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Least Squares Estimation of 2-D Sinusoids In
Colored Noise: Asymptotic Analysis
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Abstract—This paper considers the problem of estimating the mutually orthogonaévanescenfields. This decomposition re-

parameters of real-valued two-dimensional (2-D) sinusoidal sig- sults in a corresponding decomposition of the spectral measure

nals observed in colored noise. This problem is a special case ofyt the regular random field into a countable sum of mutually sin-
the general problem of estimating the parameters of a real-valued

homogeneous random field with mixed spectral distribution from gular spectral m_e?‘S!erS- The spegtral distribution fqnctlon ofthe
a single observed realization of it. The large sample properties of Purely indeterministic componentis absolutely continuous. Fur-
the least squares (LS) estimator of the parameters of the sinusoidal thermore, since the random field is regular, the spectral density
components are derived, making no assumptions on the type of of the purely indeterministic component is zero at most on a set
the probability distribution of the observed field. It is shown that of Lebesgue measure zero, [5], [6]. Thus, the spectral measure

if the disturbance field satisfies a combination of conditions com- f the det inisti tis si | ith t 1o th
prised of a strong mixing condition and a condition on the order of O tN€ GElErMINISuc component Is singular with respect to the

its uniformly bounded moments, the normalized estimation error Lebesgue measure, i.e., it is concentrated on a set of Lebesgue
of the LS estimator is consistent asymptotically normal with zero measure zero in the frequency plane.

mean and a normalized asymptotic covariance matrix for which a An early discussion on the problem of analyzing 2-D homo-
simple expression is derived. It is further shown that the LS esti- 4an66y5 random fields with discontinuous spectral distribution

mator is asymptotically unbiased. The normalized asymptotic co- . . . - )
variance matrix is block diagonal where each block corresponds functions can be found in [31]. Parameter estimation techniques

to the parameters of a different sinusoidal component. Assuming Of sinusoidal signals in additive white noise include the pe-
further that the colored noise field is Gaussian, the LS estimator of riodogram-based approximation (applicable for widely spaced
the sinusoidal components is shown to be asymptotically efficient. sinusoids) to the maximum-likelihood (ML) solution [8], ex-
Index Terms—Cramer—Rao bound (CRB), least squares (LS) es- tensions to the Pisarenko harmonic decomposition [11], or the
timation, regression spectrum, strong mixing property, two-dimen-  singular value decomposition [12]. More recently, a matrix en-
sional (2-D) colored noise, 2-D random fields, 2-D sinusoids, 2-D hancement and matrix pencil method for estimating the param-
Wold decomposition. eters of 2-D superimposed, complex-valued exponential signals
was suggested in[13], and analyzed in [14]. Assuming the noise
|. INTRODUCTION field is white, the Cramer—Rao lower bound for this problem
was derived as well. The same problem is also considered in
X ) . o 9] where three methods based on the approach of parameter
parameters of two-dimensional (2-D) sinusoids in colored : . o - . .
stimation via signal selectivity of signal subspace are derived.

(r)nbosreervz'ac:a?OLZ%];::';%;?E;&r']S ItrrlméaC;rZripefgzloizsze-ch)frt ne_[15], a least squares (LS) estimation algorithm for estimating
9 b ngthep . %e parameters of exponentials in complex white Gaussian noise

ular and homogeneous random field from a single observed re- " " ; . N . o
IS derived, assuming the signal-to-noise ratio (SNR) is high.

alization of it, [2], [7] Th|_s mpdelmg and estimation prqblerqzor high SNR, the estimator is unbiased, and its error variance
has fundamental theoretical importance, as well as various aps

lications in texture estimation of images (see, e [25] arell hieves the Cramer—Rao bound (CRB). Least squares estima-
Itohe references therein) and in wave prgpagatior’1 p.rg-t;lems (S{é%n of 2-D complex sinusoids in circular independent and iden-
e.q., [26] and the references therein). From the 2-D Wold_mglpally distributed (i.i.d.) residual noise is considered in [10].

decomposition [1], we have that any 2-D regular and homogetrong consistency and asymptotic normality of the estimator

. X re established. The problem of ML estimation of 2-D super-
neous discrete random field can be represented as a sum of fwo N . :
. S imposed, complex-valued exponential signals in complex white
mutually orthogonal componentsparely indeterministidield

and adeterministicone. The purely indeterministic componenfe'rcmar Gaussian noise has been recently considered in [9]. In

: N ! . . 7], a conditional ML algorithm for jointly estimating the pa-
has a unique white innovations-driven moving-average repre=
sentation. The deterministic component is further orthogonal
decomposed into harmonicfield and a countable number of

N THIS paper we consider the problem of estimating t

ﬁameters of the harmonic, evanescent, and purely indetermin-
Istic components of a real-valued homogeneous random field
from a single observed realization of it, is derived. It is shown
that by introducing appropriate parameter transformations, the
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of estimating the parameters of real-valued one—dimensioeahct, finite-sample CRB, when the CRB matrix is normalized
(1-D) sinusoids observed in the presence of additive stationdny the same normalization matrix employed to normalize the
process generated by filtering a white noise process with an &8 estimator covariance matrix.

ponentially stable and invertible linear filter is considered in The paper is organized as follows. In Section II, we introduce
[17]. Basic and optimal NLLS methods are introduced and thoeir notations and assumptions. In Section Ill, following [16],
corresponding normalized error covariance matrices are evdlRR], [28], [30], we introduce the regression correlation matrix
ated. It is shown that the two methods achieve the same nand the corresponding regression spectrum for this problem. In
malized asymptotic covariance and both attain the CRB in t&ection 1V, it is shown that the normalized estimation error of
Gaussian case. In [20], a decoupled parameter estimation (DIFHE) LS estimator is asymptotically normal with a zero mean and
algorithm for estimating the parameters of 1-D and 2-D sina normalized asymptotic covariance matrix for which a simple
soids corrupted by autoregressive noise is derived. The algapression is derived. Asymptotic unbiasedness of the estimator
rithm consists of two steps. The first step is a RELAX algorithris also established. In Section V, asymptotic efficiency of the LS
which employs the fast Fourier transform (FFT) to estimate thestimator is established for the case where the observed field is
sinusoids’ parameters, followed by a LS solution for estimatingaussian. Section VI provides our concluding remarks.

the autoregressive (AR) parameters. The statistical efficiency of

the algorithm and its applications to target feature extraction are Il. PROBLEM DEFINITION

also considered. In [18], a computationally efficient eigenstruc-
ture-based 2-D MODE algorithm for estimating the frequencies
of 2-D sinusoids observed in additive white Gaussian noise\jg1
derived. It is further shown, that the algorithm is statistically
efficient and superior to subspace rotation methods. Under the y(m, n) =h(m, n) +e(m, n) 1)
same modeling assumptions, a computationally efficient 1-éhd

In this section, we introduce our notations and assumptions.
Let {y(m, n)}, (m, n) € Z? be the observed 2-D real-
lued random field such that

MODE algorithm is employed in [21] to estimate the frequen- r
cies of 2-D complex sinusoids. It is shown that the 1-D MODE h(m, n) =Y apcos(wpm +vpn + ). (2)
algorithm is computationally more efficient than the asymptot- p=1

ically stat|st|caII¥ efficient 2-D MODE algorithm. ) Assumption 1:Let# € © denote the parameter vector of the
The asymptotic CRB on the parameters of a Gaussian purglyrmonic field. i.e.

indeterministic field was derived by Whittle [3]. More recently, T

this general derivation was specialized for the case of noncausaf =l 1w - ap ep wp ve] ()

AR models, and nonsymmetrical half plane (NSHP) AR modelghere for allk the amplitudev, € [F:, E2] where0 < E;

in [4]. In [2], the Cramer—Rao lower bound on the error varian@nd E, < co. Let d be some positive constant. Assume further

in jointly estimating the parameters of the purely indeterminhatyy,, wy, v, € [—m, x| where eithetnin(|wy —w;|) > d or

istic, harmonic, and evanescent components of a homogeneniis(|14, — 1;|) > dfor k # j. Hence, the parameter sp&deas

Gaussian random field, based ofirdte dimension, single ob- a bounded and closed subset of #ié-dimensional Euclidian

served realizatiorof this field, is established. space. It is therefore compact, by the Heine—Borel theorem.
In this paper, we consider the problem Ib§ estimation

of the parameters of the harmonic component of the fie*%

in the presence of the purely indeterministic componeni,

More specifically, using the results of [28]-[30], it is showrb

that the normalized estimation error of the LS estimator

asymptotically normal with a zero mean and a normalize

asymptotic covariance matrix for which a simple expression A(A1, Az2) = inf{[|#1 — 222, 21 € Ay, 22 € Az},

is derived. This derivation makes no assumptions regarding_ . ..

the type of the probability distribution of the observed field, Pefinition 1 (Rosenblatt Dependence Measure, [27]et

However, it is concluded that there is a tradeoff between tfg- 72 & woo-algebras of subsets 6I. Define the Rosen-

order of the moments of the purely indeterministic componef2tt dépendence measure

that need to be uniformly bounded and the mixing rate of théF,, 7>) = sup{|P(AB)— P(A)P(B)|: A€ F1, B € F2}.

purely indeterministic component. It is also shown that the LS

estimator of the parameters of the 2-D sinusoids is asymptot.Let us further define the mixing rate

ically unbiased. Finally, assuming the purely indeterministic afp) = sup d(F(Ay), F(A))

component is Gaussian, a sufficient condition on its mixirgf/

Let (2, F, P) be the probability space on which the random

Id {e(m, n)} is defined. LetR be a partially ordered (by

clusion) system of subsets 7. Also, for anyA € R denote
F(A) thes-algebra generated By(m, n): (m, n) € A}

e define the distance between two sAts A, € R by

rate is derived such that the LS estimator of the sinusoi aperelthe supremum s tfi'?‘?” overal, A.Q.e RWhOS? dis-
ance is at least. (The definitions of the mixing properties em-

components is asymptotically efficient. Using the finite samp L L : i
expression of the CRB [2], it is further demonstrated that evgi]oyed in this paper were originally defined for 1-D processes

for modest dimensions of the observed field and low SN |n, [27] and were adapted to the case of multidimensional fields
: . . . Y [28]).

the normalized asymptotic error covariance matrix of the L

estimator (and the normalized asymptotic CRB) is rapidly Assumption 2:The purely indeterministic component

approached (in terms of both SNR and data dimensions) by th&m, n)} is a zero-mean, wide-sense-homogeneous field,
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with a positive spectral density(w, »). Assume that(m, n) where
has uniformly boundedt + 6 absolute moments for some (MN)Y/? 0 0 0
6 > 0. Let us further assume thdt(m, n)} has the strong

1/2
mixing property, i.e., that there exists a decreasing functiop — 0 (MN) 0 0
(-) of a positive variabley wherep(p) | 0 asp — oo, such 0 0 (M2N)Y/2 0
that for any two subsetd, A, € 22, 0 0 0 (MN3®)L/?2

(8)
d(F(A1), F(A2)) < @(p(Ar, Ag)). Define also the mean gradient vector with respect to parameter
We shall assume that(p) = O(p~*+)) where is a positive vectoré

constant andy — 2)6 > 16. Thus, the foregoing assumptions ~ oh(m, n)
imply thata(p) < kp~ G+, &(m, n) = 90
Assumption 3:The numbetP of harmonic components & cos{wim +vin + ¢1)
priori known. — Su_l(wlm +rn+ o)
—aymsin(wim + mn + ¢1)
Let {A} be a sequence of rectanglesRrsuch that —agnsin(wym + vin + @)
Ap={(i,j)€ 2*|0<i< My —1,0< j < Ny — 1} = : (9)
Definition 2: The sequence of subsdtd} is said to tend cos(wpm +vpn + ¢p)
to infinity (we adopt the notatiod;, — o) ask — oo if —ap su_l(wpm + vpn+ op)
_ _ —apmsin(wpm + vpn + @p)
kh_{r;o min(My, Ni) = o0 | —apnsin(fwpm +vpn + ¢p) |
and and let
0< kll_I)Iolo(Mk/Nk) < 0. r (i)T((L 0) B
To simplify notations, we shall omit in the following the sub- <i>T(1 0)
scriptk. Thus, the notatioth — oc implies that bothv and A/ ’
tend to infinity as functions of, and at roughly the same rate. oh :
Lety, h, e denote the observation, harmonic component, and = 267 = T . (10)
purely indeterministic component column vectors, respectively, ¢ (M-1,0)
where
Y= [y(07 0)7 e, y(M_17 0)7 y(07 1)7 e, y(M_17 1)7 _éT(M —1,N - 1)_
o y(0, N =1), . y(M =1, N =D]" (4)
- . ] Define
andh, £ are similarly defined. LeF denote the covariance ma- ilwimtvinter) q
trix of € and hence ofy as well. Thus, i lenmtnten)
o r&n o . pa=Nm iy metwrmtrinter)
re re ... rpem ionel@rmtrintey)
I'= : : : ©®) \ij(mv n) = : (11)
rN-n pv-2 . pO) ci{wpmtvpntep)
. i(wpm+tvpntep)
tape
where iapmei(wpnl—l—upn—l—(pp)
70, k 1,k o T1I—MLk iapnei(wpm-l—upn-l—(,cp)
r® _ "L,k "okt T2-Mk 5 Let R{z} denote the real part of some vector (matex)Thus,
= . O em ) = R{¥m, ).
' Next, consider the sequence of matrices
"T™—-1,k TM-2k " 7o,k M—1N—1
/ _ - =T _
R,?J:DA]L Z Z ®(m~+k, n+0)® (m, n)D5*
[ll. THE REGRESSIONSPECTRUM m=0 n=0
M—-1N-1
Define the4d P x 4P normalization matrix 1. T T -
:§DA1 Z Z R{U(m~+k, n+0)¥ (m, n)}D"
D o T 0 m=0 n=0
0 D 0 1 M-1N-1 .
_ -1 T, . 7 -1
Dy = 5 o @) +5 D% z_:o z_:o R{U(m~+k, n+ )W (m, n)}D3".

0 0 --- D (12)
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The last equality follows from the identity sequence, we conclude using the spectral representation the-
1 1 . orem (see, e.g., [5]) that there exists a nonnegative 2-D distribu-
RAR(B) = §§R(AB) + §§R(AB) tion function M, (w, v) such that
where A, B are two complex-valued matrices adddenotes 'Ry ra= / / M) AM g (w, v). (18)
the matrix whose elements are the conjugates of the elements of e )
A e, A= (AN However, M, (w, 1/) = a'M(w, v)a, where M(w, v) is a
Note that matrix-valued function ofu andv taking as values Hermitian
4P x 4P positive semidefinite matrices whose elements are
_ 1 = &.im ar P=0 functions of bounded variation, while the functions on the di-
lim —— Z ntetfm = (13) . . o
N—ooo Nk+1 — 0 p#£0 agonal are nondecreasing. It can be shown following similar ar-

guments to those in [16, p. 45], thBY, ; has a spectral repre-
(see, e.qg., [33] for the case whare= 0. The result forp # 0  sentation of the form

is easily derived by differentiating times the geometric series 1 T (ot )
>, €#™). Using (13) and some straightforward arithmetic, it Ry = ) /_ /_ ¢ dM(w, v). (19)

can be shown that a& — oo Thus,M, the measure induced by the matrix-valued function
Ly M-l N— M(w, v) is given by

5D DY Z { (m+ k. n+ 0% (m )}Dzlzo 5. v B 0 0

m=0 n=0
N (14) 0 un. B2 -+ 0
and hence that a& — oo, the sequencé¢R;’,} tends to the M =42

limit denoted byR;, ,

Rk,é = 0 0 6wp,VpBP
ei(w1 k42 Z)Bl 0 A 0 6_w1 — BT 0 . 0
1 0 Cz(w2k+l/25)B2 e 0 0 674«;2, 71/2B§ . 0
B + 2
2 . . . .
0 0 ... ¢wpk+vpl)
e Bp 0 0 T R : .
where whered,.,, ., denotes the Dirac measure concentrateg,at/,.
I 1 . o, o ]
e ST o IV. LS ESTIMATION OF THE PARAMETERS OF THEHARMONIC
22 ol COMPONENT
—ia, o £ 2
P P 2 2 Let
B, = : a2 o ol (16) T
J T T Ty fr(0) =y — h(O)]" [y — h(6)] (21)
2 2 3 4
; o2 a2 a2 be the quadratic objective function to be minimized with respect
txp P P P - . -
"2 2 1 3 to the parameter vecté@rand letf o be its global minimum over
and ©. Define the normalized estimation error
Roo= lim D*eTeD:t DA(6a —6) (22)
B, 0 --- 0 and let Fa(y, 8) denote the distribution function of
. 0 B, .- 0 DA(BA — 6).
= 59? : . . . a7 Theorem 1:Assume the observations are given by (1)
: : o and (2). Assume further that the parameter sp@csatisfies
0 0 --- Bp Assumption 1, and that the purely indeterministic component

{e(m, n)} satisfies the conditions of Assumption 2. Then

Note that in the terms of [16], [30Rx, ¢ is a regression corre- uniformly in ©

lation matrix.
We next show that the double-indexed sequeRige admits Fa(y,6) is AN(0, %) as A —oo (23)

a spectral representation. Since for@allB,, is independent of where

£ andk while B, = B it can be easily verified using (15) 1 4 .

thatR_,, o = R}, andR_, = Rf _,,ie Ry cisasym- =~ (Foo) 75 [ [ | dlev)dMw,v))| (Ro0)

metric series of operators afi?>. Furthermore, the sequence (24)

R, , is nonnegative definite. (See Appendix A for the proof.)  Proof: The proof follows immediately from the general

SinceR;, . is a double-index positive semidefinite symmetricesult in [29, Theorem 3.4.2]. This is because it is shown in
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Section Il that the gradient of the regression functions admit$e special case @f = 1 implies thatd » is an asymptotically

a spectral representation, while the remaining conditions thatbiased estimate &

the gradient of the regression functions must satisfy in orderTo prove Theorem 2 we will need the following lemma (see
for [29, Theorem 3.4.2] to hold, are satisfied in the special caség@pendix B for its proof):

where the regression functions are the sinusoids in (2). This iﬁ_emma 1:Let {a,} be a positive monotone sequence

because the sinusoids are bounded and infinitely differentia?le : o
functions, because of (13), and due to Assumption 1 that uaerrJdIng to infinity, and let{.X,,} be a sequence of random
’ ’ P 9 sriables such thdia,, X, } converges in distribution to an inte-

antees that the uniform convergence conditions required by [5 . . .
Theorem 3.4.2] are satisfied. tgorazl:)elﬁaorandom variabl&’, then{X,} converges in probability

Substituting (17) and (20) into (24) we have (25), shown at

the bottom of the page, where Proof of Theorem 2:Applying Lemma 1 to the elements

of pA(éA —8) we conclude using Theorem 1 that all the entries

Hwp, vp) 0 0 0 of 8. — 6 converge to zero in probability. Hend@ (i) — 8(3)|?
0 lopry) _SHlepry) 60y ry) converges to zero in probability, for aby< ¢ < oo, as well. By

C, =2 assumption all the entries 6t — 6 are bounded. Hence, using

0 —6¢(‘;%’"P) 12¢(§§’”P) 0 Lebesgue bounded convergence theorem (see, e.g., [34, p. 96],
. o) o iy | 1350 wehaveima . E(0:(0) - 8D =0, 0
I T

(26) Remark: Since all the entries ﬁA — 68 converge to zero in
N . . probability, while DA (@A — @) converges in distribution to a
We note that the conditions on the disturbance figith, m)}  muyltivariate Gaussian random varialfil, is consistent asymp-
specified by Assumption 2 imply that for Theorem 1 to holgytically normal (CAN). The covariance of the limiting distri-

there is a tradeoff between the order of the disturbance MQions: is thenormalized asymptotic covariancé d, [36].
ments that need to be uniformly bounded and the measure of '

dependence of the field. More specifically, choosing a larger Note that the normalized asymptotic covariance matrix in
(smaller) value of implies that higher (lower) order moments(25) and (26) is block diagonal where each block corresponds to
of the disturbance field need to be uniformly bounded, while tiBe parameters of a different sinusoidal component. Moreover,
measure of dependendéF(A,), F(A,)) of any two subsets its element that expresses the normalized asymptotic error vari-
A1, Ay € Z2 can be higher (lower) such that the inequalit@nce in estimating the amplitude parameter of each sinusoid is
(v — 2)§ > 16 is satisfied. Since the mixing condition im-decoupled and independentadf other model parameters. It is
plies a similar type of condition for the covariance sequence, tf@dunctiononly of the colored noise spectral density at the sinu-
tradeoff can be similarly stated in terms of the rate of decay 8pid’s frequency. It should be emphasized that this derivation of
the covariance sequence versus the order of the disturbance fiegilarge sample properties of the LS estimator is independent
moments that need to be uniformly bounded. Examples of Hef-the type of the probability distribution function of the ob-
mogeneous random fields that satisfy the conditions of Assunﬁf.rved field. Finally, we note that related results for the special
tion 2 (and hence Theorem 1) include finite support Markdt@ses, where the purely indeterministic component is a white
random fields (MRF) and finite support Gaussian moving awnwise field of some unknown distribution, and for the case where
erage (MA) fields. For MRFs, the strong mixing condition hold§1e white noise field is Gaussian, were derived in [10] and [9],
since samples with sufficiently large distance separating theffispectively.
are independent. For Gaussian MA fields, the covariance se-
guence is zero for sufficiently large lags, while the distribution V. ASYMPTOTIC EFFICIENCY OF THELEAST SQUARES
is completely determined by the second-order moments. ESTIMATOR

A. Asymptotic Results

Theorem 2:Assume the observations are given by (1) ) . . .
and (2). Assume further that the parameter sp@ceatisfies The CRB provides a lower bound on the error variance in esti-

Assumption 1, and that the purely indeterministic componemating the model param_et_ers for any unbiased estimator of these
{e(m, n)} satisfies the conditions of Assumption 2. L&) parameters. In [2], the finite-sample Cramer—Rao lower bound

denote theth element of. Then, for each element éf on the error variance in jointly estimating the parame_ters of the
different components of a 2-D homogeneous Gaussian random

Ah_lgo El0a(2) - 0()|* =0, 1< g<oo. field with mixed spectral distribution, from a single observed
d)(wl, 1/1)[§R(B1)]71 0 Ol 0
P(w2, 12)[R(B2)] ™ C,

Y=2 ' _ ' = _ ) (25)
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realization of it, is derived. The model defined in (1)—(3) is a Theorem 3:Assume the observations are given by (1)
special case of the model addressed in [2], as it assumes theaotd (2). Assume further that the parameter sp@ceatisfies
served field contains only the harmonic and purely indetermifssumption 1, and that the purely indeterministic component
istic components of the 2-D Wold-like decomposition. Since thig(m, n)} satisfies the conditions of Assumption 2. Assume
LS estimator of the harmonic component parameters was shoaso that{e(m, n)} is Gaussian. Then, the LS estimator of the
to be consistent asymptotically normal and asymptotically uharmonic component parameters is asymptotically efficient
biased we investigate in this section its asymptotic efficienofBAN).

The problem of deriving the normalized asymptotic CRB (and  Proof: It has been shown thgt > 1. We next show that
the normalized asymptotic information matrix) for the Gaussiahis condition is sufficient for (27)—(29) to hold. Since for all
complex-valued model which is equivalent to the model defindd, ), |7« ;| < 79,0, and since in the following we are interested
in (1)—(3), using the normalization mati® defined in (7) has only in bounding sums of the type found on the left-hand side of
been recently investigated in [23]. Following similar argument{82), we can assume without loosing the generality of this proof
for the real-valued case, and assuming that the covariancetiet (31) holds for al(%, 7). (In fact, this assumption holds for
quence{ry, ;} of the purely indeterministic component satisfiesll (k, [) except for a finite number of pairs.) Thus,

the conditions N

M N M
M N Kl
. klri 1) < 4 .
1 Kl 1] =0 27 )IEDIRLENESUD IS g
Ao VMN Z Z [klr 27) k=—M I=—N =1 =1 (VK2 +12)( "
k=—M l=—N (32)
1 M N Next, consider the function
lim —— |k7k 1| =0 (28)
Ao /M E E ) ; . xYy
k=—M I=—N f(x7 y) - (12 + y2)1+772/27 & 2 17 y 2 1
M N
lim 1 E ( E : i 1| =0 (29) This positive function is continuous and strictly decreasing to
A—oo VN = Sy ’ zero in any direction. Hence, employing the Cauchy integral test

it can be shown that the normalized large sample CRB is giviff conclude that the right-hand side (RHS) of (32) converges or
by (25) and (26). (We note that conditions (27)—(29) are triviall§Ver9es with the same rate as the integral

satisfied by finite support 2-D MA models). A CAN estimate M N
for which the normalized asymptotic covariance matrix is equal / / T it dx dy.

to the normalized asymptotic CRB is asymptotically efficient Lo @4y

(or best asymptotically normal (BAN), see e.g., [36]). Thus, wdence, we obtain using the transformation to polar coordinates
next show that in the case where(n, m)} is Gaussian, a suffi- that

cient condition for the LS estimator of the harmonic component M N

parameters to be asymptotically efficient is thafn, m)} sat- Z Z Ikl |

isfies Assumption 2. ’

ry

Since{e(n, m)} has uniformly bounded + § absolute mo- RN
ments, using the strong mixing assumption it can be shown (see, < 4 / / . S dy
[28, Lemma 2]) that there exists some positive constamtch ENCER SR
that VMZFNT pm/2 i O
st < 4y / / reosO SOt o dp
a1l < e((p(S, T)))5+e (30) L 0 !
VIMIFNZ
for any pair of setsS, T C 22 for which (0, 0) ande(k, ) < K/ 1= dr
are measurable with respect f(S) and F(T), respectively. 1
Hence, lettings = {(0, 0)}, 7 = {(k, 1)}, and using Assump- s\ 22
tion 2 we have tha{t(a k)2}+ 2 —{>(oo & <K ( M? + NQ) (33)
il < m ( \/m)_(””)% (31) Wherek is some positive constant.
Considering now the normalized sum, we conclude that
wherer; is a positive constant. We can write y v ; 2o
TR LA LS S i <k VR T
446 VMN =y vVMN
where . - .
On taking the limit, we conclude that @ — o, 7, > lisa
o = yo+2y—4 1 sufficient condition that the RHS of (34) tends to zero.
4+6 Following a similar line of proof it can be shown that

since we assume that — 26 > 16. Note that (31) implies that M N e E v AR
the spectral density of the purely indeterministic fiéi@, »/) 1 Z Z lkri | < K ( M2+ N ) .
AT RIS

(35)
is continuous and bounded. SV VM
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Fig. 2. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function ofiSIN& (dashe
compared with the corresponding exact CRB (solid line).
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Fig. 3. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function clidasgaiimen
SNR = — 10 dB (dashed line), compared with the corresponding exact CRB (solid line).

Heremns > % is a sufficient condition that the RHS of (35) tend4.S estimator in comparison with the exact CRB, as a function
to zero. Similar arguments hold in evaluating the limit in (29)f the local SNR. The local SNR for thigh sinusoid is defined
Thus,n, > 1 is a sufficient condition for (27)—(29) to hold as

B. Finite Sample Results 2

. k

In the following, we shall consider the normalized asymp- SNR, = 10log Hwrs i) (36)
totic covariance matrix of the LS estimator and the normalized
asymptotic CRB matrix, when these matrices (shown in the pre-In this example, the purely indeterministic component of the
vious section to be identical) are rescaled by multiplying thefireld is an NSHP MA field with supporf; ;. The MA model
onthe leftand on the right b .. Having established the suffi- parameters ar&(0, 1) = —0.9, b(1, —1) = 0.1, b(1, 0) =
cient condition for asymptotic efficiency of the LS estimator of-0.5, (1, 1) = 0.4. The driving noise of the MA model is a
the parameters of 2-D sinusoids observed in a colored Gaussiaro mean, white Gaussian noise field with a unit variance. For
noise field, it is next shown using numerical evaluation of somkiustration purposes, the spectral density function of the field is
specific examples that the rescaled normalized asymptotic erdepicted in Fig. 1. The harmonic component of the field com-
covariance of the LS estimator is rapidly approached (in termpsses a single sinusoid with frequengy;, »1) = (0.2, 0.15).
of both SNR and data dimensions) by the exact, finite-sampte amplitude varies to provide the desired range of SNR values.
CRB. In the following experiments, the rescaled normalizebhe dimensions of the observed field &@x 20 .
asymptotic covariance matrix of the LS estimato#a$ com- The results of this example, Fig. 2, indicate that even for
pared with theexactCRB [2]. It should be noted that the perfor-modest dimensions of the observed field, and for a wide range
mance of the LS estimator depicted in the following examplesa$ SNR values, the rescaled normalized asymptotic error vari-
not the result of any particular implementation of the estimatances of the LS estimates of the amplitude, phase, and spatial
but rather a performance curve of the asymptotic behavior foéquency are essentially identical to the corresponding values
the estimator, evaluated analytically for various SNRs and dattthe exact CRB. These CRB values are evaluated for the given
dimensions, based on the foregoing derivations. dimensions of the observed da# (x 20 in this case).

1) Estimation Performance as a Function of SNR: this 2) Estimation Performance as a Function of Data Dimen-
subsection, we investigate the asymptotic performance of tsiens: In this subsection, we investigate the effect of the size
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Fig. 4. The rescaled normalized asymptotic error variance of the LS estimate of the amplitude, phase, and spatial frequency as a function cliclasefalimen
SNR = 0 dB (dashed line), compared with the corresponding exact CRB (solid line).

of the observed field on the asymptotic performance of the Ilffield satisfies a combination of conditions comprised of a strong
estimator and on the CRB. mixing condition and a condition on the order of its uniformly
In this example, the harmonic component of the field confbounded moments, the normalized estimation error of the LS es-
prises a single sinusoid such that= 0.1, » = 0.4, anda = 5. timator is consistent asymptotically normal with zero mean and
The purely indeterministic component is the same as in the fisshormalized asymptotic covariance matrix for which a simple
example. To evaluate the functional dependence of the LS e&pression is derived. It is concluded that there is a tradeoff be-
timator rescaled normalized asymptotic error variance, andtefeen the order of the disturbance moments that need to be uni-
the corresponding CRB, on the dimensions of the observed fiétamly bounded and the mixing rate of the disturbance field. It
we setV = M and let bothV and A/ assume values fromto is also shown that the LS estimator of the parameters of the 2-D
20. The results of evaluating the rescaled normalized asymptadiousoids is asymptotically unbiased.
error variance of the amplitude, phase, and spatial frequency esthe normalized asymptotic covariance matrix is block diag-
timates, and the corresponding exact CRB, as a function of theal where each block corresponds to the parameters of a dif-
field dimensions are depicted in Figs. 3 and 4 for SNR valuesfgfrent sinusoidal component. Moreover, for each sinusoid, the
—10and 0dB, respectively. The results indicate that the rescatadtrix element that expresses the normalized asymptotic error
normalized asymptotic error variance of the LS estimator @friance in estimating the amplitude parameter of that sinusoid
each of the sinusoids parameters is nearly identical to the corisedecoupled and independent of all other model parameters. It
sponding exact CRB, even for modest data dimension and rakaa function only of the colored noise spectral density at the si-
tively low SNR values. nusoid’s frequency.
Assuming further that the colored noise field is Gaussian,
the LS estimator of the sinusoidal components is shown to be
VI. CONCLUSION asymptotically efficient. Itis also demonstrated that the normal-
ized asymptotic error covariance of the LS estimator is rapidly
We have investigated the problem of LS estimation of the papproached (in terms of both SNR and data dimensions) by the
rameters of 2-D sinusoids observed in colored noise. Makiegact, finite-sample CRB, when the CRB matrix is normalized
no assumptions about the specific type of the probability distidy the same normalization matrix employed to normalize the LS
bution of the observed field, it is shown that if the disturbanaestimator covariance matrix.
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APPENDIX A [8]

We next show that the sequend®; ; is nonnegative

definite. Indeed, leta be an arbitrary real-valued vector [9]

a=[af,. .., of]" whereey = [o, ..., &4]% andl = 1,
2, ..., P. Consider now the quadratic form [10]
O6—p,e—n :aTRé,me,na
P (11]
1 4
—IR{S dilatmmtnonlgT By b (37)
2 g [12]
Since all principle minors aB,, are nonnegative,, is positive
semidefinite (see, e.g., [24, p. 405]). Let aksbe anym-vector  [13]
wherem is arbitrary and lety, r2, ..., 7, andsy, sz, ..., Sm
be some positive integers. Then [14]
Z k;LO—7*H—7‘5,SH—55k€
pye=1 [15]
1 r m 2
=5 R > ol Big |y kyetmatred| b >0 (38) 16
=1 p=1 [17]

where the last inequality results from the positive semidefinite-
ness of the block®;. [18]

APPENDIX B (1]

Lemma 1:Let {a,} be a positive monotone sequence
tending to infinity, and let{ X,,} be a sequence of random [20
variables such thdts,, X, } converges in distribution to an inte-
grable random variablé’, then{ X,,} converges in probability
to zero. [

Proof: Fix 6 > 0. The set of continuity points of the
distributions ofX, {a, X, } is a dense set (as its complement[22]
is a countable union of countable sets). Hence, by Chebyshev
inequality, for anye > 0 we can choos& > 0 such that

P{|X] > C}) < ¢, where£C are continuity points of all [23]
the above distributions. For théat, there existsV such that for [24]
anyn > N, § > < hence{|X,| > 6} C {an|X,| > C}. By

the continuity of the distribution functions &tC’ [25]

limsup P({|X,| > 6}) < lim P{{a,|X,| > C})

=P{|X|>C}) <e O [26]
[27]
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