
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999 2167

The Evanescent Field Transform for Estimating
the Parameters of Homogeneous Random
Fields with Mixed Spectral Distributions

Joseph M. Francos,Senior Member, IEEE

Abstract—Parametric modeling and estimation of complex
valued homogeneous random fields with mixed spectral dis-
tributions is a fundamental problem in two-dimensional (2-D)
signal processing. The parametric model under consideration
results from the 2-D Wold-type decomposition of the random
field. The same model naturally arises as the physical model in
problems of space-time adaptive processing of airborne radar. A
computationally efficient algorithm for estimating the parameters
of the field components is presented. The algorithm is based
on a nonlinear operator that uniquely maps each evanescent
component to a single exponential. The exponential’s spatial
frequency is a function of the spectral support parameters of
the evanescent component. Hence, employing this operator, the
problem of estimating the spectral support parameters of an
evanescent field is replaced by the simpler problem of estimating
the spatial frequency of a 2-D exponential. The properties of the
operator are analyzed. The algorithm performance is illustrated
and investigated using Monte Carlo simulations.

I. INTRODUCTION

W E CONSIDER the problem of parametric modeling
and estimation of a homogeneous, complex valued,

two-dimensional (2-D) random field with mixed spectral distri-
bution. This modeling and estimation problem has fundamental
theoretical importance, as well as various applications in wave
propagation problems.

It is shown in [1] that any 2-D regular and homogeneous
discrete random field can be represented as a sum of two
mutually orthogonal components: apurely indeterministicfield
and adeterministicone. The deterministic component is fur-
ther orthogonally decomposed into aharmonic field and a
countable number of mutually orthogonalevanescentfields.
This decomposition results in a corresponding decomposition
of the spectral measure of the regular random field into a
countable sum of mutually singular spectral measures. The
purely indeterministic component has an absolutely continuous
spectral distribution function. The spectral measure of the de-
terministic component is singular with respect to the Lebesgue
measure, and therefore, it is concentrated on a set of Lebesgue
measure zero in the frequency plane. It is shown in [1] that
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under some mild assumptions (that always hold in practice),
each evanescent component can be modeled by a separable
model given by the product of a one-dimensional (1-D) purely
indeterministic process in one dimension and an exponential
in the orthogonal dimension (or a linear combination of such
separable random fields). Hence, the spectral supports of the
different evanescent components have the form of lines, where
the slope of each line is a rational number.

The parametric model that results from these orthogonal
decompositions naturally arises as the physical model in
problems of space-time signal processing, such as the space-
time processing of airborne radar data. In this problem, the
target signal is modeled as a random amplitude complex
exponential where the exponential is defined by a space-time
steering vector that has the target’s angle and Doppler. In other
words, in the space-time domain, the target model is that of an
harmonic component. The purely indeterministic component
of the space-time field is the sum of a white noise field due to
the internally generated receiver amplifier noise and a colored
noise field due to the sky noise contribution. The presence
of a jammer results in a barrage of noise localized in angle
and distributed over all Doppler frequencies. Hence, in the
space-time domain, each jammer is modeled as an evanescent
component whose 1-D modulating process is a white noise.
Thus, in the angle-Doppler domain, each jammer contributes
a 1-D delta function located at a specific angle. (It is therefore
parallel to the Doppler axis.) The ground clutter results in an
additional evanescent component of the observed 2-D space-
time field. The clutter echo from a single ground patch has a
Doppler frequency that depends on its aspect with respect to
the platform. Hence, clutter from all angles lies in a “clutter
ridge” supported on a diagonal line (that generally wraps
around) in the angle-Doppler domain.

Due to physical properties of the problem, the different com-
ponents of the field are assumed to be mutually orthogonal. In
the specific application of airborne radar, the evanescent com-
ponents (the clutter and jamming signals) are considered to be
unknown interference. The power of the harmonic component
(target) is considerably smaller than that of the interference
components. Hence, the objective of the space-time processing
is to estimate the unknown evanescent components of the
2-D space-time signal from the available finite dimension
observed data. Based on the estimated interference terms, a
2-D filter that represents combined receive beamforming and
Doppler filtering is applied in a second stage to the data
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to suppress the interference, thus enabling detection of the
harmonic component. (See [2] for a detailed description of
this problem.)

The special case of a real valued 2-D random field has
many applications in modeling, estimation, and synthesis of
textures in images [22], as well as for image coding [23] and
restoration problems [24]. In these applications, the texture
field is decomposed into a sum of a purely indeterministic
component—the structureless, “random looking” component
of the texture field, a harmonic component that results in the
periodic attributes of the texture, and evanescent components
that result in the directional attributes of the observed texture.

In [14], we developed a conditional maximum-likelihood
algorithm for jointly estimating the parameters of the har-
monic, evanescent, and purely indeterministic components
of the field for the case where the slope parameters of
the spectral supports of the evanescent fields area priori
known. In [15], the algorithm was extended to the case
where these parameters are unknown. It is shown that by
introducing appropriate parameter transformations, the highly
nonlinear least-squares (NLLS) problem that results from
maximizing the conditional likelihood function is transformed
into a separable NLLS problem. Hence, the computational
complexity of the required numerical minimization is reduced
significantly. In the transformed problem, only the spectral
support parameters of the deterministic components enter
nonlinearly into the transformed model equation. Therefore, by
first estimating the unknown spectral supports of the harmonic
and evanescent components, the problem of solving for the
transformed parameters of the field is reduced to linear least
squares.

In this paper, we derive a computationally efficient estima-
tion algorithm for the parameters of the evanescent and purely
indeterministic components of the field such that no numerical
minimization is required. The algorithm is based on a new
nonlinear operator derived in this paper. The operator uniquely
maps each evanescent component to a single exponential. It
is therefore named the evanescent to exponential transform
(EET). The exponential’s spatial frequency is a function of
the spectral support parameters of the evanescent compo-
nent. Hence, employing this transformation, the problem of
estimating the spectral support parameters of an evanescent
field (i.e., the slope parameters of its spectral support, and its
frequency parameter) is replaced by the simpler problem of
estimating the spatial frequency of a 2-D exponential. It should
be emphasized that the proposed algorithm is not based on any
assumption regarding the probability distribution function of
the observed field.

Alternative approaches for estimating the spectral support
parameters of the evanescent components can be derived
by taking the Radon or Hough transforms [20], [21] of the
observed field periodogram. In the presence of evanescent
components, the periodogram peaks are concentrated along
straight lines. Since on a finite-dimension observed field only
a finite number of possible line orientations may exist, any
of the foregoing transformations can be applied to estimate
the spectral support parameters of the evanescent fields. Since
these methods employ the periodogram for obtaining the

estimates, their performance is limited by the resolution limits
of the discrete Fourier transform (DFT). As we show in
this paper, such methods are considerably more sensitive to
noise than the method based on the EET. The latter is also
computationally more efficient than the methods based on the
Radon and Hough transforms. More specifically, periodogram-
based estimation of the spectral support parameters using
the Radon transform requires the discretization of both the
distance from the origin and angle parameters. This step is
followed by evaluation of the line integrals (the projections)
for each pair of parameters and a search for the projections
with highest energy. On the other hand, using the EET, no
such search in the parameter space is required.

Once the spectral support parameters of each evanescent
component have been estimated, several alternatives for es-
timating the other parameters of the field are possible. For
example, in [18], we have developed a demodulation pro-
cedure that provides the estimated 1-D modulating process
of each component and its parametric model. (Section IV-D
includes a brief summary of the procedure). In the absence
of harmonic components, the residual field, after all the
evanescent components have been removed, is the purely
indeterministic component of the observed field. Its parametric
model can now be estimated using existing estimation methods
of purely indeterministic random fields (e.g., an AR model
[9], [14]). Note that in this case where the observed field
has only a purely indeterministic component, the procedure
[14] of obtaining a maximum-likelihood estimate of the AR
model parameters is reduced to a solution of a linear least
squares problem. An alternative method is to employ a two-
stage procedure for obtaining a least-squares estimate of
the observed field model. In the first stage, the parameter
estimation algorithm proposed in this paper is applied to the
observed field to estimate the spectral support parameters of
the evanescent components. In the second stage, the unknown
spectral support parameters are substituted with the estimated
ones to reduce a highly nonlinear LS problem (similar to the
one in [15]) to alinear LS.

The proposed estimation algorithm of the evanescent com-
ponents opens the way forparametric solutions that can
simplify and improve existing methods of space-time adaptive
processing (STAP). The goal of space-time adaptive filtering
is to achieve high gain at the target angle and Doppler
and deep nulls along both the jamming and clutter lines.
Because the interference covariance matrix is unknowna
priori , it is typically estimated using sample covariances
obtained from averaging over a few range gates. Next, a
weight vector is computed from the inverse of the sample
covariance matrix. A second common approach of STAP
(see, e.g., [2] and [3]), is to employ subspace projections.
Algorithms in this class first estimate the subspace spanned
by the interference by performing eigenanalysis of the sample
covariance matrix. The weight vector is then obtained by
projecting the desired response onto the subspace orthogonal
to the interference subspace. In this way, the weight vector
is forced to null the interference. In this paper, we derive a
computationally efficient algorithm that is useful for estimating
both the spectral supports and the modulating processes of
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the jamming and clutter fields. Hence, the contribution of the
estimated interference can be subtracted from the observed
data. The residual field consists of a purely indeterministic
(most often white thermal noise) component and the target
signal. The latter is a considerably simpler problem, even when
fully adaptive (optimal) STAP is considered [2]. Alternatively,
having estimated the interference terms parametric models,
their covariance matrix can be evaluated based on the esti-
mated parameters. In [17], we derived expressions of the field
covariance matrix in terms of the components parameters. By
substituting in these expressions the unknown parameters with
the estimated ones, an estimate of the interference covariance
matrix is obtained. Such a method may be utilized in the
framework of reduced rank adaptive STAP, where the lower
computational complexity of the weight application makes
this approach much more practical than the computationally
prohibitive fully adaptive STAP.

In [6], a matrix enhancement and matrix pencil method
for estimating the parameters of 2-D superimposed, complex
valued exponential signals was suggested. Assuming the noise
field is white, the Craḿer–Rao lower bound (CRLB) for
this problem was derived as well. The performance of the
algorithm was analyzed in [7]. The problem of ML estimation
of 2-D superimposed, complex valued exponential signals has
been recently considered in [8]. However, most of the works
on parametric modeling and estimation of 2-D random fields
are concerned with the parameter estimation of real-valued 2-D
AR fields, (see, e.g., [4], [5], and [9]–[11]), and the statistical
inference of Markov random fields (MRF’s) (see, e.g., [12],
[13], and the references therein). The underlying assumption in
the literature is that the random field is purely indeterministic,
and hence, it can be fit with a white- or correlated-noise
driven linear model. In [17], we derive anexact CRLB on
the error variance in jointly estimating the parameters of a
complex valued homogeneous Gaussian random field with
mixed spectral distribution, using the parametric model that
results from the orthogonal decomposition of the field [1].
In this paper, we employ the results of [17] to evaluate the
performance of the proposed algorithm for estimating the
evanescent components’ parameters.

The paper is organized as follows. In Section II, we briefly
summarize the results of the 2-D Wold-like decomposition and
the derivation of the random field model. In Section III, we
define the problem considered in this paper and introduce
some necessary notations. In Section IV, we introduce the
evanescent to exponential transform (EET) and an algorithm
for estimating the spectral support parameters of the evanes-
cent components. The proposed algorithm is based on the
properties of the EET. These properties are stated and proved.
The algorithm presented in Section IV requires knowledge of
second-order moments of the observed field or a reliable esti-
mate thereof. However, in many cases, only a finite dimension,
single observed realization of the field is available. Hence, in
Section V, we further elaborate on the properties of the EET
and on the required modifications in its definition so that it
can be applied when only a single realization of the field is
available. To illustrate the operation of the proposed algorithm
and to get further insight into its properties, some numerical

Fig. 1. RNSHP support; example with� = 2 and� = 1.

examples are presented in Section VI. Finally, in Section VII,
we make some concluding remarks.

II. THE HOMOGENEOUSRANDOM FIELD MODEL

The considered random field model is based on the Wold-
type decomposition of 2-D regular and homogeneous random
fields, presented in [1], and briefly summarized in this section.
Let be a complex-valued, regular,
homogeneous random field. Then, can be uniquely
represented by the orthogonal decomposition

(1)

The field is a deterministic random field. The field
is purely indeterministic and has a unique white

innovations driven nonsymmetrical half-plane (NSHP) moving
average representation given by

(2)

where , and
is the innovations field of .

We call a 2-D deterministic random field
evanescent w.r.t. the NSHP total-orderif it spans a Hilbert
space identical to the one spanned by itscolumn-to-column
innovationsat each coordinate (w.r.t. the total order
). The deterministic field column-to-column innovation at

each coordinate is defined as the difference
between the actual value of the field and its projection on the
Hilbert space spanned by the deterministic field samples in
all previous columns.

It is possible to define [1] a family of NSHP total-order
definitions such that the boundary line of the NSHP has a
rational slope. Let and be two coprime integers such that

. The angle of the slope is given by .
(See, for example, Fig. 1.) A NSHP of this type is called
rational nonsymmetrical half-plane(RNSHP). For the case
where , the RNSHP is uniquely defined by setting

. (For the case where , the RNSHP is uniquely
defined by setting .) We denote by the set of all
possible RNSHP definitions on the 2-D lattice (i.e., the set of
all NSHP definitions in which the boundary line of the NSHP
has a rational slope). Since it is shown in [1] that interchanging
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the roles of past and future in any total-order definition results
in identical evanescent components, it is sufficient to consider
only . We therefore assume without limiting the
generality of the derivation that , whereas can assume
any integer value.

The introduction of the family of RNSHP total-ordering
definitions results in the countably infinite orthogonal de-
composition of the deterministic component of the random
field

(3)

The random field is half-plane deterministic, i.e., it
has no column-to-column innovations w.r.t. any RNSHP total-
ordering definition. The field is the evanescent
component that generates the column-to-column innovations
of the deterministic field w.r.t. the RNSHP total-ordering
definition .

Hence, if is a 2-D regular and homogeneous
random field, then can be uniquely represented by
the orthogonal decomposition

(4)

In this paper, all spectral measures are defined on the square
region . It is shown in [1]
that the spectral measures of the decomposition components
in (4) are mutually singular. The spectral distribution func-
tion of the purely indeterministic component is absolutely
continuous, whereas the spectral measures of the half-plane de-
terministic component and all the evanescent components are
concentrated on a set of Lebesgue measure zero in. Since
for practical applications we can exclude singular-continuous
spectral distribution functions from the framework of our
treatment, a model for the evanescent field that corresponds
to the RNSHP defined by is given by

(5)

where the 1-D purely indeterministic complex valued pro-
cesses and are zero-
mean and mutually orthogonal for all . Hence, the
“spectral density function” of each evanescent field has the
form of a countable sum of 1-D delta functions that are
supported on lines of rational slope in the 2-D spectral
domain. The slope of the spectral support of each evanescent
component is determined by the corresponding pair,
whereas is the “frequency” parameter of this spectral
support.

Define the following parameter transformation as

(6)

(7)

We note that the transformed parameters are rational
numbers. Using (6) and (7), we can rewrite (5) in the form

(8)

One of the half-plane-deterministic field components, which
is often found in physical problems, is the harmonic random
field

(9)

where the ’s are mutually orthogonal random variables, and
are the spatial frequencies of theth harmonic. In

general, is infinite. The parametric modeling of deterministic
random fields whose spectral measures are concentrated on
curves other than lines of rational slope, or discrete points in
the frequency plane, is still an open question to the best of
our knowledge.

III. ESTIMATION OF THE EVANESCENT

COMPONENTSPARAMETERS: PROBLEM DEFINITION

The orthogonal decompositions of the previous section im-
ply that if we exclude from the framework of our model those
2-D random fields whose spectral measures are concentrated
on curves other than lines of rational slope, is uniquely
represented by

(10)

Yet, there are applications, such as in the case of space-time
processing of airborne radar data, where the observed field may
contain only evanescent random fields embedded in noise. This
is the case when no target exists or in secondary data used for
estimating and adaptively nulling the interference in the range
gate under test. In other applications, such as in that of texture
modeling and estimation [22], the deterministic component
of the observed field comprises only evanescent components
or harmonic components, but not both. In this paper, we
concentrate on the problem of estimating the parameters of
an observed field given by

(11)

i.e., when no harmonic component is present. In this frame-
work, the purely indeterministic component can be viewed as
an unknown colored noise field.

We next state the assumptions required for proving the
results in the next two sections and introduce some necessary
notations. Let , where

, be the observed random
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field. Note, however, that the observed field just as well could
have anyarbitrary shape.

Assumption 1:The purely indeterministic component
is a complex-valued field, such that its real and

imaginary components are jointly wide sense homogeneous
and jointly mean-square ergodic in the first- and second-order
moments.

Assumption 2:The number of
evanescent components in the field isa priori known. Note that
contrary to [15], here, we do not assumea priori knowledge
of for each .

Assumption 3:For each evanescent field , the mod-
ulating complex valued 1-D purely-indeterministic process

is a zero-mean process such that its real and imagi-
nary components are jointly wide sense stationary and jointly
mean-square ergodic in the first- and second-order moments.
It is further assumed that these processes arenot circular. Let

denote the parameter vector of . At the moment,
we will not specify the functional dependence of on

, but rather leave it implicit. Thus, the parameter vector
of each of the evanescent components is given by

(12)

Therefore, the parameter vector of the evanescent field
is obtained by collecting the vectors into

a single-column vector, i.e.,

(13)

Let denote the parameter vector of the purely indeter-
ministic component. At the moment, we will not specify the
functional dependence of the purely indeterministic component
on , but rather leave it implicit. Thus, the parameter vector
of the observed field is given by

(14)

Let

(15)

(16)

and

(17)

Let

(18)

be the vector whose elements are the observed samples from
the 1-D modulating process . Define the vector of grid
points

(19)

Given a scalar function , we will denote the column
vector, consisting of the values of evaluated for all the
elements of , where is a column vector, by . Using
this notation, we define

(20)

Thus, using (5), we have that

(21)

where denotes the Hadamard product of the vectors.
Note that whenever for some integers

such that and ,
the same sample of the process is repeatedly used in
the product form (21). It can be shown that for a rectangular
observed field of dimensions , the number ofdistinct
samples from the random process that are found in
the observed field is

(22)

This is because is the number of different “columns”
that can be defined on such a rectangular lattice for an RN-
SHP defined by . We therefore define theconcentrated
version, of to be an -dimensional column
vector of nonrepeating samples of the process . More
specifically, for the case in which and
is given by

(23)

while for the case in which and , is given by

(24)

Note, however, that due to boundary effects, the vector
is not composed of consecutive samples from the process

unless or . In other words, for some
arbitrary and , there are missing samples in .

Thus, for any , we have that

(25)

where is rectangular matrix of zeros and ones that
replicates rows of .
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IV. THE EVANESCENT TO EXPONENTIAL TRANSFORM

In this section, we introduce the evanescent to exponential
transform (EET) and an algorithm for estimating the parame-
ters of the evanescent components. The proposed algorithm
is based on the EET and its properties. To simplify the
presentation, we first describe the EET and the resulting
algorithm for the case where the observed field is a sum
of evanescent components, i.e., the case where no purely
indeterministic component exists in (11). In Section IV-B, we
extend the results of Section IV-A to the case of a nonzero
purely indeterministic component.

A. Estimation in the Case of a Zero Purely
Indeterministic Component

Assume that the observed field is a sum of evanescent
components, i.e.,

(26)

Definition 1: Let and be some finite integers. Define

(27)

The unconjugated correlation operator is em-
ployed as the basic building block of the proposed algorithm
for estimating the evanescent components’ spectral support
parameters. The properties of the mapping induced by applying

to an evanescent field are stated and proved in
the next two theorems.

Theorem 1: Let be given by (26). Then,
is a sum of constant amplitude 2-D

exponentials given by

(28)

where the coefficients are neither func-
tions of nor .

Proof: Substituting (26) into (27), we have

(29)

where the second equality is due to the mutual orthogonality of
the different evanescent components. The third equality is due
to the fact that the real and imaginary components of each of
the processes are jointly wide sense stationary.
denotes the unconjugated second-order moment of ,
and we define

(30)

Thus, if the observed field is a sum of evanescent
components, is a sum of constant ampli-
tude 2-D exponentials. Hence, we name
the EET. In the following, we use the notation

, where to denote the spatial
frequency of each exponential.

The spectral support parameters of each evanescent com-
ponent are related to the spatial frequency of a
corresponding exponential through the system

(31)

(32)

It is easy to verify using (31) and (32) that
if and only if . Hence, if for more
than one component, all these components are mapped to a
single exponential whose frequency is . Let be the
total number of evanescent components in the field such that

. In this and the next subsections, we elaborate
on the problem of estimating the parameters of evanescent
components with . The case where for some

is treated separately in Section IV-C.
Note that in general, depending on the values of and

, cyclic frequency folding may lead to a noninvertible
mapping to . A necessary and sufficient condition to
avoid this problem is that , which guarantees that
no ambiguities exist. In other words, the condition to avoid
nonunique mapping of the evanescent components’ spectral
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support parameters is that for all and for all

(33)

However, because while and are integers,
it is straightforward to verify that except for the cases where

or , (33) is satisfied for all
and . If components with [and similarly
for ] exist in the observed field, their frequency
parameter can be recovered using the relations in (31)
and (32) only up to a shift. [The term 0.5 is due to the fact
that the folding of the exponential frequency is by 1, whereas
the estimate of is obtained by dividing the estimated
exponential frequency by a factor of 2.] As a consequence, two
different evanescent components with frequency parameters

and , such that , are mapped
by the EET to the same exponential. Later in this section, we
present an algorithmic solution to this nonuniqueness of the
EET.

In the next theorem, we show that if for no
more than a single evanescent component, then except for the
foregoing two special cases, each evanescent component is
mapped to a unique exponential.

Theorem 2: Assume that for all and
, . Then, for all

, the mapping of the spectral support parameters
of each evanescent component in the field to an

exponential’s frequency is unique. For
and , the mapping is unique up to a shift of

in and , respectively.
Proof: Assume that two evanescent components with

different spectral support parameters , and
, respectively, are mapped by the operator

to two exponentials of identical frequency
. Let us first consider the case where and
. From the assumption and (31) and (32), we have

that . Since both and are pairs of
coprime integers, we conclude that and .
Hence, as well.

We now consider the case where . Since by assump-
tion, and , we have from (32) that .
Hence, by the RNSHP definition, we have that both
and . Substituting these values into (31), the assumption
implies that or that . A similar argument
holds for the case where .

The problem of estimating the spectral support parameters
of the evanescent components can now be stated as follows.
Given the estimated nonzero spatial frequencies

, solve for each evanescent component the system
(31) and (32) to obtain the spectral support parameters. The
system has to be solved under the constraints thatand are
coprime integers, , and .

If components with (and similarly for
) are detected by an EET-based estimation pro-

cedure, their frequency estimate should be independently
verified, using some other procedure. Possible procedures are

the solution of the 2-D normal equations, which was used for
initializing the ML algorithm in [14], or simply the inspection
of the absolute value of the field’s 2-D Fourier transform.
If a discrepancy close to between the estimate of
obtained using (31) and the one obtained using the verification
procedure is detected, the estimate obtained using (31) is
increased/decreased by 0.5. We further note that since the
estimate obtained using the verification procedure is required
only for the purpose of possible adjustment of and
the separation of two components with ,
the verification estimator can be of a low accuracy. To simplify
the presentation, we assume in the following that no two
evanescent components with are such that

. Next, we give a detailed description of
the proposed algorithm. We begin by introducing the definition
of a new operator.

Definition 2: Let and be some finite integers. Let
be defined as the Fourier

transform of , i.e.,

(34)

In general, has multiple evanescent components.
From Theorems 1 and 2, we have that applying the EET
operator to produces a sum of constant amplitude
complex exponentials, whose frequencies ,
whereas all the evanescent components for which
are mapped to . Hence, has
exactly spectral peaks at frequencies .

Recall that for each evanescent component, the slope pa-
rameter of the boundary line of the corresponding RNSHP
is defined by the ratio of two coprime integers and
such that . For each component, if (in
practice, , where is a small predetermined constant),
we decide that , and hence, .

This estimate of is then verified as explained in the
foregoing discussion and adjusted by , if required. An
identical procedure is applied if , where we decide

, and .
If then using (31) and

(32), we find that . We thus search for a coprime

integer pair such that (and, in practice,

). These pairs, when substituted into (31)

and (32) instead of , should yield a valid estimate,
i.e., . Thus, we consider only pairs that
satisfy both

(35)

and

(36)
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TABLE I
ESTIMATION ALGORITHM OF THE EVANESCENT

COMPONENTS SPECTRAL SUPPORT PARAMETERS

The algorithm is summarized in Table I.

B. Estimation in the Presence of a Purely
Indeterministic Component

In Theorem 1, it is proved that in the absence of the
purely indeterministic component is a
sum of constant amplitude 2-D exponentials. Next, we show
that a minor modification of the same result holds for the
more general case in which the observed signal consists of
the sum of multiple evanescent components and a purely
indeterministic component.

Theorem 3: Let be given by (11). Then,
is a sum of constant amplitude 2-D

exponentials given by

(37)

where the coefficients are functions of
neither nor .

Proof: Substituting (11) into (27), we have

(38)

since the purely indeterministic component and the different
evanescent components are mutually orthogonal. Because the
real and imaginary components of are jointly
wide sense homogeneous, is
a function of neither nor . Thus,

is a constant. Hence, repeating
the arguments of the proof of Theorem 1, (37) follows.

C. Estimation of the Spectral Support for Components
With Zero Frequency Parameter

In Section IV-A, it is shown that whenever the frequency
parameter of an evanescent component is zero, the
EET maps this evanescent component to an exponential whose
frequency is , regardless of the values of and .
This nonuniqueness implies that the EET cannot produce a
complete parameter estimate of the spectral support parameters
of these evanescent components. Hence, a different operator
must be applied to the observed field in order to estimate the

pairs of the evanescent components whose frequency
parameter is zero.

In this section, it is assumed that the spectral support
parameters of the evanescent components, whose frequency
parameter is nonzero, have already been estimated using
the estimation algorithm summarized in Table I. Hence, the
algorithm proposed in this section is designed to estimate the

pairs of evanescent components for which it isalready
known that their frequency parameter is zero. The spectral
measure of these evanescent components is concentrated on
lines with rational slope that cross the frequency.

The proposed algorithm is a modified version of the Hough
transform for detecting straight lines in 2-D arrays [20].
This modification employs thea priori knowledge that the
frequency parameter of the evanescent components the algo-
rithm is looking for, is zero, as well as of the fact that the
spectral support of each one of these components is a line
in the frequency plane such that its slope is defined by two
coprime integers and . Initially, the algorithm identifies the
peaks of the field periodogram. In the presence of evanescent
components, these peaks are concentrated along lines. On a
finite-dimension observed field, only a finite number of
pairs may be defined. (This is becauseand are integers
representing distances between consecutive samples along the
“rows” and “columns” defined with respect to the RNSHP
total-ordering definition ). Therefore, for given
dimensions of the observed field, we search among all possible
combinations of the spectral support parametersand for
the pairs of that best explain the concentration of
peaks along lines that cross the frequency.

D. Obtaining a Complete Estimate of the Model Parameters

Using the estimated spectral support parameters of each
evanescent component , several alternatives for
estimating the other parameters of the field are possible.
We first briefly summarize the method developed in [18].
Note from the evanescent field model (5) that for a fixed

(i.e., along a line on the sampling grid), the
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samples of the evanescent component are nothing but the
samples of constant amplitude exponential signal. Multiplying

the observed signal by
and evaluating the arithmetic mean of this signal along a line
on the sampling grid such that , we have

(39)

where denotes the number of the observed field samples
that satisfy the relation . Substituting (11) into
the right-hand side of (39), it is easy to verify that (39) indeed
provides an estimate of since the arithmetic mean

of each of the terms of

along the line tends to zero, except the DC term,
which tends to . This procedure provides estimates of
the 1-D sequence of the evanescent field.

Having obtained the sequence of estimated samples from the
1-D modulating process , the problem of estimating its
parametric model becomes entirely a 1-D estimation problem.
Applying to the sequence any parameter estimation algorithm
that corresponds to the model of this complex-valued process
(e.g., 1-D AR, MA, ARMA), we obtain estimates of the
modulating process parameters as well.

The residual field, after all the evanescent components have
been subtracted, is the purely indeterministic component of
the observed field. Its parametric model can now be estimated
using existing estimation methods of purely indeterministic
random fields (e.g., an AR model, [9], [14]). Note that in this
case, where the observed field has only a purely indeterministic
component, the procedure of obtaining a maximum-likelihood
estimate of the AR model parameters [14] is reduced to a
solution of a linear least squares problem.

A different approach to obtaining a complete estimate of the
observed field model is to obtain a least-squares estimate of
its parameters. Substitution of the unknown spectral support
parameters of the evanescent components with the estimated
ones reduces a highly nonlinear LS problem to alinear LS.
(See [15] for details).

V. THE EET IN THE CASE OF A SINGLE

OBSERVED REALIZATION OF THE FIELD

The EET and the algorithm that employs it (see Table I) are
formulated in terms of unconjugated second order moments
of . Hence, knowledge of these moments, or a reliable
estimate thereof, are required. However, in many cases, only
a finite-dimension, single-observed realization of the field is
available. Hence, in this section, we elaborate on the properties
of the EET and on the required modifications in its definition
so that it can be applied when only a finite, single-observed
realization of the field is available.

From Theorem 3, we have that

(40)

To simplify the notations, we first address the problem of
estimating for a single evanescent
component, assuming a zero purely indeterministic compo-
nent. In that case

(41)

The term in (41) is the unconjugated
second-order moment of a complex-valued process whose real
and imaginary components are jointly wide sense stationary
and jointly mean-square ergodic in the first- and second-order
moments. Hence, it can be consistently estimated by replacing
the ensemble average with sample average.

Let be an -dimensional vector whose entries are the
indices of the samples from in (23) [or (24)]. We
therefore define the sample unconjugated second-order mo-
ment

(42)

Recall that in Section III, we have shown that contains
replicated elements. Hence, we can extend the summation in
(42) and sum the products of the type

over the entire field, and average
it appropriately. Hence, (42) gets the form

(43)

where the last equality is due to (5). Thus, using (41) and (43),
we conclude that an estimate of
is obtained by replacing in (41) with

. We therefore have

(44)
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Note, that (44) is the 2-D Fourier series expansion of
. The series has a single term. The

coefficient of this term is the 2-D Fourier transform applied
to the product signal
evaluated at some frequency and scaled
by a constant. Since and are unknown,
in principle, this expression has to be evaluated for all
frequencies.

Thus, in the estimation algorithm, we replace the EET
operator , which uses ensemble moments, with
the operator, which uses sample moments.
More specifically, the step in which we evaluate (step
1 in Table I) is replaced in this single component case by

(45)

where

(46)

Using (44) and (46), we have

(47)

Inspecting (47), it is clear that evaluating the Fourier transform
of the product signal for
all and setting

(48)

where

(49)

is equivalent to estimating using (45).
Recall that is a zero-mean process such that its

real and imaginary components are jointly wide sense sta-
tionary and jointly mean-square ergodic in the first- and
second-order moments. Hence, using the derivation of the

estimator in (43) and (44), it is clear
that

(50)

in the mean square sense. From Theorem 1, we have that
is aconstantamplitude exponential

with the correct frequency . In other words, the
ergodicity of guarantees that as and

in the mean square sense.
Alternatively, from the derivation of the estimator, and

the proof of Theorem 1, it is clear that the weighting term
in (44) suppresses the oscillatory

behavior of the sample moment. Since in our application we
are nonetheless interested in detecting the frequency of this
oscillation and not in estimating the moments themselves, we
employ the statistic .

We further note that since (49) is the Fourier transform of
the product field , it can
be evaluated on a discrete 2-D grid of via the 2-D FFT.
In fact, due to the properties of the EET, any algorithm for
estimating the frequencies of 2-D exponentials can be used as
a substitute to the FFT-based implementation we have chosen
(see, e.g., [6] and [8]). The reason for our choice is, of course,
the simplicity of the implementation.

Let us return now to the general case where the observed
field consists of a purely indeterministic component
and multiple evanescent components. Since the purely inde-
terministic component and all the evanescent components are
mutually orthogonal, we compute the statistic

(51)

where denotes the sample mean of the product field
, i.e.,

(52)

The subtraction of the mean of the product field is meant
to eliminate the contribution to
of the purely indeterministic component through

, as well as the contributions of evanescent components
with .

Applying the foregoing reasoning to the multicomponent
case, we conclude that the spectral support parameters of the

evanescent components whose frequency parameter
is nonzero are found by estimating the spatial frequencies of
the prominent peaks of . Let
us denote this set of estimates by .

Recall that the purely indeterministic component and the dif-
ferent evanescent components are mutually orthogonal. Since
each one of these fields has a zero-mean, while its real and
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Fig. 2. Spectral density function of the purely indeterministic component.

imaginary components are jointly wide sense stationary and
jointly mean-square ergodic in the first- and second-order
moments, we conclude, using (43), (44) and (50), that

(53)

in the mean square sense.
In summary, the estimation of the spectral support parame-

ters of the evanescent components of is performed
by applying the operator to the ob-
served field, followed by a search for theprominent peaks
of . The remaining steps of the
algorithm are those developed in the previous section. In other
words, if the true second-order moments of the observed field
are unknown, the same algorithm derived in the previous
section (see Table I) holds when
is replaced by , and re-
placed by .

VI. NUMERICAL EXAMPLES

To illustrate the operation of the proposed algorithm, as
well as to gain more insight into its performance, we present
several numerical examples.

Example 1: Consider a 2-D homogeneous random field
consisting of a sum of a purely indeterministic component
and a single evanescent component. The purely indeterministic
component is a NSHP MA field with parameters

. The driving
noise of the MA model is a complex valued white noise field
such that its real and imaginary components are independent
real Gaussian white noise fields each with zero mean and
variance , and , respectively. The spectral
density function of this purely indeterministic field is depicted
in Fig. 2.

The evanescent component spectral support parameters are
. The modulating 1-D purely

Fig. 3. Absolute value of the Fourier transform of the observed field in
Example 1.

Fig. 4. FM2(y(n;m); �n; �m; !; �)—Estimated result of applying the
operatorFM2(�; �n; �m; !; �) to the observed field in Example 1.

indeterministic process of this evanescent component is a
second-order Gaussian MA process such that

, and . Its driving
noise is a complex-valued Gaussian process, whose real and
imaginary components are independent real Gaussian white
noise processes with zero mean and variances ,
and , respectively.

The dimensions of the observed field are 100100. For
illustration purposes, a contour map of the absolute value of the
Fourier transform of the observed field is depicted in Fig. 3.
Observe that the evanescent component spectral support wraps
around the boundary of the spectral domain. In addition,
note the presence of the colored background noise, which
is due to the purely indeterministic component of the field.
Fig. 4 depicts , i.e., the result of
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Fig. 5. Absolute value of the Fourier transform of the observed field in
Example 2.

applying the EET to the observed field. The peak due to the
exponential produced by the EET operator is clearly visible.
Note that the DC component due to the unconjugated second-
order moment of the purely indeterministic component has
been removed by subtracting the mean of the product field

. The estimation results for this
example are , and .

Example 2: Consider a 2-D homogeneous random field
consisting of a sum of a purely indeterministic component
and two evanescent components. The purely indeterministic
component and the first evanescent component are those of
Example 1. The spectral support parameters of the second
evanescent component are . The
modulating 1-D purely indeterministic process of this evanes-
cent component is a second-order Gaussian MA process, with
the same parameters as those of the 1-D modulating process
of the first evanescent component. For illustration purposes,
a contour map of the absolute value of the Fourier transform
of the observed field is depicted in Fig. 5. Note again that
the spectral supports of the evanescent components wrap
around the boundary of the spectral domain. Fig. 6 depicts

, which results from applying the
EET to the observed field. The two peaks are due to the
exponentials produced by the EET operator. The estimation
results for this example are

, and , and .
Example 3: In this example, we illustrate the performance

of the proposed algorithm using Monte Carlo simulations. The
experimental results are based on 100 independent realizations
of the observed field for different field sizes. We analyze the
bias and the variance of the estimate of the spectral support
parameter obtained by the algorithm and compare
the experimental results with the Cramér–Rao lower bound
(CRLB), which is derived in [17]. We note here that in the
derivation of the CRLB, [17], it is assumed thatand area
priori known. Since in practice and are unknown and need

Fig. 6. FM2(y(n;m); �n; �m; !; �)—Estimated result of applying the
operatorFM2(�; �n; �m; !; �) to the observed field in Example 2.

TABLE II
ESTIMATION RESULTS OF THESPECTRAL SUPPORTPARAMETERS: ERROR RATE

IN ESTIMATING (�; �);BIAS AND STANDARD DEVIATION OF �̂(�;�)

to be estimated, the CRLB in this case is not tight and is an
“optimistic” lower bound. In this experiment, we also evaluate
the probability of correct estimation of the pair.

In this example, the 2-D random field is a sum of a purely
indeterministic component and a single evanescent component.
The purely indeterministic component is a complex valued
white noise field such that its real and imaginary components
are independent real Gaussian white noise fields each with
zero mean and variance , and , respectively.
The evanescent component spectral support parameters are

, and . The modulating 1-D
purely indeterministic process of the evanescent component is
a second-order Gaussian MA process, such that

, and . Its driving
noise is a complex valued Gaussian process, whose real and
imaginary components are independent real Gaussian white
noise processes with zero mean and variances ,
and , respectively.

In Table II, we present the estimation results of the evanes-
cent component spectral support parameters. It is clear that a
wrong estimate of an pair would result in wrong esti-
mates of the other parameters of that evanescent component.
Since the probability of such event is very small, as indicated
by the results in Table II, we consider such events to be
outliers. Hence, we ignore the results of these experiments in
the computation of the bias and variance in estimating .

The experimental results listed in Table II indicate that the
error rate in estimating the pair of the evanescent
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component is low, and rapidly decreases as the dimensions
of the observed field are made larger. For moderate size data
fields, the error rate in estimating the pair becomes zero.
Furthermore, the estimates of obtained by the proposed
algorithm are essentially unbiased as the experimental bias is
much smaller than the standard deviation of the experimental
results. The estimation error variance can therefore be com-
pared with the CRLB. (The CRLB is the lower bound on
the estimation error variance for any unbiased estimator of
the problem parameters). A comparison of the Monte Carlo
results with the CRLB for the case where the dimensions of
the observed field are relatively small (field size of 2525)
shows that the experimentally computed standard deviation of
the estimate is not far from the lower bound, even for
such a small data size. The squared root of the exact CRLB on

is 6.6096e-04, whereas the experimentally computed
standard deviation of the estimate is 4.5972e-03.

Example 4: It is shown in Section IV that whenever the fre-
quency parameter , of an evanescent component is zero,
the EET maps this evanescent component to an exponential
whose frequency is , regardless of the values of and

. This nonuniqueness implies that the EET cannot produce a
complete estimate of the spectral support parameters of these
evanescent components. Hence, a different algorithm, which is
described in Section IV-C, is derived in order to estimate the

pairs of evanescent components whose frequency pa-
rameter is zero. In this example, we illustrate the performance
of the proposed algorithm, using Monte Carlo simulations. The
experimental results are based on 100 independent realizations
of the observed field for different field sizes.

In this example, the 2-D random field is a sum of a purely
indeterministic component and two evanescent components.
The spectral support parameters of the two evanescent com-
ponents are , and

, respectively. The purely indeterministic
component of the observed field is identical to the purely
indeterministic component in Example 1. The modulating
1-D purely indeterministic processes of the two evanescent
components are second-order Gaussian MA processes, with
the same parameters as those of the evanescent component in
Example 1. For illustration purposes, a contour map of the
absolute value of the Fourier transform of one realization of
the observed field is depicted in Fig. 7.

The experimental results demonstrate that the error rate
in estimating the pair of the evanescent component
is low, as long as the dimensions of the observed field are
large. The error rate was zero for 100 100 and 200
200 fields. However, the error rate sharply increases when the
dimensions of the observed field are small. For example, for
a 50 50 field, the error rate reached 0.49. We thus conclude
that the proposed algorithm for estimating the pairs
of evanescent fields with is useful for relatively
large data arrays and is considerably less robust than the EET
algorithm for estimating the spectral support parameters of
evanescent components with .

Since, here, the algorithm is searching only for evanescent
components with a zero frequency parameter, in principle, it

Fig. 7. Absolute value of the Fourier transform of the observed field in
Example 4.

can be applied to the observed field, regardless of the existence
in the field of evanescent components with a nonzero fre-
quency parameter. However, our experimental results indicate
that improved performance of the algorithm for estimating the

parameters of evanescent components with
is achieved by first filtering evanescent components with
a nonzero frequency parameter out of the observed field.
Using this procedure, we first apply the EET-based algorithm,
summarized in Table I, to the observed field and obtain the
spectral support parameters of the evanescent components
whose frequency parameter is nonzero. Having estimated the
spectral supports of these components, we apply the proce-
dure described in Section IV-D to eliminate the contributions
of these evanescent components to the observed field. The
residual field contains only evanescent components with a zero
frequency parameter and a purely indeterministic component.

The performance gain obtained by adopting this procedure
is significant in cases where the dimensions of the observed
field are relatively small. The performance gain becomes less
significant as the dimensions of the observed field are made
larger.

VII. CONCLUSIONS

In this paper, we derived a computationally efficient esti-
mation algorithm for the parameters of the evanescent and
purely indeterministic components of a homogeneous random
field. The algorithm is based on a nonlinear operator derived
in this paper. The operator uniquely maps each evanescent
component to a single exponential. The exponential’s spatial
frequency is a function of the spectral support parameters of
the evanescent component. Hence, employing this transforma-
tion, the problem of estimating the spectral support parameters
of an evanescent field is replaced by the simpler problem of
estimating the spatial frequency of a 2-D exponential.

The performance of the proposed algorithm was investi-
gated using Monte Carlo simulations. It was found that the
error rates in estimating the pairs of the evanescent
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components are low and rapidly decrease as the dimensions
of the observed field are made larger. The estimates of the
frequency parameters of the evanescent fields were found to
be unbiased.

In case the probability density function of the observed field
is known, a maximum-likelihood estimate (MLE) of the field
parameters can be found by maximizing the log-likelihood
function of the observations with respect to the model pa-
rameters. Since this objective function is highly nonlinear in
the problem parameters, the maximization problem cannot be
solved analytically, and we must resort to numerical methods.
In order to avoid the enormous computational burden of an ex-
haustive search, a two-step procedure based on the evanescent
to exponential algorithm can be employed. In the first stage,
a suboptimal estimate of the parametric models of the field
components is obtained using the algorithm derived in this
paper. In the second stage, these estimates initialize an iterative
numerical maximization of the log likelihood function.

Alternative approaches for estimating the spectral support
parameters of the evanescent components can be derived by
taking the Radon or Hough transforms of the observed field
periodogram. Periodogram-based estimation of the spectral
support parameters using the Radon transform requires the
evaluation of a line integral for each pair of orientation
and distance from the origin parameters and a search for
the projections with highest energy. On the other hand, the
algorithm based on the evanescent to exponential transform
is computationally more efficient as no such search in the
parameter space is required. Moreover, using the evanescent-
to-exponential transform, we avoid the resolution limitations
of the periodogram. It is shown using Monte Carlo simulations
that the methods based on the Hough and Radon transforms
are considerably more sensitive to noise than the method based
on the nonlinear evanescent to exponential mapping.

We therefore conclude that the suggested algorithm provides
an attractive solution to the problem of estimating the param-
eters of a homogeneous random field with a mixed spectral
distribution. Since the proposed algorithm does not directly
employ the structure of the field covariance matrix, the need
to estimate this matrix, whose dimensions can be very large, is
avoided. Unlike previously suggested algorithms, the proposed
method does not require, in any of its stages, numerical solu-
tion of a multidimensional nonlinear minimization problem.
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