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Least Squares Estimation of 2-D Sinusoids in
Colored Noise: Asymptotic Analysis

Guy Cohen and Joseph M. Francos, Senior Member, IEEE

Abstract—This paper considers the problem of estimating the
parameters of real-valued two-dimensional (2-D) sinusoidal sig-
nals observed in colored noise. This problem is a special case of
the general problem of estimating the parameters of a real-valued
homogeneous random field with mixed spectral distribution from
a single observed realization of it. The large sample properties of
the least squares (LS) estimator of the parameters of the sinusoidal
components are derived, making no assumptions on the type of
the probability distribution of the observed field. It is shown that
if the disturbance field satisfies a combination of conditions com-
prised of a strong mixing condition and a condition on the order of
its uniformly bounded moments, the normalized estimation error
of the LS estimator is consistent asymptotically normal with zero
mean and a normalized asymptotic covariance matrix for which a
simple expression is derived. It is further shown that the LS esti-
mator is asymptotically unbiased. The normalized asymptotic co-
variance matrix is block diagonal where each block corresponds
to the parameters of a different sinusoidal component. Assuming
further that the colored noise field is Gaussian, the LS estimator of
the sinusoidal components is shown to be asymptotically efficient.

Index Terms—Cramer–Rao bound (CRB), least squares (LS) es-
timation, regression spectrum, strong mixing property, two-dimen-
sional (2-D) colored noise, 2-D random fields, 2-D sinusoids, 2-D
Wold decomposition.

I. INTRODUCTION

I N THIS paper we consider the problem of estimating the
parameters of two-dimensional (2-D) sinusoids in colored

observation noise. This problem is in fact a special case of the
more general problem of estimating the parameters of a 2-D reg-
ular and homogeneous random field from a single observed re-
alization of it, [2], [7]. This modeling and estimation problem
has fundamental theoretical importance, as well as various ap-
plications in texture estimation of images (see, e.g., [25] and
the references therein) and in wave propagation problems (see,
e.g., [26] and the references therein). From the 2-D Wold-like
decomposition [1], we have that any 2-D regular and homoge-
neous discrete random field can be represented as a sum of two
mutually orthogonal components: apurely indeterministicfield
and adeterministicone. The purely indeterministic component
has a unique white innovations-driven moving-average repre-
sentation. The deterministic component is further orthogonally
decomposed into aharmonicfield and a countable number of
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mutually orthogonalevanescentfields. This decomposition re-
sults in a corresponding decomposition of the spectral measure
of the regular random field into a countable sum of mutually sin-
gular spectral measures. The spectral distribution function of the
purely indeterministic component is absolutely continuous. Fur-
thermore, since the random field is regular, the spectral density
of the purely indeterministic component is zero at most on a set
of Lebesgue measure zero, [5], [6]. Thus, the spectral measure
of the deterministic component is singular with respect to the
Lebesgue measure, i.e., it is concentrated on a set of Lebesgue
measure zero in the frequency plane.

An early discussion on the problem of analyzing 2-D homo-
geneous random fields with discontinuous spectral distribution
functions can be found in [31]. Parameter estimation techniques
of sinusoidal signals in additive white noise include the pe-
riodogram-based approximation (applicable for widely spaced
sinusoids) to the maximum-likelihood (ML) solution [8], ex-
tensions to the Pisarenko harmonic decomposition [11], or the
singular value decomposition [12]. More recently, a matrix en-
hancement and matrix pencil method for estimating the param-
eters of 2-D superimposed, complex-valued exponential signals
was suggested in [13], and analyzed in [14]. Assuming the noise
field is white, the Cramer–Rao lower bound for this problem
was derived as well. The same problem is also considered in
[19] where three methods based on the approach of parameter
estimation via signal selectivity of signal subspace are derived.
In [15], a least squares (LS) estimation algorithm for estimating
the parameters of exponentials in complex white Gaussian noise
is derived, assuming the signal-to-noise ratio (SNR) is high.
For high SNR, the estimator is unbiased, and its error variance
achieves the Cramer–Rao bound (CRB). Least squares estima-
tion of 2-D complex sinusoids in circular independent and iden-
tically distributed (i.i.d.) residual noise is considered in [10].
Strong consistency and asymptotic normality of the estimator
are established. The problem of ML estimation of 2-D super-
imposed, complex-valued exponential signals in complex white
circular Gaussian noise has been recently considered in [9]. In
[7], a conditional ML algorithm for jointly estimating the pa-
rameters of the harmonic, evanescent, and purely indetermin-
istic components of a real-valued homogeneous random field
from a single observed realization of it, is derived. It is shown
that by introducing appropriate parameter transformations, the
highly nonlinear least squares (NLLS) problem that results from
maximizing the conditional likelihood function is transformed
into a separable NLLS problem, such that by first estimating
the unknown spectral supports of the harmonic and evanescent
components, the problem of solving for the transformed param-
eters of the field is reduced to linear least squares. The problem

0018-9448/02$17.00 © 2002 IEEE



2244 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

of estimating the parameters of real-valued one–dimensional
(1-D) sinusoids observed in the presence of additive stationary
process generated by filtering a white noise process with an ex-
ponentially stable and invertible linear filter is considered in
[17]. Basic and optimal NLLS methods are introduced and the
corresponding normalized error covariance matrices are evalu-
ated. It is shown that the two methods achieve the same nor-
malized asymptotic covariance and both attain the CRB in the
Gaussian case. In [20], a decoupled parameter estimation (DPE)
algorithm for estimating the parameters of 1-D and 2-D sinu-
soids corrupted by autoregressive noise is derived. The algo-
rithm consists of two steps. The first step is a RELAX algorithm
which employs the fast Fourier transform (FFT) to estimate the
sinusoids’ parameters, followed by a LS solution for estimating
the autoregressive (AR) parameters. The statistical efficiency of
the algorithm and its applications to target feature extraction are
also considered. In [18], a computationally efficient eigenstruc-
ture-based 2-D MODE algorithm for estimating the frequencies
of 2-D sinusoids observed in additive white Gaussian noise is
derived. It is further shown, that the algorithm is statistically
efficient and superior to subspace rotation methods. Under the
same modeling assumptions, a computationally efficient 1-D
MODE algorithm is employed in [21] to estimate the frequen-
cies of 2-D complex sinusoids. It is shown that the 1-D MODE
algorithm is computationally more efficient than the asymptot-
ically statistically efficient 2-D MODE algorithm.

The asymptotic CRB on the parameters of a Gaussian purely
indeterministic field was derived by Whittle [3]. More recently,
this general derivation was specialized for the case of noncausal
AR models, and nonsymmetrical half plane (NSHP) AR models
in [4]. In [2], the Cramer–Rao lower bound on the error variance
in jointly estimating the parameters of the purely indetermin-
istic, harmonic, and evanescent components of a homogeneous
Gaussian random field, based on afinite dimension, single ob-
served realizationof this field, is established.

In this paper, we consider the problem ofLS estimation
of the parameters of the harmonic component of the field
in the presence of the purely indeterministic component.
More specifically, using the results of [28]–[30], it is shown
that the normalized estimation error of the LS estimator is
asymptotically normal with a zero mean and a normalized
asymptotic covariance matrix for which a simple expression
is derived. This derivation makes no assumptions regarding
the type of the probability distribution of the observed field.
However, it is concluded that there is a tradeoff between the
order of the moments of the purely indeterministic component
that need to be uniformly bounded and the mixing rate of the
purely indeterministic component. It is also shown that the LS
estimator of the parameters of the 2-D sinusoids is asymptot-
ically unbiased. Finally, assuming the purely indeterministic
component is Gaussian, a sufficient condition on its mixing
rate is derived such that the LS estimator of the sinusoidal
components is asymptotically efficient. Using the finite sample
expression of the CRB [2], it is further demonstrated that even
for modest dimensions of the observed field and low SNRs,
the normalized asymptotic error covariance matrix of the LS
estimator (and the normalized asymptotic CRB) is rapidly
approached (in terms of both SNR and data dimensions) by the

exact, finite-sample CRB, when the CRB matrix is normalized
by the same normalization matrix employed to normalize the
LS estimator covariance matrix.

The paper is organized as follows. In Section II, we introduce
our notations and assumptions. In Section III, following [16],
[22], [28], [30], we introduce the regression correlation matrix
and the corresponding regression spectrum for this problem. In
Section IV, it is shown that the normalized estimation error of
the LS estimator is asymptotically normal with a zero mean and
a normalized asymptotic covariance matrix for which a simple
expression is derived. Asymptotic unbiasedness of the estimator
is also established. In Section V, asymptotic efficiency of the LS
estimator is established for the case where the observed field is
Gaussian. Section VI provides our concluding remarks.

II. PROBLEM DEFINITION

In this section, we introduce our notations and assumptions.
Let , be the observed 2-D real-

valued random field such that

(1)

and

(2)

Assumption 1:Let denote the parameter vector of the
harmonic field, i.e.,

(3)

where for all the amplitude where
and . Let be some positive constant. Assume further
that where either or

for . Hence, the parameter spaceis
a bounded and closed subset of the-dimensional Euclidian
space. It is therefore compact, by the Heine–Borel theorem.

Let be the probability space on which the random
field is defined. Let be a partially ordered (by
inclusion) system of subsets in . Also, for any denote
by the -algebra generated by .
We define the distance between two sets by

Definition 1 (Rosenblatt Dependence Measure, [27]):Let
be two -algebras of subsets of. Define the Rosen-

blatt dependence measure

Let us further define the mixing rate

where the supremum is taken over all whose dis-
tance is at least. (The definitions of the mixing properties em-
ployed in this paper were originally defined for 1-D processes
in [27] and were adapted to the case of multidimensional fields
by [28]).

Assumption 2:The purely indeterministic component
is a zero-mean, wide-sense-homogeneous field,
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with a positive spectral density . Assume that
has uniformly bounded absolute moments for some

. Let us further assume that has the strong
mixing property, i.e., that there exists a decreasing function

of a positive variable where as , such
that for any two subsets ,

We shall assume that where is a positive
constant and . Thus, the foregoing assumptions
imply that .

Assumption 3:The number of harmonic components isa
priori known.

Let be a sequence of rectangles insuch that

Definition 2: The sequence of subsets is said to tend
to infinity (we adopt the notation ) as if

and

To simplify notations, we shall omit in the following the sub-
script . Thus, the notation implies that both and
tend to infinity as functions of , and at roughly the same rate.

Let denote the observation, harmonic component, and
purely indeterministic component column vectors, respectively,
where

(4)

and , are similarly defined. Let denote the covariance ma-
trix of and hence of as well. Thus,

...
...

...
(5)

where

...
...

...
(6)

III. T HE REGRESSIONSPECTRUM

Define the normalization matrix

...
...

...
(7)

where

(8)
Define also the mean gradient vector with respect to parameter
vector

... (9)

and let

...

...

(10)

Define

... (11)

Let denote the real part of some vector (matrix). Thus,
.

Next, consider the sequence of matrices

(12)
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The last equality follows from the identity

where are two complex-valued matrices anddenotes
the matrix whose elements are the conjugates of the elements of

, i.e., .
Note that

(13)

(see, e.g., [33] for the case where . The result for
is easily derived by differentiating times the geometric series

). Using (13) and some straightforward arithmetic, it
can be shown that as

(14)
and hence that as , the sequence tends to the
limit denoted by

...
...

.. .
...

(15)

where

(16)

and

...
...

...
...

(17)

Note that in the terms of [16], [30], is a regression corre-
lation matrix.

We next show that the double-indexed sequence admits
a spectral representation. Since for all, is independent of

and while , it can be easily verified using (15)
that and , i.e., is a sym-
metric series of operators on . Furthermore, the sequence

is nonnegative definite. (See Appendix A for the proof.)
Since is a double-index positive semidefinite symmetric

sequence, we conclude using the spectral representation the-
orem (see, e.g., [5]) that there exists a nonnegative 2-D distribu-
tion function such that

(18)

However, , where is a
matrix-valued function of and taking as values Hermitian

positive semidefinite matrices whose elements are
functions of bounded variation, while the functions on the di-
agonal are nondecreasing. It can be shown following similar ar-
guments to those in [16, p. 45], that has a spectral repre-
sentation of the form

(19)

Thus, , the measure induced by the matrix-valued function
is given by

...
...

.. .
...

...
...

. . .
...

(20)

where denotes the Dirac measure concentrated at .

IV. LS ESTIMATION OF THE PARAMETERS OF THEHARMONIC

COMPONENT

Let

(21)

be the quadratic objective function to be minimized with respect
to the parameter vectorand let be its global minimum over

. Define the normalized estimation error

(22)

and let denote the distribution function of
.

Theorem 1: Assume the observations are given by (1)
and (2). Assume further that the parameter spacesatisfies
Assumption 1, and that the purely indeterministic component

satisfies the conditions of Assumption 2. Then
uniformly in

is as (23)

where

(24)
Proof: The proof follows immediately from the general

result in [29, Theorem 3.4.2]. This is because it is shown in



COHEN AND FRANCOS: LEAST SQUARES ESTIMATION OF 2-D SINUSOIDS IN COLORED NOISE 2247

Section III that the gradient of the regression functions admits
a spectral representation, while the remaining conditions that
the gradient of the regression functions must satisfy in order
for [29, Theorem 3.4.2] to hold, are satisfied in the special case
where the regression functions are the sinusoids in (2). This is
because the sinusoids are bounded and infinitely differentiable
functions, because of (13), and due to Assumption 1 that guar-
antees that the uniform convergence conditions required by [29,
Theorem 3.4.2] are satisfied.

Substituting (17) and (20) into (24) we have (25), shown at
the bottom of the page, where

(26)

We note that the conditions on the disturbance field
specified by Assumption 2 imply that for Theorem 1 to hold
there is a tradeoff between the order of the disturbance mo-
ments that need to be uniformly bounded and the measure of
dependence of the field. More specifically, choosing a larger
(smaller) value of implies that higher (lower) order moments
of the disturbance field need to be uniformly bounded, while the
measure of dependence of any two subsets

can be higher (lower) such that the inequality
is satisfied. Since the mixing condition im-

plies a similar type of condition for the covariance sequence, this
tradeoff can be similarly stated in terms of the rate of decay of
the covariance sequence versus the order of the disturbance field
moments that need to be uniformly bounded. Examples of ho-
mogeneous random fields that satisfy the conditions of Assump-
tion 2 (and hence Theorem 1) include finite support Markov
random fields (MRF) and finite support Gaussian moving av-
erage (MA) fields. For MRFs, the strong mixing condition holds
since samples with sufficiently large distance separating them,
are independent. For Gaussian MA fields, the covariance se-
quence is zero for sufficiently large lags, while the distribution
is completely determined by the second-order moments.

Theorem 2: Assume the observations are given by (1)
and (2). Assume further that the parameter spacesatisfies
Assumption 1, and that the purely indeterministic component

satisfies the conditions of Assumption 2. Let
denote theth element of . Then, for each element of,

The special case of implies that is an asymptotically
unbiased estimate of.

To prove Theorem 2 we will need the following lemma (see
Appendix B for its proof):

Lemma 1: Let be a positive monotone sequence
tending to infinity, and let be a sequence of random
variables such that converges in distribution to an inte-
grable random variable , then converges in probability
to zero.

Proof of Theorem 2:Applying Lemma 1 to the elements
of we conclude using Theorem 1 that all the entries
of converge to zero in probability. Hence,
converges to zero in probability, for any , as well. By
assumption all the entries of are bounded. Hence, using
Lebesgue bounded convergence theorem (see, e.g., [34, p. 96],
[35]) we have .

Remark: Since all the entries of converge to zero in
probability, while converges in distribution to a
multivariate Gaussian random variable, is consistent asymp-
totically normal(CAN). The covariance of the limiting distri-
bution is thenormalized asymptotic covarianceof , [36].

Note that the normalized asymptotic covariance matrix in
(25) and (26) is block diagonal where each block corresponds to
the parameters of a different sinusoidal component. Moreover,
its element that expresses the normalized asymptotic error vari-
ance in estimating the amplitude parameter of each sinusoid is
decoupled and independent ofall other model parameters. It is
a functiononlyof the colored noise spectral density at the sinu-
soid’s frequency. It should be emphasized that this derivation of
the large sample properties of the LS estimator is independent
of the type of the probability distribution function of the ob-
served field. Finally, we note that related results for the special
cases, where the purely indeterministic component is a white
noise field of some unknown distribution, and for the case where
the white noise field is Gaussian, were derived in [10] and [9],
respectively.

V. ASYMPTOTIC EFFICIENCY OF THELEAST SQUARES

ESTIMATOR

A. Asymptotic Results

The CRB provides a lower bound on the error variance in esti-
mating the model parameters for any unbiased estimator of these
parameters. In [2], the finite-sample Cramer–Rao lower bound
on the error variance in jointly estimating the parameters of the
different components of a 2-D homogeneous Gaussian random
field with mixed spectral distribution, from a single observed

...
...

...
. . .

...
(25)
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realization of it, is derived. The model defined in (1)–(3) is a
special case of the model addressed in [2], as it assumes the ob-
served field contains only the harmonic and purely indetermin-
istic components of the 2-D Wold-like decomposition. Since the
LS estimator of the harmonic component parameters was shown
to be consistent asymptotically normal and asymptotically un-
biased we investigate in this section its asymptotic efficiency.
The problem of deriving the normalized asymptotic CRB (and
the normalized asymptotic information matrix) for the Gaussian
complex-valued model which is equivalent to the model defined
in (1)–(3), using the normalization matrix defined in (7) has
been recently investigated in [23]. Following similar arguments
for the real-valued case, and assuming that the covariance se-
quence of the purely indeterministic component satisfies
the conditions

(27)

(28)

(29)

it can be shown that the normalized large sample CRB is given
by (25) and (26). (We note that conditions (27)–(29) are trivially
satisfied by finite support 2-D MA models). A CAN estimate
for which the normalized asymptotic covariance matrix is equal
to the normalized asymptotic CRB is asymptotically efficient
(or best asymptotically normal (BAN), see e.g., [36]). Thus, we
next show that in the case where is Gaussian, a suffi-
cient condition for the LS estimator of the harmonic component
parameters to be asymptotically efficient is that sat-
isfies Assumption 2.

Since has uniformly bounded absolute mo-
ments, using the strong mixing assumption it can be shown (see,
[28, Lemma 2]) that there exists some positive constantsuch
that

(30)

for any pair of sets for which and
are measurable with respect to and , respectively.
Hence, letting , , and using Assump-
tion 2 we have that as

(31)

where is a positive constant. We can write

where

since we assume that . Note that (31) implies that
the spectral density of the purely indeterministic field
is continuous and bounded.

Theorem 3: Assume the observations are given by (1)
and (2). Assume further that the parameter spacesatisfies
Assumption 1, and that the purely indeterministic component

satisfies the conditions of Assumption 2. Assume
also that is Gaussian. Then, the LS estimator of the
harmonic component parameters is asymptotically efficient
(BAN).

Proof: It has been shown that . We next show that
this condition is sufficient for (27)–(29) to hold. Since for all

, , and since in the following we are interested
only in bounding sums of the type found on the left-hand side of
(32), we can assume without loosing the generality of this proof
that (31) holds for all . (In fact, this assumption holds for
all except for a finite number of pairs.) Thus,

(32)
Next, consider the function

This positive function is continuous and strictly decreasing to
zero in any direction. Hence, employing the Cauchy integral test
we conclude that the right-hand side (RHS) of (32) converges or
diverges with the same rate as the integral

Hence, we obtain using the transformation to polar coordinates
that

(33)

where is some positive constant.
Considering now the normalized sum, we conclude that

(34)

On taking the limit, we conclude that as , is a
sufficient condition that the RHS of (34) tends to zero.

Following a similar line of proof it can be shown that

(35)
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Fig. 1. The spectral density function of the MA field.

Fig. 2. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function of SNR (dashed line),
compared with the corresponding exact CRB (solid line).
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Fig. 3. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function of data dimensions for
SNR= � 10 dB (dashed line), compared with the corresponding exact CRB (solid line).

Here, is a sufficient condition that the RHS of (35) tends
to zero. Similar arguments hold in evaluating the limit in (29).
Thus, is a sufficient condition for (27)–(29) to hold.

B. Finite Sample Results

In the following, we shall consider the normalized asymp-
totic covariance matrix of the LS estimator and the normalized
asymptotic CRB matrix, when these matrices (shown in the pre-
vious section to be identical) are rescaled by multiplying them
on the left and on the right by . Having established the suffi-
cient condition for asymptotic efficiency of the LS estimator of
the parameters of 2-D sinusoids observed in a colored Gaussian
noise field, it is next shown using numerical evaluation of some
specific examples that the rescaled normalized asymptotic error
covariance of the LS estimator is rapidly approached (in terms
of both SNR and data dimensions) by the exact, finite-sample
CRB. In the following experiments, the rescaled normalized
asymptotic covariance matrix of the LS estimator ofis com-
pared with theexactCRB [2]. It should be noted that the perfor-
mance of the LS estimator depicted in the following examples is
not the result of any particular implementation of the estimator,
but rather a performance curve of the asymptotic behavior of
the estimator, evaluated analytically for various SNRs and data
dimensions, based on the foregoing derivations.

1) Estimation Performance as a Function of SNR:In this
subsection, we investigate the asymptotic performance of the

LS estimator in comparison with the exact CRB, as a function
of the local SNR. The local SNR for theth sinusoid is defined
as

SNR (36)

In this example, the purely indeterministic component of the
field is an NSHP MA field with support . The MA model
parameters are , ,

, . The driving noise of the MA model is a
zero mean, white Gaussian noise field with a unit variance. For
illustration purposes, the spectral density function of the field is
depicted in Fig. 1. The harmonic component of the field com-
prises a single sinusoid with frequency .
Its amplitude varies to provide the desired range of SNR values.
The dimensions of the observed field are .

The results of this example, Fig. 2, indicate that even for
modest dimensions of the observed field, and for a wide range
of SNR values, the rescaled normalized asymptotic error vari-
ances of the LS estimates of the amplitude, phase, and spatial
frequency are essentially identical to the corresponding values
of the exact CRB. These CRB values are evaluated for the given
dimensions of the observed data ( in this case).

2) Estimation Performance as a Function of Data Dimen-
sions: In this subsection, we investigate the effect of the size
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Fig. 4. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function of data dimensions for
SNR= 0 dB (dashed line), compared with the corresponding exact CRB (solid line).

of the observed field on the asymptotic performance of the LS
estimator and on the CRB.

In this example, the harmonic component of the field com-
prises a single sinusoid such that , , and .
The purely indeterministic component is the same as in the first
example. To evaluate the functional dependence of the LS es-
timator rescaled normalized asymptotic error variance, and of
the corresponding CRB, on the dimensions of the observed field
we set and let both and assume values fromto

. The results of evaluating the rescaled normalized asymptotic
error variance of the amplitude, phase, and spatial frequency es-
timates, and the corresponding exact CRB, as a function of the
field dimensions are depicted in Figs. 3 and 4 for SNR values of

10 and 0 dB, respectively. The results indicate that the rescaled
normalized asymptotic error variance of the LS estimator of
each of the sinusoids parameters is nearly identical to the corre-
sponding exact CRB, even for modest data dimension and rela-
tively low SNR values.

VI. CONCLUSION

We have investigated the problem of LS estimation of the pa-
rameters of 2-D sinusoids observed in colored noise. Making
no assumptions about the specific type of the probability distri-
bution of the observed field, it is shown that if the disturbance

field satisfies a combination of conditions comprised of a strong
mixing condition and a condition on the order of its uniformly
bounded moments, the normalized estimation error of the LS es-
timator is consistent asymptotically normal with zero mean and
a normalized asymptotic covariance matrix for which a simple
expression is derived. It is concluded that there is a tradeoff be-
tween the order of the disturbance moments that need to be uni-
formly bounded and the mixing rate of the disturbance field. It
is also shown that the LS estimator of the parameters of the 2-D
sinusoids is asymptotically unbiased.

The normalized asymptotic covariance matrix is block diag-
onal where each block corresponds to the parameters of a dif-
ferent sinusoidal component. Moreover, for each sinusoid, the
matrix element that expresses the normalized asymptotic error
variance in estimating the amplitude parameter of that sinusoid
is decoupled and independent of all other model parameters. It
is a function only of the colored noise spectral density at the si-
nusoid’s frequency.

Assuming further that the colored noise field is Gaussian,
the LS estimator of the sinusoidal components is shown to be
asymptotically efficient. It is also demonstrated that the normal-
ized asymptotic error covariance of the LS estimator is rapidly
approached (in terms of both SNR and data dimensions) by the
exact, finite-sample CRB, when the CRB matrix is normalized
by the same normalization matrix employed to normalize the LS
estimator covariance matrix.
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APPENDIX A

We next show that the sequence is nonnegative
definite. Indeed, let be an arbitrary real-valued vector

where and
. Consider now the quadratic form

(37)

Since all principle minors of are nonnegative, is positive
semidefinite (see, e.g., [24, p. 405]). Let alsobe any -vector
where is arbitrary and let and
be some positive integers. Then

(38)

where the last inequality results from the positive semidefinite-
ness of the blocks .

APPENDIX B

Lemma 1: Let be a positive monotone sequence
tending to infinity, and let be a sequence of random
variables such that converges in distribution to an inte-
grable random variable , then converges in probability
to zero.

Proof: Fix . The set of continuity points of the
distributions of , is a dense set (as its complement
is a countable union of countable sets). Hence, by Chebyshev
inequality, for any we can choose such that

, where are continuity points of all
the above distributions. For that, there exists such that for
any , ; hence, . By
the continuity of the distribution functions at
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