
3676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Universal Manifold Embedding for Geometrically
Deformed Functions

Rami R. Hagege and Joseph M. Francos

Abstract— Assume we have a set of observations (for exam-
ple, images) of different objects, each undergoing a different
geometric deformation, yet all the deformations belong to the
same family. As a result of the action of these deformations,
the set of different observations on each object is generally a
manifold in the ambient space of observations. In this paper
we show that in those cases where the set of deformations
admits a finite-dimensional representation, there is a mapping
from the space of observations to a low-dimensional linear
space. The manifold corresponding to each object is mapped to
a distinct linear subspace of Euclidean space. The dimension
of the subspace is the same as that of the manifold. This
mapping, which we call universal manifold embedding, enables
the estimation of geometric deformations using the classical linear
theory. The universal manifold embedding further enables the
representation of the object classification and detection problems
in a linear subspace matching framework. The embedding of
the space of observations depends on the deformation model,
and is independent of the specific observed object; hence, it is
universal. We study two cases of this embedding: that of elastic
deformations of 1-D signals, and the case of affine deformations
of n-dimensional signals.

Index Terms— Estimation theory, manifold learning and
estimation, dimensionality reduction, time warping, affine
transformations, linear estimation.

I. INTRODUCTION

SOLUTIONS to many problems in image and signal analy-
sis have to cope with the effects of the multiplicity

of appearances of objects. For example, in the problem of
object recognition the “same” object may have a huge family
of different appearances, and the first problem one needs
to confront, is the understanding of the set of all possible
appearances of that single object. One of the main reasons
for the variability in the appearance of an object is a change
in its underlying geometry. Yet the same variability in the
geometry may be common to a large set of objects since
different objects may have the same geometric degrees of
freedom (e.g., rigid objects). In this paper we assume we have
a family of known objects, along with a family of invertible
geometric deformations, that determines the geometric degrees
of freedom of the objects. We elaborate on the problem of
jointly characterizing and analyzing the manifolds generated
by the set of possible appearances of these objects.
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The most compact and informative representation of the
space of observations would be an explicit label for each object
and the parameters of the deforming transformation which
creates any specific observation on the labeled object. In most
cases, however, we are given some coordinate system for the
space of observations in which these parameters are implicit,
and therefore it is difficult to directly identify the object
or to estimate the deformation parameters. Many different
approaches have been suggested in order to alleviate these
difficulties. Some, like manifold learning, aim at finding the
unifying structure of all the object appearances by obtaining
a detailed description of the manifold by densely sampling it,
as we discuss below. Others are based on finding invariants
(see, for example, [23] for a computer vision application
of invariants for recognition under changing viewpoint and
illumination). Invariants are maps from the space of observa-
tions into some lower dimensional space such that the maps
(invariants) are constant on the object manifolds, yet different
on different object manifolds.

The problem of finding and analyzing non-linear low-
dimensional structures in high-dimensional data has been
attracting considerable interest in recent years, see, e.g., [7]
for a recent collection of papers. The common underlying
idea unifying the existing approaches is that although the data
is sampled and presented in a high-dimensional space, for
example because of the high resolution of the camera sensing
the scene, in fact the intrinsic complexity and dimensionality
of the observed physical phenomenon are very low. More
specifically, the problem of characterizing the manifold created
by the multiplicity of appearances of a single object in some
general setting is studied intensively in the field of nonlinear
dimensionality reduction. As indicated in [6], linear methods
for dimensionality reduction such as PCA and MDS generate
faithful projections when the observations are mainly confined
to a single low-dimensional linear subspace, but they fail
in case the inputs lie on a low-dimensional manifold which
is not a linear space. Hence, a common approach among
existing non-linear dimensionality reduction methods is to
expand the principles of the linear spectral methods to low-
dimensional structures that are more complex than a single
linear subspace. This is achieved, for example, by assuming
the existence of a smooth and invertible locally isometric
mapping from the original manifold to some other manifold
which lies in a lower dimensional space, or by employing
the locally linear structure of the manifold, [1]–[5]. These
dimensionality reduction methods make very modest assump-
tions on the reasons for the variability in the appearances of
the object. In practice, the isometry assumption implies that
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the mapping behaves locally like rotation and translation and
hence preserves distances along the manifold. As a result of
the very mild assumptions made, the only way to determine
the structure of the manifold generated by a single object is to
densely sample it such that any other appearance of the object
can be approximated locally and linearly by the collected
samples. In many cases this implies the collection of a very
large number of samples. Hence, the effort in constructing the
embedding of the manifold of a single object based on samples
alone may be considerable. Constructing an embedding for
many objects is in many cases prohibitive.

An additional family of methods aims at piecewise approx-
imating the manifold or a set of manifolds, as a union of
linear subspaces, in what is known as the subspace clustering
problem. See [14], [21] and the references therein. The need
here is to simultaneously cluster the data into multiple linear
subspaces and to fit a low-dimensional linear subspace to
each set of observations. A different assumption, namely that
the data has a sufficiently sparse representation as a linear
combination of the elements of an a priori known basis or of
an over-complete dictionary [9], [13] leads to the framework of
linear dictionary approximations of the manifolds, as well as to
the widely used framework of compressed sensing, [8], [19].
Geometrically, this assumption implies that the manifold can
be well approximated by its tangent plane, with the quality
of this approximation depending on the local curvature of
the manifold. In the absence of additional prior knowledge,
learning the dictionary is performed through an iterative
optimization procedure, usually using large sets of training
data, [15], [16]. Choosing an appropriate dictionary for a
dataset is a non-convex problem, and hence the iterative
procedure is not guaranteed to find the global optimum.
In many cases existence of a priori knowledge allows one
to replace the implicit dictionary learned from observations
with a parametric dictionary. Then, the problem of learning
the dictionary becomes one of finding a discretization of the
parameter space defining the manifold on a pre-defined grid,
such that the desired sparse approximation of the signal is
achieved, [17], [20].

Note that dictionary based methods, by the nature of their
construction, are not aimed at providing an exact description
of the entire manifold (unless it is in the linear span of
the basis functions) but rather a linear approximation with
an a priori known error bound. To this end, it has been
shown, [10], that for any sparse recovery principle that relies
on the accuracy of best k-term approximations for its per-
formance guarantees, a mismatch between the assumed and
actual bases for sparsity may lead to a growing approxima-
tion error, regardless of how fine the discretization of the
manifold is.

Indeed, there are many cases where no prior knowledge
of the sources of the variability in the appearances of an
object is available. On the other hand, there are many scenarios
in which such information is inherently available, and hence
can be efficiently exploited. A simple example is the case
of a three-dimensional object undergoing rigid motions in
space. Here, one clearly knows the source of the variability,
and this knowledge can be exploited in order to understand

the structure of the manifolds before any sample is being
collected. In this work we present a method that exploits
this type of a priori knowledge in order to enable efficient
detection, recognition and deformation estimation of multiple
and deformable objects. We concentrate on the case where the
geometric deformations are the major source for the variability
in the appearances of the object. For example, in the case of
1-D signals this problem is known as time-warping estimation,
which reduces to the problem of time-delay estimation in its
simplest version. Assuming the deformations are invertible,
we prove the existence of a map from the space of observations
into a low dimensional vector space such that the manifold
of each object is mapped into a different linear subspace.
This universal manifold embedding (UME) is implemented
by constructing a set of nonlinear functionals. As such, the
mapping itself is nonlinear, and no local linear approximations
of the manifold are involved. The UME provides an exact
characterization of the manifold in contrast with existing
dimensionality reduction methods in which local approxima-
tions of the manifold structure are produced. The evaluation
of the UME for each object requires the knowledge of the
group of transformations it undergoes and only a single
observation on the object. It provides an exact description
of the manifold despite using as few as a single observation,
and hence the need for using large numbers of observations
in order to learn the manifold or a corresponding dictionary,
is eliminated. The results in this work generalize and extend
the results of [11], and [12], where the fundamental problems
of estimating the parametric models of 1-D elastic and 2-D
affine deformations of a single object were analyzed, to prob-
lems that require joint detection, recognition and deformation
estimation of multiple and deformable objects.

The structure of this paper is as follows: In Section II
we provide the basic definitions and the scope of the
proposed UME. Then, in Section III we present the
UME for manifolds generated by one-dimensional functions
that undergo invertible geometric deformations (warping of
the x-axis) where the deformations belong to a known para-
metric family. In Section IV we extend the previously devel-
oped framework of the UME to multidimensional signals and
prove by construction the existence of a UME in the case
where the set of possible geometric transformations the objects
may undergo is the set of affine transformations. In Section V
we extend the results of the previous sections where zero-
and first-order moments of the proposed nonlinear operators
were considered and employ higher order moments. Finally,
in Section VI we employ the UME to obtain an accurate and
linear solution to the problem of estimating the pose of an
object.

II. PROBLEM DEFINITION

Let O be the space of observations (for example, the space
of finite duration speech segments, or the space of images),
let � be the set of possible geometric deformations with N
degrees of freedom, and let S be a set of known objects, where
each object is modeled as a compactly-supported, bounded,
and Lebesgue measurable (or more simply, integrable) func-
tion from R

n to R. We assume that the observations are
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constructed by the following procedure: we first choose an
object g ∈ S and an arbitrary geometric deformation ϕ ∈ �.
Next, we define an operator ψ : S ×� → O that acts on an
object and a geometric deformation, producing an observation.
The observation is o = ψ(g, ϕ). For a specific object g ∈ S
we will denote by ψg : � → O the restriction of the map to
this object. We assume that the N parameters characterizing�
are the coefficients of a linear combination of a priori known
basis functions that completely specify the action of the group
of geometric transformations the object may undergo. For
example, if � is the set of functions describing invertible
two-dimensional affine deformations then � is of dimension 6,
as these 6 parameters define the geometric transformation
along the two-axes. For any object (function) g ∈ S the set of
all possible observations on this particular function is denoted
by Sg . We refer to this subset as the orbit of g under �.
In general, ψg is not linear, and hence Sg is a nonlinear
manifold, in the space of functions. We note here, that in
the context of this paper the term “manifold” adopted from
the machine learning and dimensionality reduction literature,
refers to the orbit of g under �, i.e., to the set of all possible
observations on g due to the action of the group defined by �.

In general O has a very high dimension (e.g., the number
of pixels in an image). It is composed of the union of orbits,
Sg , of the different objects g in S such that each orbit
Sg is the result of the action of the group of coordinate
transformations defined by � on the object g. Hence, one
must find an accurate description of Sg for every g in order to
enable any further analysis of it. As indicated earlier, existing
non-linear dimensionality reduction methods rely on dense
sampling of Sg to achieve this description using local linear
approximations, or alternatively, provide only an approximate
description of the manifold.

Definition 1: A universal manifold embedding T : O → H
is a map from the space of observations into a low dimensional
Euclidean space, H , such that the set T (Sg) is a linear
subspace of H for any g and the restriction of T to the
manifold Sg is invertible.

In the following sections we show that under the above
assumptions and for some specific choices of � such maps
exist where the map T ◦ ψg : � → H is linear and
invertible. These properties hold for every object g ∈ S and
the map T is independent of the object. We call the map T ,
universal manifold embedding as it universally maps each
of the different manifolds, each manifold corresponding to a
single object, into a different linear subspace such that the
overall map T ◦ψg : � → H is linear in the parameterization
of �. The map ψg : � → O maps � nonlinearly and
represents the physical relation between the object and the
observations on it. The map T : O → H maps O nonlinearly
such that the overall map T ◦ ψg : � → H is linear. This
universal map allows us to represent the (mapped) observations
in a space where the action of � is linear.

In those cases where the universal embedding T : O → H
exists, one can solve many problems concerning the mul-
tiplicity of appearances of an object directly in H using
classical linear theory, instead of being forced to employ
non-linear analysis. Thus for example, in order to characterize

Fig. 1. The Universal Manifold Embedding framework (from left to right):
The physical model that generates the observations - applying the set of
possible deformations to some object g produces Sg which is the set of all
possible observations on g. Sg is a subset of the space of observations O .
The UME - all observations in Sg are nonlinearly mapped by T to a single
linear subspace Hg = T (Sg).

the mapped manifold of some object in the linear space H all
that is required is a single sample from the set of appearances
of the object so that the linear subspace in H can be evaluated.
An example of an implementation of this procedure in a practi-
cal problem is given in the last section. Figure 1 schematically
illustrates the concept of the proposed method.

III. UNIVERSAL MANIFOLD EMBEDDING FOR

ONE-DIMENSIONAL WARPED SIGNALS

In this section we consider one-dimensional functions that
undergo invertible geometric deformations (warping of the
x-axis) where the deformations belong to a known parametric
family of deformations. For example, in the simplest case
where the x-axis is scaled and shifted, � = {ax + b|a �= 0}.
Therefore, in this example, for any object g ∈ S the set of
all possible observations on this particular function is Sg =
{g(ax + b)|a �= 0}.

Next we state some conditions for which such universal
embedding exists. Let the set of objects S be the set of
compactly-supported measurable functions on the real line.
The set of possible observations O is the same set as S. � is
the family of invertible, elastic geometric deformations that a
function in S may undergo. Hence we can equivalently model
the deformation or its inverse. More precisely, every function
ϕ ∈ � is continuous with a differentiable inverse, where the
derivative of the inverse is also continuous and admits the
finite-dimensional linear representation

dϕ−1(x)

dx
=

N∑

i=1

ai ei (x). (1)

The functions {ei }N
i=1 are continuous and known. They serve

as basis functions spanning the space of the considered geo-
metric deformations. Thus, the vector {ai }N

i=1 provides the
parameterization of �. We note that only subsets of the finite
dimensional space R

N actually describe physically meaningful
geometric deformations. (A detailed analysis on the reasoning
for adopting this type of model can be found in [11]).

Let g ∈ S be some arbitrary object from S and let ϕ ∈ �
be an arbitrary geometric deformation from �. The observed
realization is simply the composition of these two functions
h = g ◦ ϕ. Therefore the map ψ : S ×� → O is given by:

ψ(g, ϕ) = g ◦ ϕ. (2)
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This map is clearly nonlinear in the parameters {ai }N
i=1 and

therefore the orbit of each object g is the nonlinear manifold
Sg = {g ◦ ϕ|ϕ ∈ �}. Instead of attempting to describe this
manifold, we are looking for a map T such that T (Sg) spans
a linear subspace for every g ∈ S. More precisely, we are
looking for two different entities: one is the map T , and the
other is the subspace of H , to which Sg is mapped. Let M
denote the dimension of the linear space H . We construct both
these entities simultaneously by constructing the action of T
in each one of the coordinate of H .

Let W be the space of bounded measurable functions
(operators) from R into itself.

Lemma 1 [11]: Let h, g ∈ Sg be two observations on the
same object such that h = g ◦ ϕ and such that (1) holds.
Then, every w ∈ W provides a single linear constraint

on the elements of {ai }N
i=1 in the form

∞∫
−∞

w (h(x)) dx =
N∑

i=1
ai

∞∫
−∞

ei (x)w (g(x)) dx.

Proof: Let z = ϕ(x). Then ϕ−1(z) = x . Using a change of
variables

∞∫

−∞
w (h(x)) dx =

∞∫

−∞
w (g(ϕ(x))) dx

=
∞∫

−∞

(
ϕ−1(z)

)′
w (g(z)) dz

=
N∑

i=1

ai

∞∫

−∞
ei (z)w (g(z)) dz. (3)

Remark 1: Note that the constraint on {ai }N
i=1 is linear for

any g, and that the coefficients
∫

ei (x)g(x)dx depend on g.
Theorem 1: Let g ∈ Sg and let {ei }N

i=1 be the set of basis
functions spanning the space of the considered geometric
deformations. Let h be some other function in Sg such that
h = g ◦ φ, φ ∈ � where φ admits a series expansion of
the form (1). Let M be some positive integer. Then, there
exists a linear space H ⊂ R

M and a map T : O → H ,
such that the restriction of this map to Sg is such that the
composed map T g = T ◦ ψg is a linear map from the finite-
dimensional representation of � to H . As a linear operator
on the parameterization of �, given by {ai }N

i=1, T g admits a
matrix representation of the form

[
Tg]

i,k =
∫

ei (x)wk(g(x))dx. (4)

The operator T g is invertible if and only if there exists a set
of functions {wk}M

k=1, with M ≥ N such that Tg is of rank N.
The operator T g is independent of the deformation parameters
{ai }N

i=1 in the basis {ei }N
i=1.

Proof: Since H is a subspace of R
M , then by definition,

T has to be composed of M components {Tk}M
k=1, where the

k-th component of T , is such that the k-th component of T g ,
T g

k = Tk ◦ ψg is a linear map from � to R. Since by the
problem definition we have that h = g ◦ϕ, we are looking for
functionals Tk(h) such that T g

k is a linear expression in the

parameters {ai }N
i=1 for the basis {ei }N

i=1. We next construct Tk

and T g
k . Following Lemma 1, we have that by choosing a

family of linearly independent functions {wk}M
k=1 ∈ W , we can

construct an operator T such that its components satisfy the
equality

Tk(h) =
∫
wk(h(x))dx

=
N∑

i=1

ai

∫
ei (x)wk(g(x))dx. (5)

The functionals in (5) impose linear constraints on the
parameters {ai }N

i=1 for any g. Here again, the coefficients∫
ei (x)wk(g(x))dx depend on g but the constraints are always

linear in {ai }N
i=1.

The operator T is constructed by stacking a sequence of M
functionals {Tk}M

k=1. Since each functional Tk is such that the

composed map T g
k = Tk ◦ ψg is linear in our parametrization

of � by {ai}N
i=1, stacking {T g

k }M
k=1 we have that T g is also

linear in {ai }N
i=1. Moreover, since T g is a linear operator

from � to R
M it admits an M × N matrix representation,

where the (i, k) entry of the matrix is given by (4). Thus,
T g is invertible if and only if there exists a set of linearly
independent functions {wk}M

k=1 ∈ W , where M ≥ N , such
that Tg is of rank N . Finally, T g has the required properties
to be a universal manifold embedding, as it is independent of
the specific deformation parameters in the basis {ei }N

i=1.
Note that M can be chosen to be considerably larger than N ,

as M is limited only by the dimension of the space of functions
from the range of our observations. Therefore, the condition
that T g is invertible on Sg is that the M × N matrix Tg

is of full rank. This condition depends on g ∈ S alone
and not on the specific observed geometric deformation. For
M ≥ N the measure of the space of all non full rank matrices
in R

M×N is zero. However, there are clearly pathological
examples in which it is impossible to reconstruct the geometric
deformation, for example when g is constant on its domain.
The exact conditions such that g ∈ S admits a mapping to a
full rank Tg are considered in [11].

Let a = [a1, . . . , aN ]T and let

h =
⎡
⎢⎣

∫
w1(h(x))
...∫

wM (h(x))

⎤
⎥⎦. (6)

Using (3) we have

h = Tga. (7)

Recall that for any object g ∈ S the set of all possible
observations on this particular function, subject to the action
of � is denoted by Sg . We denote by {gi} the (uncountable)
set of functions composing Sg .

Let Hg = Sp{Tg} be the linear subspace of H spanned by
the columns of Tg .

Theorem 2: Let gα, gβ be any two functions in Sg. Then,
Sp{Tgα } = Sp{Tgβ }.

Proof: Let us first show that Sp{Tgβ } ⊂ Sp{Tgα }. Assume
Sp{Tgβ } �⊂ Sp{Tgα }. Hence, there exists a linear combination
of the columns of Tgβ given by Tgβa which is not in Sp{Tgα }.
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Next, consider the series
N∑

i=1
ai ei (x), where ai is the i -th

element of a. Using (1) we conclude that there exists some

function ψ̃ ∈ � such that dψ̃−1(x)
dx =

N∑
i=1

ai ei (x). Similarly,

following (3) and (7) there exists some function h̃ ∈ Sg defined
by

N∑

i=1

ai

∫
ei (x)wk(gβ(x))dx =

∞∫

−∞
wk

(
gβ(ψ̃(x))

)
dx

=
∫
wk(h̃(x))dx (8)

so that h̃ = gβ ◦ ψ̃ . Hence, h̃ defined as in (6) satisfies
h̃ = Tgβa, where by the above assumption h̃ is not a vector
in Sp{Tgα }. However, by construction, h̃ ∈ Sg , while gα is
also in Sg . Hence, h̃ has to be in Sp{Tgα } as there is some
ϕ ∈ � such that h̃ = gα ◦ ϕ. By this contradiction we have
that Sp{Tgβ } ⊂ Sp{Tgα }. Substituting the roles of Sp{Tgα }
and Sp{Tgβ } in the foregoing argument, we conclude that
Sp{Tgα } ⊂ Sp{Tgβ }. Hence, Sp{Tgα } = Sp{Tgβ } for every
two functions gα, gβ ∈ Sg .

Remark 2: Theorem 2 implies that all functions in the man-
ifold Sg form an equivalence class (with respect to producing
the linear subspace by the universal manifold embedding).
Hence, any function from the manifold can be chosen as its
representative. Any such arbitrary selection would yield the
same linear subspace to which the entire manifold is mapped
by the universal manifold embedding.

Remark 3: We have shown in this section that any function
on the manifold is uniquely mapped into a parameter vector
that provides its degrees of freedom and hence its “position”
on the manifold. Thus, fixing a representative function, the
universal manifold embedding is a bijection since applying the
universal manifold embedding to any function on the manifold
results in a unique parameter vector a, while that function can
be reproduced from that vector and the representative function.

We therefore conclude that the manifold Sg of dimension N
is mapped by the UME into an N-dimensional linear subspace
Hg of R

M. For every function h ∈ Sg , there exists some φ ∈ �
such that h = g ◦ φ. Hence, h is mapped by the UME into a
unique vector h = Tga ∈ Hg, which is invariant to the specific
choice of the representative function g ∈ Sg .

IV. UNIVERSAL MANIFOLD EMBEDDING FOR

MULTI-DIMENSIONAL AFFINE TRANSFORMATIONS

In this section we extend the previously developed frame-
work of the universal manifold embedding to multidimensional
signals and prove by construction the existence of a universal
manifold embedding in the case where both the set S of
possible objects, and the set O of observations, are the space of
n-dimensional Lebesgue measurable functions with compact
support. The set of possible geometric transformations, �, the
objects in S may undergo is the set of affine transformations
(i.e., the affine group).

More specifically let A : R
n → R

n be an affine transforma-
tion of coordinates, that is, y = A(x) where x, y ∈ R

n such

that y = A(x) = Ax + c and x = A−1y + b, where A ∈
GLn(R), b, c ∈ R

n . Let ỹ = [1, y1, . . . , yn]T . Thus, x = Dỹ
where D is an n × (n + 1) matrix given by D = [

b A−1
]
.

Hence, in this case the set of possible transformations � is
parameterized by D (or equivalently by A and c).

The orbit of the function g ∈ S is Sg = {g ◦A|A ∈ �} and
our aim is again to find for every g ∈ S a map T such that
T (Sg) is a linear subspace of some linear space H ⊂ R

M,
independent of the deformation parameters.

Lemma 2 [12]: Let g, h ∈ Sg be two observations on the
same object such that h = g ◦ A. Let M be some positive
integer, and let w� ∈ W � = 1, . . . ,M be a set of bounded,
Lebesgue measurable functions w� : R → R. Let Dk denote
the kth row of the matrix D. Then, linear constraints (up to
a scale factor) on the parametrization of A are found by
applying functionals of the forms

∫

Rn
xkw� ◦ h(x)dx for some

w� ∈ W. These constraints take the form
∫

Rn

xkw� ◦ h(x)dx =
∣∣∣A−1

∣∣∣
∫

Rn

(Dk ỹ)w� ◦ g(ỹ)d ỹ. (9)

Let f be some observation on a deformable object and let

T f,1

=

⎡

⎢⎢⎢⎣

∫

Rn
w1 ◦ f (y)

∫

Rn
y1w1 ◦ f (y) · · · ∫

Rn
ynw1 ◦ f (y)

...
. . .

...∫

Rn
wM ◦ f (y)

∫

Rn
y1wM ◦ f (y) · · · ∫

Rn
ynwM ◦ f (y)

⎤

⎥⎥⎥⎦

(10)

where in general, the notation T f, j indicates that only
moments of order less or equal to j , of w� ◦ f are employed.

Theorem 3: Let g ∈ Sg and let {1, x1, . . . , xn} be the set
of basis functions spanning the space of n-dimensional affine
transformations. Let h be some other function in Sg such
that h = g ◦ A, and A ∈ �. Let M be some positive
integer. Then, there exists a linear space H ⊂ R

M and a
map T 1 : O → H , such that the restriction of this map to Sg,
is such that the composed map T g,1 = T 1 ◦ ψg is a linear
map (up to a fixed scale factor) from � to H . As a linear
operator on the parametrization of �, T g,1 admits a matrix
representation, Tg,1 of the form (10). The operator T g,1 is
invertible if and only if there exists a set of functions {wk}M

k=1,
with M ≥ n + 1 such that Tg,1 is of rank n + 1. The operator
T g,1 is independent of the deformation parameters.

Proof: Since the vectors in H are M-dimensional then
by definition, T 1 has to be composed of M components{
T 1
�

}M
�=1, where the �-th component of T 1 is such that the

�-th component of T g,1, T g,1
� = T 1

� ◦ ψg is a linear map
from � to R. Since by the problem definition we have that
h = g ◦ A, we are looking for functionals T 1

� (h) such that
T g,1
� is linear (up to a scale factor) in the entries of D for

any g. We next construct T 1
� and T g,1

� . Using the notation of
Lemma 2, we have by fixing k and by taking � = 1, . . . ,M ,
that T 1

� (h) = ∫

Rn
xkw� ◦h(x)dx. Hence, (9) can be rewritten as

Tg,1
� DT

k = |A| Th,1
�,k (11)
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where Tg,1
� is the �th row of Tg,1 and Th,1

�,k is the (�, k + 1)
element of Th,1. Thus, we have that by choosing a family
of linearly independent functions {w�}M

�=1 ∈ W , we can
construct an operator T g,1, identical for all k, that for every k
imposes linear constraints on the elements of Dk , which are
the parameters defining �. The operator T 1 is constructed by
stacking a sequence of M components {T 1

� }M
�=1, and similarly

T g,1 is constructed by stacking a sequence of M components
{T g,1
� }M

�=1. Since each operator T 1
� is such that the composed

map T g,1
� = T 1

� ◦ ψg is linear in our parametrization of �
by the elements of Dk , T g,1 is also linear in the elements
of Dk , for every k = 1, . . . , n. Moreover, using (11) we have
that since T g,1 is a linear operator from � to RM it admits
an M × (n + 1) matrix representation, given by Tg,1. Thus,
T g,1 is invertible if and only if there exists a set of linearly
independent functions {wk}M

k=1 ∈ W , where M ≥ n + 1, such
that Tg,1 is of rank n + 1. Finally, T g,1 has the required
properties to be a universal manifold embedding, as it is
independent of the specific deformation parameters.

Denote D̃ = [e1 DT ] where e1 = [1, 0, . . . , 0]T .
Corollary 1: Let g, h ∈ Sg and A ∈ �. Then rewriting (9)

in a matrix form we have

Tg,1
∣∣∣A−1

∣∣∣ D̃ = Th,1. (12)

Since A is invertible, so is its matrix representation D̃,
and hence the column space of Tg,1 and the column space
of Th,1 are identical subspaces of H . Hence all choices of the
representative function of Sg (g, or h or any other function in
the manifold) are equivalent.

Remark 4: Corollary 1 implies that all functions in the
manifold Sg form an equivalence class (with respect to produc-
ing the linear subspace by the universal manifold embedding).
Hence, any function from the manifold can be chosen as its
representative. Any such arbitrary selection would yield the
same linear subspace to which the entire manifold is mapped
by the universal manifold embedding.

V. UNIVERSAL MANIFOLD EMBEDDING FOR

MULTI-DIMENSIONAL AFFINE

TRANSFORMATIONS USING

HIGH ORDER MOMENTS

In this section we extend the results of the previous sec-
tions where zero- and first-order moments of the nonlinear
operators {wk}M

k=1, were considered and employ higher order
moments. As we show next, the high order moments yield
linear constraints on corresponding higher order moments
of the transformation parameters, and hence provide a more
detailed linear representation of the linear subspace onto which
the manifold is projected. In the following we provide a
detailed analysis of the results when second-order moments
are employed. The extension to higher orders is immediate,
along the same lines.

Let di, j denote the (i, j) element of D. Thus, using the
previously defined notations we have xk = ∑n

i=0 dk,i ỹi .
Following a procedure similar to the one in (9), linear
constraints (up to a scale factor) on the moments of the
parametrization of A are found by applying functionals of the

forms
∫

Rn
xkxpw�◦h(x)dx for some w� ∈ W . These constraints

take the form
∫

Rn

xkxpw� ◦ h(x)dx

=
∣∣∣A−1

∣∣∣
∫

Rn

n∑

i=0

dk,i ỹi

n∑

j=0

dp, j ỹ jw� ◦ g(ỹ)d ỹ

=
∣∣∣A−1

∣∣∣
n∑

i=0

n∑

j=0

dk,i dp, j

∫

Rn

ỹi ỹ jw� ◦ g(ỹ)d ỹ. (13)

Thus let

Tg,2

=

⎡
⎢⎢⎢⎣

∫

Rn
y1 y1w1(g(ỹ))d ỹ · · · ∫

Rn
yn ynw1(g(ỹ))d ỹ

Tg,1
...

...∫

Rn
y1y1wM (g(ỹ))d ỹ · · · ∫

Rn
yn ynwM (g(ỹ))d ỹ

⎤
⎥⎥⎥⎦.

(14)

Let us denote by Q2 the set of the (inverse) affine transforma-
tion parameters and their distinct pairwise products, i.e., Q2 =
{d1,1, . . . , dn,n+1, d1,1d1,1, . . . , d1,1d1,n+1, . . . , dn,n+1dn,n+1}.

Theorem 4: Let g ∈ Sg and let {1, x1, . . . , xn, x1x1,
x1x2, . . . xnxn} be a set of basis functions. Let h be some other
function in Sg such that h = g◦A, and A ∈ �. Let M be some
positive integer. Then, there exists a linear space H ⊂ R

M and
a map T 2 : O → H , such that the restriction of this map to Sg

is such that the composed map T g,2 = T 2 ◦ψg is a linear map
(up to a scale factor) from Q2 to H . As a linear operator on
the parameterization Q2, T g,2 admits a matrix representation,
Tg,2 of the form (14). The operator T g,2 is independent of the
deformation parameters.

The proof follows the same lines as the proof of Theorem 3,
and hence is omitted.

Corollary 2: Let g, h ∈ Sg and A ∈ �. Then rewriting (13)
in a matrix form we have

Tg,2
∣∣∣A−1

∣∣∣ D̃2 = Th,2 (15)

where the elements of D̃2 are obtained by rearranging the
elements of Q2. Assuming D̃2 is invertible, the column space
of Tg,2 and the column space of Th,2 are identical subspaces
of H .

Remark 5: The procedure yielding (13) and Theorem 4 can
be extended to employ higher order moments by repeating
the same methodology. This implies that by increasing the
order of the moments from order one in (9), to order two
in (13), and to higher orders, more detailed characterization
of the object manifold is obtained by projecting it onto a linear
subspace spanned by the columns of Tg,1, Tg,2, to Tg,K for
K -th order moments. Obviously, if one is interested only in
linearly estimating the deformation model parameters relative
to a known reference object g, usage of first order moments as
in (9) is sufficient. However, if the task is an object detection or
recognition, employing a higher rank linear representation of
the manifold yields a more detailed and robust representation
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of it. Hence, linear subspace matching methods, e.g., [22],
can be directly and efficiently employed for recognition tasks,
instead of the nonlinear optimization techniques resulting from
the existing manifold learning framework.

VI. APPLICATION EXAMPLE: POSE ESTIMATION

USING UNIVERSAL MANIFOLD EMBEDDING

In this section we provide an example of an estimation
application, where the proposed solution is based on the UME
framework. Preliminary results and examples on the detection
and recognition of deformable objects using the UME can be
found in [25].

The problem of estimating the pose of an observed object
from a given image of it, is complicated due to the large
variability in the appearance of each object. The set of all
possible appearances of an object, even when constrained
only to its own rigid motions, usually yields a complex
manifold. In this example we consider rigid motions such
that, at least approximately, the relation between any two
observations can be described as a purely invertible geomet-
ric deformation. In practice the meaning of this assumption
is that (approximately) no new parts of the object appear
from one observation to the other, nor do existing parts
disappear.

Existing state of the art methods for estimating the pose of
an object operate by finding landmark points on the observa-
tion followed by matching these landmarks to those calculated
on some pre determined pose of the same object. As indicated
in the previous sections, the method we suggest is to map the
manifold Sg generated by the set of all possible observations
on the object g into the Euclidean subspace H using the
universal manifold embedding. Thus instead of evaluating
quantities related to the specific object we simply map the
space of observations into some low dimensional vector space
such that the manifold Sg is mapped bijectively to a linear
subspace. In this example we collected images of an object
undergoing changes in its orientation angles relative to a fixed
camera using a computer controlled motorized stage having
two degrees of freedom (controlling its slant and tilt angles).
We use the slant-tilt system for representing the orientation
of the object, relative to some initial orientation (arbitrarily
chosen) we define as having zero slant and zero tilt. The
slant, θ , is the angle between the surface normal and the
optical axis. The tilt, φ, is the angle between the image plane
x-axis and the projection of the surface normal onto the image
plane. The pose angles are randomly drawn from a uniform
distribution of [−45 45] degrees for the tilt and [−20 20]
degrees for the slant angle. Several samples of images taken
in the experiment are shown in Figure 2. Note that in reality
the deformations are not restricted to geometric ones, yet the
geometric deformations are clearly the most dominant source
of changes, and therefore we may apply the presented method.
It is also clear from Figure 2 that the space of observations on
the object in the pose estimation problem is nonlinear, as none
of the observations can be obtained as a linear combination of
other observations.

In order to apply the universal manifold embedding
method we need to choose parameterization for the geometric

Fig. 2. Samples from the observations: Each observation is a different
element of Sg .

transformations and to find the map from the parameter space
to Hg, the image of the orbit Sg in the Euclidean space.

We model the geometric deformation of the object in the
image as an affine transformation, i.e., � is the affine group.
Note however that in the above problem there are actually only
two degrees of freedom determined by the slant and tilt angles.
Thus, in order to relate these to the affine representation we
need to define the relation between the slant and tilt of the
object and the affine parameters. In the considered scenario,
the translation vector is zero and the affine transformation is
determined by the matrix A given by

A =
[

cos θ cosφ − sin φ
cos θ sin φ cosφ

]
. (16)

As we consider only the intensity values (gray levels) of
the images, we have that the dimension of the range of
the observations is 255. We therefore chose M = 255 and
hence H is a subspace of R

255. The set of non-linear operators
wi i = 1, . . . , 255, is such that:

wi (x) =
{

1 x ∈ (i − 1, i ]

0 x /∈ (i − 1, i ] .
(17)

Following Remark 4, we have that all the observations in
the manifold Sg form an equivalence class (with respect to
producing the same linear subspace by the universal manifold
embedding). Hence, any observation from the manifold can be
chosen as its representative. Since the choice is arbitrary, in the
case where more than a single observation is available (such
as in the case of recognition of a priori known deformable
objects), we randomly select one of the observations to be
the representative, g, of the manifold. We then evaluate its
corresponding subspace, spanned by the columns of Tg,1,
using the UME as defined in (10). In this example we consider
the special case where the observations are in R

2. In this
setting, Tg,1 is a 255 × 3 matrix. We note however, that in
other applications such as tracking of an a priori unknown
deformable object, initially, only a single observation may be
available and therefore it must to be used in order to obtain
the matrix Tg,1 using the UME.

In practical recognition tasks, observations may be noisy
and model mismatches may occur. Hence, the methodology
of arbitrarily selecting one of the observations as the repre-
sentative of the manifold becomes suboptimal in those cases
where multiple observations are available as training data.
In those cases a robust representation of the column space
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Fig. 3. Error histograms of the estimated tilt and slant angles. Left: tilt (φ),
right: slant (θ ).

of Tg,1 can be found. One way for deriving such a represen-
tation is to exploit the equivalence in representing a subspace
using the vectors that span it (which is not unique), and the
orthogonal projection matrix onto this subspace, that provides
a unique representation of the subspace. In this experiment,
we have evaluated the orthogonal projection matrices onto
the column space of Tg,1 generated by each of the available
observations, and averaged them through computation of the
Karcher mean [24]. This technique of estimating the mean
orthogonal projection matrix guarantees that the obtained
mean matrix is indeed a valid orthogonal projection matrix.
The three left singular vectors of the mean matrix then provide
the averaged UME, Tg,1, over all the available training obser-
vations. Evaluating Th,1 for the given observation, followed by
substitution of Th,1 and the averaged Tg,1 into (12), we obtain
an estimate of the affine model in (16), from which the
desired estimates of the tilt and slant are extracted. In order
to illustrate the performance of the suggested pose estimator,
the error histograms (in degrees) obtained in a series of
10000 experiments, are shown in Figure 3. The estimates of
both angles are unbiased with a maximal error which is lower
than one degree. Hence, these results suggest that the proposed
universal manifold embedding enables accurate estimation in
a realistic problem setting, using a linear framework, for a
problem which is highly non-linear in its original coordinate
system.

VII. CONCLUSIONS

We have presented a novel approach for solving the problem
of manifold learning and estimation for the case where the
manifold is comprised of the set of all possible observations
resulting from the action of a group of geometric deformations
on some object. The presented method exploits the a priori
knowledge about the structure of the geometric deformation
model, such that in those cases where the set of deformations
admits a finite-dimensional representation, a mapping from
the space of observations to a low dimensional linear space,
is derived. The manifold corresponding to each object is
nonlinearly mapped to a distinct linear subspace with the same
dimension as that of the manifold. This mapping, which we
call universal manifold embedding, enables the estimation of
geometric deformations using classical linear theory. It further
enables the representation of the object classification and
detection problems in a linear subspace matching framework.
The embedding of the space of observations in the linear space
depends on the deformation model, and is independent of the
specific observed object. Hence, it is universal.

The derived UME provides an exact description of the
manifold despite using as few as one observation, and
hence the need for using large numbers of observations in
order to learn the manifold or a corresponding dictionary is
eliminated. Moreover, the proposed UME does not involve
any discretization of the model, nor local approximations
of the manifold, as the parameterization of the manifold
remains in the continuum. Finally, the same procedure can be
applied in order to jointly analyze problems where multiple
object manifolds have to be simultaneously and efficiently
estimated.
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