are both of geometry and amplitude. As il-
lustrated in Sect. 8.2, these steps allow one to elegantly and
accurately cope with realistic scenarios using the methodol-
ogy derived in this paper.
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