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The Evanescent Field Transform for Estimating
the Parameters of Homogeneous Random
Fields with Mixed Spectral Distributions

Joseph M. FrancosSenior Member, IEEE

Abstract—Parametric modeling and estimation of complex under some mild assumptions (that always hold in practice),
valued homogeneous random fields with mixed spectral dis- each evanescent component can be modeled by a Separab|e
tributions is a fundamental problem in two-dimensional (2-D) model given by the product of a one-dimensional (1-D) purely
signal processing. The parametric model under consideration . L . . . :
results from the 2-D Wold-type decomposition of the random !ndetermmlsuc process in one dlmgnsmn and.an.exponentlal
field. The same model naturally arises as the physical model in in the orthogonal dimension (or a linear combination of such
problems of space-time adaptive processing of airborne radar. A separable random fields). Hence, the spectral supports of the
computationally efficient algorithm for estimating the parameters  different evanescent components have the form of lines, where
of the field components is presented. The algorithm is based the slope of each line is a rational number.

on a nonlinear operator that uniquely maps each evanescent .
component to a single exponential. The exponential’s spatial The parametric model that results from these orthogonal

frequency is a function of the spectral support parameters of decompositions naturally arises as the physical model in
the evanescent component. Hence, employing this operator, theproblems of space-time signal processing, such as the space-
problem of estimating the spectral support parameters of an time processing of airborne radar data. In this problem, the
evanescent field is replaced by the simpler problem of estimating target signal is modeled as a random amplitude complex
the spatial frequency of a 2-D exponentlal. The properties of the tial wh th tial is defined b i
operator are analyzed. The algorithm performance is illustrated €XPON€NUal where the exponential IS detined by a Space-ime
and investigated using Monte Carlo simulations. steering vector that has the target’s angle and Doppler. In other
words, in the space-time domain, the target model is that of an
harmonic component. The purely indeterministic component
) _of the space-time field is the sum of a white noise field due to
W E CONSIDER the problem of parametric modelinge internally generated receiver amplifier noise and a colored
~and estimation of a homogeneous, complex valuegdyise field due to the sky noise contribution. The presence
two-dimensional (2-D) random field with mixed spectral distrigs 5 jammer results in a barrage of noise localized in angle
bution. This modeling and estimation problem has fundamenta|y gistributed over all Doppler frequencies. Hence, in the
theoreticz_;tl importance, as well as various applications in Wa¥Bace-time domain, each jammer is modeled as an evanescent
propagation problems. component whose 1-D modulating process is a white noise.
It is shown in [1] that any 2-D regular and homogeneousy, ;s in the angle-Doppler domain, each jammer contributes

discrete random field can be represented as a sum of tWq_p gelta function located at a specific angle. (It is therefore
mutually orthogonal componentsparely indeterministidield 5 rq)ie| to the Doppler axis.) The ground clutter results in an

and adeterministicone. The deterministic component is fur'additional evanescent component of the observed 2-D space-

ther orthogonally decomposed intofermonicfield and a me field. The clutter echo from a single ground patch has a
countable number of mutually orthogon@vanescentields. poppler frequency that depends on its aspect with respect to
This decomposition results in a corresponding decompositigfy pjatform. Hence, clutter from all angles lies in a “clutter

of the spectral measure of the regular random field into rige” supported on a diagonal line (that generally wraps
countable sum of mutually singular spectral measures. THF‘ound) in the angle-Doppler domain
purely indgte_rmir)istic component has an absolutely continuousp, e to physical properties of the problem, the different com-
spectral distribution function. The spectral measure of the d&snents of the field are assumed to be mutually orthogonal. In
terministic component is singular with respect to the Lebesgyg, specific application of airborne radar, the evanescent com-
measure, and therefore, it is concentrated on a set of Lebesghfents (the clutter and jamming signals) are considered to be
measure zero in the frequency plane. It is shown in [1] thghynown interference. The power of the harmonic component
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to suppress the interference, thus enabling detection of #simates, their performance is limited by the resolution limits
harmonic component. (See [2] for a detailed description of the discrete Fourier transform (DFT). As we show in
this problem.) this paper, such methods are considerably more sensitive to
The special case of a real valued 2-D random field hasise than the method based on the EET. The latter is also
many applications in modeling, estimation, and synthesis cdmputationally more efficient than the methods based on the
textures in images [22], as well as for image coding [23] arladon and Hough transforms. More specifically, periodogram-
restoration problems [24]. In these applications, the textubased estimation of the spectral support parameters using
field is decomposed into a sum of a purely indeterministibe Radon transform requires the discretization of both the
component—the structureless, “random looking” componedistance from the origin and angle parameters. This step is
of the texture field, a harmonic component that results in tli@llowed by evaluation of the line integrals (the projections)
periodic attributes of the texture, and evanescent componeiuts each pair of parameters and a search for the projections
that result in the directional attributes of the observed textumsith highest energy. On the other hand, using the EET, no
In [14], we developed a conditional maximum-likelihoodsuch search in the parameter space is required.
algorithm for jointly estimating the parameters of the har- Once the spectral support parameters of each evanescent
monic, evanescent, and purely indeterministic componemsmponent have been estimated, several alternatives for es-
of the field for the case where the slope parameters tihating the other parameters of the field are possible. For
the spectral supports of the evanescent fields aangriori example, in [18], we have developed a demodulation pro-
known. In [15], the algorithm was extended to the casmedure that provides the estimated 1-D modulating process
where these parameters are unknown. It is shown that dfyeach component and its parametric model. (Section IV-D
introducing appropriate parameter transformations, the highhcludes a brief summary of the procedure). In the absence
nonlinear least-squares (NLLS) problem that results fronf harmonic components, the residual field, after all the
maximizing the conditional likelihood function is transformeevanescent components have been removed, is the purely
into a separable NLLS problem. Hence, the computationadeterministic component of the observed field. Its parametric
complexity of the required numerical minimization is reducethodel can now be estimated using existing estimation methods
significantly. In the transformed problem, only the spectralf purely indeterministic random fields (e.g., an AR model
support parameters of the deterministic components enf@}, [14]). Note that in this case where the observed field
nonlinearly into the transformed model equation. Therefore, Ims only a purely indeterministic component, the procedure
first estimating the unknown spectral supports of the harmonizd] of obtaining a maximum-likelihood estimate of the AR
and evanescent components, the problem of solving for thvdel parameters is reduced to a solution of a linear least
transformed parameters of the field is reduced to linear leasfuares problem. An alternative method is to employ a two-
squares. stage procedure for obtaining a least-squares estimate of
In this paper, we derive a computationally efficient estimahe observed field model. In the first stage, the parameter
tion algorithm for the parameters of the evanescent and purelstimation algorithm proposed in this paper is applied to the
indeterministic components of the field such that no numericatbserved field to estimate the spectral support parameters of
minimization is required. The algorithm is based on a nethie evanescent components. In the second stage, the unknown
nonlinear operator derived in this paper. The operator uniquelgectral support parameters are substituted with the estimated
maps each evanescent component to a single exponentiabniés to reduce a highly nonlinear LS problem (similar to the
is therefore named the evanescent to exponential transfasne in [15]) to alinear LS.
(EET). The exponential’s spatial frequency is a function of The proposed estimation algorithm of the evanescent com-
the spectral support parameters of the evanescent comporents opens the way fgoarametric solutions that can
nent. Hence, employing this transformation, the problem efmplify and improve existing methods of space-time adaptive
estimating the spectral support parameters of an evanesgaontessing (STAP). The goal of space-time adaptive filtering
field (i.e., the slope parameters of its spectral support, andigsto achieve high gain at the target angle and Doppler
frequency parameter) is replaced by the simpler problem afid deep nulls along both the jamming and clutter lines.
estimating the spatial frequency of a 2-D exponential. It shouRBkcause the interference covariance matrix is unkn@wn
be emphasized that the proposed algorithm is not based on prigri, it is typically estimated using sample covariances
assumption regarding the probability distribution function afbtained from averaging over a few range gates. Next, a
the observed field. weight vector is computed from the inverse of the sample
Alternative approaches for estimating the spectral suppadvariance matrix. A second common approach of STAP
parameters of the evanescent components can be derijg, e.g., [2] and [3]), is to employ subspace projections.
by taking the Radon or Hough transforms [20], [21] of thélgorithms in this class first estimate the subspace spanned
observed field periodogram. In the presence of evanescbwtthe interference by performing eigenanalysis of the sample
components, the periodogram peaks are concentrated aloogariance matrix. The weight vector is then obtained by
straight lines. Since on a finite-dimension observed field onpyrojecting the desired response onto the subspace orthogonal
a finite number of possible line orientations may exist, artg the interference subspace. In this way, the weight vector
of the foregoing transformations can be applied to estimateforced to null the interference. In this paper, we derive a
the spectral support parameters of the evanescent fields. Sicmeputationally efficient algorithm that is useful for estimating
these methods employ the periodogram for obtaining theth the spectral supports and the modulating processes of
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the jamming and clutter fields. Hence, the contribution of the
estimated interference can be subtracted from the observed

data. The residual field consists of a purely indeterministic L FU%RE‘
(most often white thermal noise) component and the target P o o
signal. The latter is a considerably simpler problem, even when
. ) ) . . L ) e o
fully adaptive (optimal) STAP is considered [2]. Alternatively,
having estimated the interference terms parametric models, — & LA r’“
their covariance matrix can be evaluated based on the esti- e o o e
mated parameters. In [17], we derived expressions of the field e o o o m
covariance matrix in terms of the components parameters. By o P:ST . o

substituting in these expressions the unknown parameters with
the estimated ones, an estimate of the interference covariance
matrix is obtained. Such a method may be utilized in the
framework of reduced rank adaptive STAP, where the lower
computational complexity of the weight application makes
this approach much more practical than the computationaixamples are presented in Section VI. Finally, in Section VII,

Fig. 1. RNSHP support; example with = 2 and3 = 1.

prohibitive fully adaptive STAP. we make some concluding remarks.
In [6], a matrix enhancement and matrix pencil method
for estimating the parameters of 2-D Superimposed, CompIeX Il. THE HOMOGENEOUSRANDOM FIELD MODEL

valued exponential signals was suggested. Assuming the noisprhe considered random field model is based on the Wold-

field is white, the Craner—Rao lower bound (CRLB) for ype decomposition of 2-D regular and homogeneous random

. - t
this problem was derived as well. The performance of t ) X . L )
algorithm was analyzed in [7]. The problem of ML estimatiorr}llelds’ presented in [1], and briefly summarized in this section.

of 2-D superimposed, complex valued exponential signals Ia%t {y(n,m), (n,m) € Z.Q} be a complex-valued, r_egular,
been recently considered in [8]. However, most of the workg egeneous random field. Thegin,m) can be uniquely
y
on parametric modeling and estimation of 2-D random fieldS
are concerned with the parameter estimation of real-valued 2-D y(n,m) = w(n,m) +v(n,m). (1)
AR fields, (see, e.g., [4], [5], and [9]-[11]), and the statistical ] _ o ) ]
inference of Markov random fields (MRF’s) (see, e.g., [12]The field{u(n,m)} is a deterministic random field. The field
[13], and the references therein). The underlying assumptiontity(; ™)} is purely indeterministic and has a unique white
the literature is that the random field is purely indeterministiélnovations driven nonsymmetrical half-plane (NSHP) moving
and hence, it can be fit with a white- or correlated-noisdVerage representation given by
driven Iinear.modell. Ir_1 .[17], we derive aexact CRLB on w(n,m) = Z b(k, yu(n — k,m — £) @)
the error variance in jointly estimating the parameters of a
complex valued homogeneous Gaussian random field with
mixed spectral distribution, using the parametric model thathere}” oy < ) |b(k, £)|? < o0;b(0,0) = 1, and{u(n, m)}
results from the orthogonal decomposition of the field [1]s the innovations field of y(n,m)}.
In this paper, we employ the results of [17] to evaluate theWe call a 2-D deterministic random fielde,(n,m)}
performance of the proposed algorithm for estimating thesanescent w.r.t. the NSHP total-ordeif it spans a Hilbert
evanescent components’ parameters. space identical to the one spanned bydtdumn-to-column
The paper is organized as follows. In Section II, we brieflinnovationsat each coordinatén,m) (w.r.t. the total order
summarize the results of the 2-D Wold-like decomposition ard. The deterministic field column-to-column innovation at
the derivation of the random field model. In Section Ill, weach coordinaté€n,m) € Z? is defined as the difference
define the problem considered in this paper and introdubetween the actual value of the field and its projection on the
some necessary notations. In Section IV, we introduce thibert space spanned by the deterministic field samples in
evanescent to exponential transform (EET) and an algorittath previous columns.
for estimating the spectral support parameters of the evanesk is possible to define [1] a family of NSHP total-order
cent components. The proposed algorithm is based on thefinitions such that the boundary line of the NSHP has a
properties of the EET. These properties are stated and provedional slope. Letx and3 be two coprime integers such that
The algorithm presented in Section IV requires knowledge af £ 0. The anglef of the slope is given byané = 3/«.
second-order moments of the observed field or a reliable e¢ee, for example, Fig. 1.) A NSHP of this type is called
mate thereof. However, in many cases, only a finite dimensiaational nonsymmetrical half-planéRNSHP). For the case
single observed realization of the field is available. Hence, where « = 0, the RNSHP is uniquely defined by setting
Section V, we further elaborate on the properties of the EEXT = 1. (For the case wherg = 0, the RNSHP is uniquely
and on the required modifications in its definition so that defined by settingr = 1.) We denote byO the set of all
can be applied when only a single realization of the field @ossible RNSHP definitions on the 2-D lattice (i.e., the set of
available. To illustrate the operation of the proposed algorithall NSHP definitions in which the boundary line of the NSHP
and to get further insight into its properties, some numerichbs a rational slope). Since it is shown in [1] that interchanging

presented by the orthogonal decomposition

(0,0)2(k,£)
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the roles of past and future in any total-order definition results Define the following parameter transformation as

in identical evanescent components, it is sufficient to consider A O (6)
only 0 < # < w. We therefore assume without limiting the 7T 2 + 32

generality of the derivation that > 0, whereas? can assume A I

any integer value. 6= 2+ 32 ()

The introduction of the family of RNSHP total-orderinge note that the transformed parameterss are rational

definitions results in the countably infinite orthogonal d&s mpers. Using (6) and (7), we can rewrite (5) in the form
composition of the deterministic component of the random

. 78y
field Cla,m(n,m) = Z sga”@)(na —mf3)
v(n,m) = p(n,m) + la,3) (N, m). 3 =1
(a,%):e() - exp (‘7'27r1/i(a”8)(n6 + m’y)). (8)

One of the half-plane-deterministic field components, which

The random field p(n, m)} is half-plane deterministidi.e., it s often found in physical problems, is the harmonic random
has no column-to-column innovations w.r.t. any RNSHP totagz|g

ordering definition. The fielde, s)(n,m)} is the evanescent

component that generates the column-to-column innovations L .
of the deterministic field w.r.t. the RNSHP total-ordering h(n,m) =Y Cpexp(j2n (nw, +miz,)) (9)
definition («, 5) € O. p=1

Hence, if {y(n,m)} is a 2-D regular and homogeneoug,here theC,’s are mutually orthogonal random variables, and
random field, thery(n,m) can be uniquely represented by(wp,up) are the spatial frequencies of tgh harmonic. In
the orthogonal decomposition general P is infinite. The parametric modeling of deterministic
random fields whose spectral measures are concentrated on
y(n,m) = wln,m) +p(n,m) + Z “a,8)(mm). (4) curves other than lines of rational slope, or discrete points in
(,0)€0 the frequency plane, is still an open question to the best of

. , our knowledge.
In this paper, all spectral measures are defined on the square 9

region K = [-1/2,1/2] x [-1/2,1/2]. It is shown in [1]
that the spectral measures of the decomposition components lll. ESTIMATION OF THE EVANESCENT
in (4) are mutually singular. The spectral distribution func-  COMPONENTSPARAMETERS. PROBLEM DEFINITION

tion _of the purely indeterministic component is absolutely The orthogonal decompositions of the previous section im-
continuous, whereas the spectral measures of the half-planegghat if we exclude from the framework of our model those
terministic component and all the evanescent components ai§ random fields whose spectral measures are concentrated

concentrated on a set of Lebesgue measure ze10.i8InCe  on curves other than lines of rational slopéy, m) is uniquely
for practical applications we can exclude singular-continuopgyresented by

spectral distribution functions from the framework of our
treatment, a model for the evanescent field that correspond: n,m) = w(n, m)+h(n, m)+ Z ¢(a,0)(n,m).  (10)

to the RNSHP defined by, 3) € O is given by (@,0)€0

Yet, there are applications, such as in the case of space-time
7P processing of airborne radar data, where the observed field may
Cla,m(n,m) = Z e§“~">(n, m) contain only evanescent random fields embedded in noise. This
i=1 is the case when no target exists or in secondary data used for

7ler) estimating and adaptively nulling the interference in the range

= Z 3§“~">(m —mf3) gate under test. In other applications, such as in that of texture

i=1 modeling and estimation [22], the deterministic component

s of the observed field comprises only evanescent components
- exp J2Wm(ﬂﬁ+ma) (5)  or harmonic components, but not both. In this paper, we
concentrate on the problem of estimating the parameters of

where the 1-D purely indeterministic complex valued pro‘e-m observed field given by

cesse s\ (na — mB)} and {s]("x“@)(na —mf3)} are zero- y(n,m) = w(n,m) + Z (a,g)(n,m) (11)
mean and mutually orthogonal for all # j. Hence, the (@,8)€0

“spectral density function” of each evanescent field has the., when no harmonic component is present. In this frame-
form of a countable sum of 1-D delta functions that ar@ork, the purely indeterministic component can be viewed as
supported on lines of rational slope in the 2-D spectrah unknown colored noise field.

domain. The slope of the spectral support of each evanescenie next state the assumptions required for proving the
component is determined by the corresponding/3) pair, results in the next two sections and introduce some necessary
whereaSVi(““@) is the “frequency” parameter of this spectrahotations. Let{y(n,m)}, (n,m) € D, whereD = {(¢,5) |

support. 0<¢<S8-1,0< 5 <T-1}, be the observed random
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field. Note, however, that the observed field just as well coulk the vector whose elements are the observed samples from

have anyarbitrary shape. the 1-D modulating proces{$§““8)}. Define the vector of grid
Assumption 1:The purely indeterministic componentpoints

{w(n,m)} is a complex-valued field, such that its real and

imaginary components are jointly wide sense homogeneousz(a"a) =[0,c,....,(T— Do, 3,8+ a,...

and jointly mean-square ergodic in the first- and second-order B+(T—Da,...,....,(S-1)8

moments. _ _ _ T
Assumption 2:The number I = E(a o 7B of S-Df+a,....,(S=DF+T —-1La]". (19)

evanescent components in the fieldisriori known. Note that

contrary to [15], here, we do not assumeriori knowledge \ector, consisting of the values gi(v) evaluated for all the

a,8 . .
of 1(? for each(a, ) € O. e elements ofv, wherev is a column vector, byf(v). Using
Assumption 3:For each evanescent fiefd;”""" }, the mod- this notation, we define

ulating complex valued 1-D purely-indeterministic process
(a,8) 5 i i i (o, 8)
: is a zero-mean process such that its real and imagi- 4
Ls; ) P g d@? = exp <‘7'27r Yi V(a”8)> (20)

Given a scalar functiory(v), we will denote the column

nary components are jointly wide sense stationary and jointly a? + 32

mean-square ergodic in the first- and second-order moments.

It is further assumed that these processesateircular. Let Thys, using (5), we have that

a*? denote the parameter vectorfaf™?}. At the moment,

we will not specify the functional dependence ff** on e = ¢ o a@” (21)
a§°“~8>, but rather leave it implicit. Thus, the parameter vector

f h of th t B e b where® denotes the Hadamard product of the vegtors.
of each ot the evanescen compone{"ﬂgy +is given by Note that whenevena — mf3 = ka — £ for some integers

¢\ = [, B, (2] (12) n,m.k ¢suchtha0 <n,k<S—1land0<m,/<T—1,
Therefore, the parameter vector of the evanescent fidhe same sample of the procefs§™”} is repeatedly used in
{e(®1 is obtained by collecting the vecto@ﬁ“"ﬁ) into the product form (21). It can be shown that for a rectangular
observed field of dimensionS x 7°, the number ofdistinct
() (N T (@) \T7 T samples from the random proce{s@“"@)} that are found in

¢ =[(o™7) ", (b)) |- (13) the observed field is
Let b denote the parameter vector of the purely indeter-

ministic component. At the moment, we will not specify the Ve = (5 —D)|a[+ (T = 1)|B[+1—(lo| = 1)(|B]-1).  (22)
functional dependence of the purely indeterministic component ] )
on b, but rather leave it implicit. Thus, the parameter vectdfis is becauseV. is the number of different “columns”

a single-column vector, i.e.,

of the observed fieldy(n,m)} is given by that can be defined on such a rectangular lattice for an RN-
T (@BNT T SHP defined by{«, ). We therefore define theoncentrated
6 = [b", {(¢'") }((y,,@)EO] . (14) version s§“~@> of .55““8) to be anN.-dimensional column
Let vector of nonrepeating samples of the proc{aég"a)}. More
y = [(0,0),...,4(0,T —1),4(1,0),... specifically, for the case in which > 0 and 3 > 0, s§°“~8>
y(1,T—1),...,...,y(S —1,0),... is given by
y(§ - 1T -1 @5) D = [ r— ), = D))t
W:[w(0,0),...,w(O,T—1),w(1,0),... (23)
w(l,T—1),...,...,w(S —1,0),...
w(S — 1,7 - DF (16) While for the case in whichk > 0 and3 < 0, sga“a) is given by
and s = [P(0), ..., 8PS = Da— BT —1))] .
et = [{*(0,0), ..., (0,T - 1), &SP (1,0), ... (24)

ST,

(,8) (o) T Note, however, that due to boundary effects, the veq&%@
e (8 =1,0),...,;" (S =1, = 1)]". (17) is not composed of consecutive samples from the process
Let {sg%‘”} unless|a| < 1 or |3] < 1. In other words, for some

: el e, 8)
(,8) _ 1 .(c,8) (08) (.8 arbitrary « and 3, there are missing samples s{n .
& = [5770), 8% (), 8™ (T - 1)B) Thus, for any(«, 3), we have that

s (a), s = ), s

sga”a)(a —(T-1p),... S =AY (25)
o, o,

s P((S = D). ("7 (S = D= B), ... where A" is rectangular matrix of zeros and ones that

s$D(S - Da— (T - 1)/3)]T (18) replicates rows o&!*"”.
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IV. THE EVANESCENT TO EXPONENTIAL TRANSFORM —(m+ 7)) (“"8)(7104 - mp)}

In this section, we introduce the evanescent to exponential eXp(127rl/( o )(Tn(s + Tmry))}
transform (EET) and an algorithm for estimating the parame-

(e, 3)
ters of the evanescent components. The proposed algorithm wexp(j2m " (208 + 2my))

is based on the EET and its properties. To simplify the 1o
i 1 i i = K(a”a)('r o — Ty 3)
presentation, we first describe the EET and the resulting Z Z {xi n m
algorithm for the case where the observed field is a sum (a,2)€0 =1
_of evanescent components,_i.e.,_ the case Where no purely exp(lzmj( o )(Tné—i—Tm’y))}
indeterministic component exists in (11). In Section IV-B, we (e,
extend the results of Section IV-A to the case of a nonzero ~exp(j2my; "7 (206 + 2my))
purely indeterministic component. 1te%
SN B )
A. Estimation in the Case of a Zero Purely (,3)€0 =1
Indeterministic Component exp(127r1/(a’ )(2n8 + 2m~)) (29)
Assume that the observed field is a sum of evanescent o _
components, i.e. where the second equality is due to the mutual orthogonality of
the different evanescent components. The third equality is due
y(n,m) = Z C(a,m)(n,m). (26) to the fact that the real and imaginary components of each of
(a.0)e0 the{s } processes are jointly wide sense stationéﬁf)? /)

8
Definition 1: Let 7,,, andr,, be some finite integers. Definedenotes the unconjugated second-order momer{is{5t '},
and we define
MQ(?J(”? m)7 Tns Tm) = E{y(n + Tn,m + Tm)y(n, m)}
) (o, 8)
(27) CZ (avﬁv v; 77_n77_rn)
= ICEQ”B)(Tnoc —Tmf3) - exp(J27r1/(a )(Tné + Tm7)) -

The unconjugated correlation operatots (-, 7,, 7., ) is em- (30)

ployed as the basic building block of the proposed algorithm

for estimating the evanescent components’ spectral support
parameters. The properties of the mapping induced by applyin
Mo(-, 7., 7m) to an evanescent field are stated and proved

the next wo theorems. tude 2-D exponentials. Hence, we nam& (y(n,m), 7, Tm )

MTheorem L:Let {y(n,m)} bef glvent bty (26I)t dTheZ bthe EET. In the following, we use the notatid,, ¢,),
o (y( ), Tn,Tm) IS @ sum of constant amplitude 1...1, wherel = Z(a,,@)eo I(@:8) to denote the spatial

exponentials given by frequency of each exponential.

O
9hus, if the observed fielg(n, m) is a sum of evanescent
é%mponents,/\/tQ( (n,m), T, Tm) IS @ sum of constant ampli-

Mo(y(n,m), Tn, Trm) The spectral support parameters of each evanescent com-
e ponent are related to the spatial frequengy,,¢,) of a
Z Z M (a ) m), Tm) corresponding exponential through the system
(a,8)€0 i=1 (e, 8)
2v; 3
FiC) —V;—i-ﬁé = wy (32)
@ &
Z Z C7 (Oé,/}, l/i( 75)’7'”,7'771,) 21/(0"’8)@
(a,8)CO i=1 s = Pq- (32)
o (,8) a?+ 3
~exp (j2m1, 7 (2n6 + 2m~)) (28)

It is easy to verify using (31) and (32) that,, ¢,) = (0,0)
if and only if »(*? = 0. Hence, if,{*” = 0 for more
than one component, all these components are mapped to a
single exponential whose frequency (i8,0). Let I be the

where the coefficients; («, 3, 1/(“ A

tions of n nor m.
Proof: Substituting (26) into (27), we have

. Tn, Tm ) @re neither func-

Ma(y(n,m), Tns Tm) to(gag)number of eyanescent components in the field such that
o) ;% # 0. In this and the next subsections, we elaborate
- E Z Z eg““">(n+m,m+¢m) on the problem of estimating the parameters of evanescent

(O =L components withui("“@) # 0. The case where for somg
L) (wq, 9q) = (0,0) is treated separately in Section IV-C.
(,3) Note that in general, depending on the valuesof and
>, > amm > cyclic f foldi lead t tibl
yclic frequency folding may lead to a noninvertible
mapping to(wg,1,). A necessary and sufficient condition to
(@) avoid this problem is that.,, ¢,) € K, which guarantees that
Z Z {E{s"7((n+7m0)a no ambiguities exist. In other words, the condition to avoid
(@,8)c0 =1 nonunique mapping of the evanescent components’ spectral

(a,B)cO i=1
7le.B)
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support parameters is that for gllv, 5) € O and for all the solution of the 2-D normal equations, which was used for
i =1...](®9 initializing the ML algorithm in [14], or simply the inspection
2|L/§a,,a)| max(|c|, |3]) of the_z absolute value of the field’'s 2-D Fogrier trarg)slf)orm.
‘ BT ’ < 0.5. (33) If a discrepancy close ta-0.5 between the estimate a)f ’
ot +f obtained using (31) and the one obtained using the verification

However, becaushxga"a)| < 0.5 while « and 3 are integers, Procedure is detected, the estimate obtained using (31) is

it is straightforward to verify that except for the cases whefBcreased/decreased by 0.5. We further note that since the
(. B) = (1,0) or (o, B) = (0, 1), (33) is satisfied for alty, 3, €stimate obtained using the verification procedur((a) {s required
andui(a“a). If components with(c, 3) = (0,1) [and similarly only for the purpose of possible0.5 adjustment of/i( ) and

for (a, 8) = (1,0)] exist in the observed field, their frequencythe separation of two components with* — 0] = 0.5,
parameten/i(o’l) can be recovered using the relations in (31 everlflcanor_l estimator can be _ofa low accuracy. To simplify
and (32) only up to a0.5 shift. [The term 0.5 is due to the factthe presentation, we assume in the following that no two
that the folding of the exponential frequency is by 1, where&¥anescent components witlr, 3) = (0,1) are such that

the estimate of/" is obtained by dividing the estimatedl; - — 7> = 0.5. Next, we give a detailed description of
exponential frequency by a factor of 2.] As a consequence, e proposed algorithm. We begin by introducing the definition

different evanescent components with frequency paramet@fs2 New operator. S
Vi(o,l) and®? such thaijui(o’l) _ ,/](0,1)| — 0.5, are mapped Deflnl('goﬁr; 2: Let 7,,, and 7, be some finite integers. L_et
by the EET to the same exponential. Later in this section, weMz(¢; " (n, m); 7, 7m,w, ¢) be defined as the Fourier

present an algorithmic solution to this nonuniqueness of th@nsform of Ma(e{™P (n,m), 70, 7). i€,
EET. .

In the next theorem, we show that i*® = 0 for no FMo (e (0 m)s 70, 7m0, )
more than a single evanescent component, then except for the r=1s-t (@.8)
foregoing two special cases, each evanescent component is = Z Z MQ(ez‘ ’ (”’m)’Tn’Tm)
mapped to a unique exponential. n=0m=0

Theorem 2: Assume that for all(a,8) € O andi = rexp(—j2n(nw +me)). (34)

1. 1@”, y*? o 0. Then, for all (a,8) # (1,0), In general,{y(n,m)} has multiple evanescent components.
(ev, B) # (0, 1), the mapping of the spectral support parametergom Theorems 1 and 2, we have that applying the EET
(o, 3), 1/5““8) of each evanescent component in the field to asperator to{y(n,m)} produces a sum af constant amplitude
exponential’'s frequenciw,, ¢4) is unique. Fof«, ) = (1,0) complex exponentials, whose frequencies, ¢,) # (0,0),
and («, #) = (0,1), the mapping is unique up to a shift ofwhereas all the evanescent components for wijéh” = 0
+0.5 in v,>” and I/io’l), respectively. are mapped t¢0, 0). Hence F Ma(y(n, m); 7, Tm,w, ¢) has
Proof: Assume that two evanescent components widkactly I spectral peaks at frequencigs,, ¢,) # (0,0).
different spectral support parameter§y;,3;),», and  Recall that for each evanescent component, the slope pa-
(a2, B2),12, respectively, are mapped by the operataameter of the boundary line of the corresponding RNSHP
Mo(-, T, 7) 10 two exponentials of identical frequencyis defined by the ratio of two coprime integers and 3
(w,¢). Let us first consider the case whege # 0 and such thattanf = g For each component, i, = 0 (in
w # 0. From the assumption and (31) and (32), we hay®actice,|w,| < ¢, wheree is a small predetermined constant),
that 72 = [t. Since both(as,31) and (az,/32) are pairs of we decide that(@,3) = (1,0), and hencep{*? = %
coprime integers, we conclude thai = a» andfy = f2. pis estimate ofi "% is then verified as explained in the

Hence,v1 = v, _Zs Wﬁ"' H ince b foregoing discussion and adjusted k.5, if required. An
We now consider the case whage= 0. Since by assump- identical procedure is applied i, = 0, where we decide

tion, 7 # 0 andi, # 0, we have from (32) that, = a2 =0. . L(0,1)  w,
Hence, by the RNSHP definition, we have that bgih= 1 (@) = (0,1), and; R _

andg. = 1. Substituting these values into (31), the assumption{ (&:5) # (0, 13)’ (O"wff) # (1,0) then using (31) and
implies thatv, = 1, or thatr, = 1, 40.5. A similar argument (32), we find thaty = 3. We thus search for a coprime

holds for the case wheke = 0. OO0 integer pair(k, ), k > 0 such that‘;—'z = f (and, in practice,

The problem of estimating the spectral support paramet%‘s — §| < ¢€). These(k, ¢) pairs, when substituted into (31)
of the evanescent components can now be stated as follogﬁd (32) instead dfer, 3), should yield avalid{®? estimate,

Given the estimated nonzero spatial frequencies. ¢, ). ie, 7P| < 0.5. Thus, we consider onlyk,¢) pairs that

g =1...1, solve for each evanescent component the systergtiSfy both
(31) and (32) to obtain the spectral support parameters. e

system has to be solved under the constraintsdheatd 3 are wy(k* + %) <05 (35)
coprime integersge > 0, and0 < |1/f""8)| < 3. 2k ’
If components with(«,3) = (0,1) (and similarly for
(a, ) = (1,0)) are detected by an EET-based estimation pro-
. imatd-d - Pg(k* +42)
cedure, their frequency estimate ™’ should be independently T TR £ 0.5, (36)
verified, using some other procedure. Possible procedures are 2t
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TABLE | since the purely indeterministic component and the different
ESTIMATION ALGORITHM OF THE EVANESCENT evanescent components are mutually orthogonal. Because the
COMPONENTS SPECTRAL SUPPORT PARAMETERS . . .
real and imaginary components dfw(n,m)} are jointly
wide sense homogeneouS[w(n + 7, m + 7, )w(n,m)] is
0. Let I denote the total number of evanescent components in the field, a function of neithem nor m. Thus CO(IU(TL m) T Trn) —
(a,8) '_ ’ b b b .
such that »7 £0. Ew(n +7,,m+7m)w(n,m)] is a constant. Hence, repeating
the arguments of the proof of Theorem 1, (37) follows.

1. Find the spatial frequencies (wq, ¢g) g =1.. .1 of the I prominent spec-
tral peaks of |FMy(y(n, m); 7, T, w, @)|, such that (w,, ¢,) # (0,0).

C. Estimation of the Spectral Support for Components

2. For cach evmnes(ent component such that w, = 0, set (&,8) = (1,0) ]
and (9 = %2 Add 0.5 to 779 if frequency folding is detected. With Zero Frequency Parameter
. In Section IV A, it is shown that whenever the frequency
3. For each evanescent component such that ¢, = 0, set (&, 5) = (0,1) (a,8 .
o1 01 o parametery; ) of an evanescent component is zero, the
and 91 = %2 Add £0.5 to 5%V if frequency folding is detected. i
EET maps this evanescent component to an exponential whose
4. For each one of the remaining evanescent components, find the coprime frequenCy is (0, 0), regard|eSS of the values a@f and /3
integer pair (k,£) such that 0 < k and 52 = £. This nonunigueness implies that the EET cannot produce a
complete parameter estimate of the spectral support parameters
5. For cach evanescent component of step 4, set (4,5) = (k) and of these evanescent components. Hence, a different operator
pleh) = s g(kw’) + ¢g(k2+ﬂ>)

must be applied to the observed field in order to estimate the
(v, B) pairs of the evanescent components whose frequency
parameter is zero.

In this section, it is assumed that the spectral support
parameters of thé evanescent components, whose frequency
parameter is nonzero, have already been estimated using
the estimation algorithm summarized in Table I. Hence, the
algorithm proposed in this section is designed to estimate the

In Theorem 1, it is proved that in the absence of thgy, /) pairs of evanescent components for which iaiseady
purely indeterministic componendts(y(n,m), 7., 7m) iS @ knownthat their frequency parameter is zero. The spectral
sum of constant amplitude 2-D exponentials. Next, we shaweasure of these evanescent components is concentrated on
that a minor modification of the same result holds for thénes with rational slope that cross tl@, 0) frequency.
more general case in which the observed signal consists offhe proposed algorithm is a modified version of the Hough
the sum of multiple evanescent components and a purélgnsform for detecting straight lines in 2-D arrays [20].
indeterministic component. This modification employs the priori knowledge that the

Theorem 3:Let {y(n,m)} be given by (11). Then, frequency parameter of the evanescent components the algo-
Mo(y(n,m), 7., 7) IS @ sum of constant amplitude 2-Drithm is looking for, is zero, as well as of the fact that the

The algorithm is summarized in Table I.

B. Estimation in the Presence of a Purely
Indeterministic Component

exponentials given by spectral support of each one of these components is a line
in the frequency plane such that its slope is defined by two
Ma(y(n, m), 7o, Tim) coprime integersr andg. Initially, the algorithm identifies the
= Colw(n, m), T, Trm) peaks of the field periodogram. In the presence of evanescent
(e components, these peaks are concentrated along lines. On a
+ Z Z Mo ( P (n,m), Ty Tm) finite-dimension observed field, only a finite number(af 3)
(a,3)CO i=1 pairs may be defined. (This is becauseand 3 are integers

= Co(w(n, m), T, Tm) representing distances bet_ween gonsecutive samples along the

o) “rovxlls” (;an(_j “cczjlu;ms” ((jeﬂ;()ad wgr; r;a_ipecft to t?e RNSHP
.8 total-ordering definition(c, 3) € O). Therefore, for given
+ Z Z Cilew, 6, 2 T Tim) dimensions of the observed field, we search among all possible

combinations of the spectral support parametesnd 3 for

- exp (j27rui(a“8)(2n6 + 2m7)) (37) theI— I pairs of(c,3) that best explain the concentration of
peaks along lines that cross th@ 0) frequency.
where the coefficient§;(«, 3, 1/( ) ,Tn, Tm ) are functions of

neither n. nor m. - .
Proof: Substituting (11) into (27), we have D. Obtaining a Complete Estimate of the Model Parameters

(.B)CO i=L

Using the estimated spectral support parameters of each
evanescent compone(, j3), Vf‘”“@), several alternatives for
(9) (9) estimating the other parameters of the field are possible.
=ES > > ™ (ntmm+mn)e™ (n,m) b We first briefly summarize the method developed in [18].

(e,3)cO =1 Note from the evanescent field model (5) that for a fixed

+ E{w(n + 70, m + 7 )w(n,m)} (38) ¢ = na —mpg (i.e., along a line on the sampling grid), the

MQ(Z/(TL, m)7 T Tnl)
Jle8)
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samples of the evanescent component are nothing but th&rom Theorem 3, we have that

samples of constant amplitude exponential signal. Multiplyin
P . P g , i)@ﬁ)g ~ . Pying M?(y(TL?m)?T’fl?T’nl)
the observed signaj(n, m) by exp(—j2r 1z (nf + md)) = Co(w(n, m), Tn, Tm)

and evaluating the arithmetic mean of this signal along a line

. . FiG]
on the sampling grid such that= na — m/3, we have n Z Z MQ(GZ(@,@)(n?m)vaTm)' (40)
(@,8)€0 i=1
N 1 L . )
sf “‘”(c) =~ Z y(n,m) To simplify the notations, we first address the problem of
® na—mp=c estimatingMQ(ega“a)(n,m),Tn,Tm) for a single evanescent

p(eB) . component, assuming a zero purely indeterministic compo-
- exp <—‘7'27r L (n/3+md)> (39) nent. In that case

a2 + /92
My (Cgaﬂa) (7’L, m)7 Tn, Tm)

@8 . a,8

where N, denotes the number of the observed field samples = {’CE )(Tnoé — Tmf3) - exp (J27”’i( )(Tn5 +Tm’V))}
that satisfy the relatioma — m/3 = c. Substituting (11) into - exp (j27r1/i(a”8)(2n6 + 2my)). (41)
the right-hand side of (39), it is easy to verify that (39) indeed 5
provides an estimate of*?(¢) since the arithmetic meanThe term K (100 — 7,,8) in (41) is the unconjugated

Pl R second-order moment of a complex-valued process whose real
(0 + ma)) e i -
. R &2+ and imaginary components are jointly wide sense stationary
along the linend —m/j = c tends to zero, except the DC termand jointly mean-square ergodic in the first- and second-order
which tends t03§°“~ )(c). This procedure provides estimates ofnoments. Hence, it can be consistently estimated by replacing
the 1-D sequencésga“a)(na —mf3)} of the evanescent field. the ensemble average with sample average.

Having obtained the sequence of estimated samples from thé.et f be anN.-dimensional vector whose entries are the
- i (. 8) imating its indices of the samples fronis'®?} in (23) [or (24)]. We

1-D modulating procesgs; "/}, the problem of estimating its : p nfs; " _ .
parametric model becomes entirely a 1-D estimation probletherefore define the sample unconjugated second-order mo-
Applying to the sequence any parameter estimation algoritHfient
that corresponds to the model of this complex-valued procegs(«, )

; , 2 (T — T 3)
(e.g., 1-D AR, MA, ARMA), we obtain estimates of the 1
modulating process parameters as well. =N Z sk + 1) — (£+7m)B)

The residual field, after all the evanescent components have ¢
. . T ((ktmn)o—(f+Tm)B)ef

been subtracted, is the purely indeterministic component of (.5)

the observed field. Its parametric model can now be estimated i (ko — £3). (42)

using exi.sting estimation methods of purely indeterminis?iﬁeca" that in Section 11, we have shown tl'éfy"ﬁ) contains
random fields (e.g., an AR model, [9], [14]). Note that in thip licated elements. He'nce we can extend the summation in

! : . Te
case, where the observed field has only a purely indeterminist w.B8) ;.
component, the procedure of obtaining a maximum-likeliho&é(g) and sum the products of the typgfe ((k + 7)or —

a, . -
estimate of the AR model parameters [14] is reduced to(a+ Tm)ﬁ?sg (ke - £8) over the entire field, and average
solution of a linear least squares problem. it appropriately. Hence, (42) gets the form
A diﬁerent approach. to obtaini'ng a complete estimatg of the KE““‘”(m & — TmB)
observed field model is to obtain a least-squares estimate of

of each of the terms of(n, m) exp(—j2n

(ka—LB)eE

S—17T-1
its parameters. Substitution of the unknown s_pectral su_pport _ L Z Z ega,,a)(k bt Tm)ega,@)(k’@
parameters of the evanescent components with the estimated ST = =
ones reduces a highly nonlinear LS problem ténaar LS. ) oy
(See [15] for details). exp (=320 (k4 7)6 + (L4 7))
. exp(—j27rl/i(a”8) (k6 + £v)) (43)

V. THE EET IN THE CASE OF A SINGLE where the last equality is due to (5). Thus, using (41) and (43),
OBSERVED REALIZATION OF THE FIELD we conclude that an estimate WQ(CE(y"B)(ﬂ,m),Tn,Tnl)

. . . (@, 8) _ . .
The EET and the algorithm that employs it (see Table |) ai%@?}a'”ed by r}epl\all\(/:mg:i ¢ (T"ﬁ 7mf3) N (41) with
formulated in terms of unconjugated second order moments (Tnex — 7 3). We therefore have
of y(n,m). Hence, knowledge of these moments, or a reliable MQ(G(a,,ﬁ)(mm)’ Tas Tm)
estimate thereof, are required. However, in many cases, only ‘ S 171
a finite-dimension, single-observed realization of the field is _ 1 RCH (er,8)
' = — . + T, L+ T )e; k.t
available. Hence, in this section, we elaborate on the properties ST kzzo ;:% { o ) (k. )
of the EET and on the required modifications in its definition . (@,8) /ory.
so that it can be applied when only a finite, single-observed wexp(—j2m; 7 (2k6 + 267)) }
realization of the field is available. -exp (j2m{7 (208 + 2m7)). (44)
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Note, that (44) is the 2-D Fourier series expansion df?lQ(ega"@)(n,m),Tn,Tm) estimator in (43) and (44), it is clear

/\;lg(ega”a)(n,m),m,rm). The series has a single term. Thé¢hat

coefficient of this term is the 2-D Fourier transform applied L)

to the product S|gnale(“ 8)(71 + Tn,m + T e, (e, 8)(n,m) gglooMQ( (1), 72, i)

evaluated at some frequen(:%u(“ ) gy 8)) and scaled — MQ(e( D (0, m), T Ton) (50)

by a constant. Slncézéw #) and 271/(“ ?) are unknown, ’ 7 7

in principle, this expression has to be evaluated for dh the mean square sense. From Theorem 1, we have that

frequencies. Ms(e; (e, )(n m), Tn, Tm ) IS @cCONstantamplitude exponential
Thus, in the estimation algorithm, we replace the EEWith the correct frequency(wy, ¢¢). In other words, the

operatorMs(-, 7, 7, ), which uses ensemble moments, Wltlergodmny of{s(“ )} guarantees that & — oo and?’ — o,

the Mo(-,7,,7) Operator, which uses sample moments(wq,%) = (wy, ¢¢) in the mean square sense.

More specifically, the step in which we evalugtz,, d)q (step Alternatively, from the derivation of the estimator, and

1 in Table I) is replaced in this single component case by the proof of Theorem 1, it is clear that the weighting term

~ —1 /(a,,@) i i
(@q,d)q):argmaxv-"/\/b (a, )(n,m);Tn,Tm,w,d)ﬂ (45) exp(—j2m1; " (2k64247)) in (44) suppresses the oscillatory

(@ B)CK behavior of the sample moment. Since in our application we
are nonetheless interested in detecting the frequency of this
where oscillation and not in estimating the moments themselves, we
FMs ega”@)(n,m);%ﬁm,w,d)) employ the stat|st|c7-“/\/12( )(n M) Ty Ty W,y D).
151 We further note( atn;;:tt since (49) is the(fg)uner transform of
_ Z MQ(GEQ,,B)(n’m)’Tme) the product fielde; (n+ 7, m + Tm )€; (n,m), it can
== be evaluated on a discrete 2-D grid(af, ¢) via the 2-D FFT.
- exp(—j2r(nw + mg)). (46) In tact,_due to the prop_erUes of the EET, any algorithm for
estimating the frequencies of 2-D exponentials can be used as
Using (44) and (46), we have a substitute to the FFT-based implementation we have chosen

(see, e.g., [6] and [8]). The reason for our choice is, of course,

T A (o008 .
| F M (e, (0, m); Ty Ty w0, 6) | the simplicity of the implementation.

1 [R5 w9 (08) Let us return now to the general case where the observed
ST Z Z {Ci Tk AT Lt T)e (R ) field {y(n,m)} consists of a purely indeterministic component
k=0 (=0 and multiple evanescent components. Since the purely inde-

terministic component and all the evanescent components are

" (e, 8)
~exp(—j2m; ™" (2k6 + 20v)) }‘ mutually orthogonal, we compute the statistic

T-15-1 v I
. Z Z exp[—j2m ((w — 2’/50”8)6)71 25%(171577711) Trs Ty Wy )
o - Z Z [y(n + Tn, M + Trn)y(nv m) - A(Trm Trn)]
n=0 m=0
+ ((7) - 21/i(a,,8)’y) m)] ‘ (47) -exp(—727 (nw + mo)) (51)

Inspecting (47), it is clear that evaluating the Fourier transforf{€réA(7», 7,,) denotes the sample mean of the product field
of the product signat™® (n + 7., m + 7)™ (n,m) for YU + T+ T )Jy(n,m), i.€.,

all (w,¢) and setting T-15-1
N AT, Tm) = y(n+7n, m+Tm)y(n,m (52)
(d)qu)q) —argmax|.7-"./\/lg( (a 8>(7‘L,m);7'n,7'm,w,(f))| ( STnz:Or;) ) ( )
(w,p)EK

(48) The subtraction of the mean of the product field is meant
to eliminate the contribution t&F My (y(n, m); T, Tm, w, ¢)

where of the purely indeterministic component througé(w(n, m),

5"{/\\/12 (ega,,ﬁ)(n7 T): Ty Ty @ (/)) Tns Tm)(,(yaas) well as the contributions of evanescent components
s with ;"% = 0.
_ Cga,,a)(n+Tn7m+Tm)C§a,,@)(n7m) Applying the foregoing reasoning to the multicomponent

== case, we conclude that the spectral support parameters of the

- exp(—j2r (nw + ma)) (49) I evanescent components vyhos_e frequency paramé‘teﬁr).
X is nonzero are found by estimating the spatial frequencies of

is equivalent to estimatingz,, ¢,) using (45). the I prominent peaks of]-"/\/tg( (n, m) Tn,’l'm,w ¢)|. Let

Recall that{s(“ 8)} is a zero-mean process such that itas denote this set of estimates {)@wq,%)
real and imaginary components are jointly wide sense sta-Recall that the purely indeterministic component and the dif-
tionary and jointly mean-square ergodic in the first- anfifrent evanescent components are mutually orthogonal. Since
second-order moments. Hence, using the derivation of teach one of these fields has a zero-mean, while its real and
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Fig. 2. Spectral density function of the purely indeterministic componenizig 3. Absolute value of the Fourier transform of the observed field in
Example 1.

imaginary components are jointly wide sense stationary and

jointly mean-square ergodic in the first- and second-order s

moments, we conclude, using (43), (44) and (50), that 25

S%iln MQ(y(nvm)aTanm):MQ(y(nvm)anva) (53) 3

in the mean square sense. 25

In summary, the estimation of the spectral support parame- 2
ters of the evanescent components{gfr,m)} is performed
by applying the operatofF Ma(-; 7, 7m, w, ¢)| to the ob-
served field, followed by a search for tdeprominent peaks
of |ﬁ/12(y(n,m);'rn,'rm,w,d))|. The remaining steps of the 95y i
algorithm are those developed in the previous section. In other |4
words, if the true second-order moments of the observed field %°
are unknown, the same algorithm derived in the previous
section (see Table I) holds whefMa (y(n, m); 7y, T, W, @)
is replaced byF My(y(n. m); 7, Tm,w, ¢), and (w,, ¢,) re-
placed by((f)q,(;),]). omega 05 05 phi

1.5

1

VI. NUMERICAL EXAMPLES Fig. 4. FMa(y(n,m); 7o, 7. w, ¢)—Estimated result of applying the
. . . operatorF Mz (+; T, Tm, w, @) to the observed field in Example 1.
To illustrate the operation of the proposed algorithm, as

well as to gain more insight into its performance, we present
several numerical examples. indeterministic process of this evanescent component is a
Example 1: Consider a 2-D homogeneous random fieldecond-order Gaussian MA process such #fat (1) =
consisting of a sum of a purely indeterministic component0.95 exp(jn /4), anda‘®~1(2) = 0.1 exp(jn /4). Its driving
and a single evanescent component. The purely indeterministiise is a complex-valued Gaussian process, whose real and
component is a NSHP MA field with parametér®,1) = imaginary components are independent real Gaussian white
—0.9exp(j0.257), b(1,—1) = 0.lexp(j0.47), b(1,0) = noise processes with zero mean and variarie€s—1)? =9,
—0.5exp(j0.87), b(1,1) = 0.4exp(—j0.2x). The driving and (p>~Y)? = 1, respectively.
noise of the MA model is a complex valued white noise field The dimensions of the observed field are 10QL00. For
such that its real and imaginary components are independilotration purposes, a contour map of the absolute value of the
real Gaussian white noise fields each with zero mean aRdurier transform of the observed field is depicted in Fig. 3.
variances? = 4, and p? = 25, respectively. The spectral Observe that the evanescent component spectral support wraps
density function of this purely indeterministic field is depicte@round the boundary of the spectral domain. In addition,
in Fig. 2. note the presence of the colored background noise, which
The evanescent component spectral support parametersiardue to the purely indeterministic component of the field.
(o, B) = (2,—1), »>~Y = 0.4. The modulating 1-D purely Fig. 4 depictsF Mo (y(n,m);7n, Tm,w, $), i.€., the result of
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omega

omega phi
L Z?x . , . .
04 -03 -02 -01 0 01 02 03 04 05 Fig. 6. }' 2(y(n, m); T, Tm, w, ¢)—Estimated result of applying the
phi operator}' Mo (-5 T, Tm,w, @) to the observed field in Example 2.

Fig. 5. Absolute value of the Fourier transform of the observed field in

Example 2. TABLE I

ESTIMATION RESULTS OF THESPECTRAL SUPPORT PARAMETERS. ERROR RATE
IN ESTIMATING («v, 3);BIAS AND STANDARD DEVIATION OF (%:5)

applying the EET to the observed field. The peak due to the
exponential produced by the EET operator is clearly visible. data size | bias std (e, 8)
Note that the DC component due to the unconjugated second- error rate
order moment of the purely indeterministic component has
been removed by subtracting the mean of the product field
y(n + 7, m + 7)y(n,m). The estimation results for this
example arda, 3) = (2, —1), and>@ 1) = 0.3999.

Example 2: Consider a 2-D homogeneous random field
consisting of a sum of a purely indeterministic componetd be estimated, the CRLB in this case is not tight and is an
and two evanescent components. The purely indeterministigtimistic” lower bound. In this experiment, we also evaluate
component and the first evanescent component are thosehef probability of correct estimation of thex, 3) pair.

Example 1. The spectral support parameters of the secondn this example, the 2-D random field is a sum of a purely
evanescent component ae, 3) = (1,1), »1) = 0.2. The indeterministic component and a single evanescent component.
modulating 1-D purely indeterministic process of this evane¥he purely indeterministic component is a complex valued
cent component is a second-order Gaussian MA process, withite noise field such that its real and imaginary components
the same parameters as those of the 1-D modulating procegs independent real Gaussian white noise fields each with
of the first evanescent component. For illustration purposesro mean and variancg® = 1, and p*> = 1, respectively.

a contour map of the absolute value of the Fourier transformme evanescent component spectral support parameters are
of the observed field is depicted in Fig. 5. Note again th@t%/}) = (2,-1), and v@=1) = 0.4. The modulating 1-D

the spectral supports of the evanescent components wpapely indeterministic process of the evanescent component is
around the boundary of the spectral domain. Fig. 6 depicissecond-order Gaussian MA process, such &F?at”( )=
FMa(y(n, m); 1, Tm,w, $), which results from applying the —0.95 exp(jx /4), anda®=1(2) = 0.1 exp(jn/4). Its driving

EET to the observed field. The two peaks are due to theise is a complex valued Gaussian process, whose real and
exponentials produced by the EET operator. The estimatippaginary components are independent real Gaussian white
results for this example aréoq,/}l) (2,-1), 1/§ Y = noise processes with zero mean and variafie€s—1)? = 4,
0.4002, and (&, B2) = (1,1), and2$"" = 0.2000. and (p>~1)2 = 1, respectively.

Example 3: In this example, we illustrate the performance In Table II, we present the estimation results of the evanes-
of the proposed algorithm using Monte Carlo simulations. Theent component spectral support parameters. It is clear that a
experimental results are based on 100 independent realizatiomgng estimate of arf«, 3) pair would result in wrong esti-
of the observed field for different field sizes. We analyze theates of the other parameters of that evanescent component.
bias and the variance of the estimate of the spectral suppBitce the probability of such event is very small, as indicated
parameter»(*:% obtained by the algorithm and compardy the results in Table Il, we consider such events to be
the experimental results with the CramRao lower bound outliers. Hence, we ignore the results of these experiments in
(CRLB), which is derived in [17]. We note here that in thehe computation of the bias and variance in estimatiffg® .
derivation of the CRLB, [17], it is assumed thatand3 area The experimental results listed in Table Il indicate that the
priori known. Since in practice and/3 are unknown and neederror rate in estimating thé«, /) pair of the evanescent

25 4.1285e-05 | 4.5972e-03 0.04
50 6.5132¢-05 | 1.3272e-03 0.01
100 9.2803e-06 | 5.4053e-04 0
200 7.7799e-06 | 1.9976e-04 1]
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component is low, and rapidly decreases as the dimensions
of the observed field are made larger. For moderate size data
fields, the error rate in estimating tle, ) pair becomes zero.
Furthermore, the estimatesof—) obtained by the proposed
algorithm are essentially unbiased as the experimental bias is
much smaller than the standard deviation of the experimental
results. The estimation error variance can therefore be com-
pared with the CRLB. (The CRLB is the lower bound on
the estimation error variance for any unbiased estimator of
the problem parameters). A comparison of the Monte Carlo
results with the CRLB for the case where the dimensions of
the observed field are relatively small (field size of 2325)
shows that the experimentally computed standard deviation of
the »(%—1) estimate is not far from the lower bound, even for

omega

such a small data size. The squared root of the exact CRLB on -04f : j
v(2-1) is 6.6096e-04, whereas the experimentally computed [ ; \ ; ‘ ‘
standard deviation of the®>—1) estimate is 4.5972e-03. 04 03 02 01 0 01 02 03 04 05

. . . phi
Example 4: It is shown in Section IV that whenever the fre-
ig. 7. Absolute value of the Fourier transform of the observed field in

quency parameterf““a), of an evanescent component is zerxgxample 4
the EET maps this evanescent component to an exponential

whose frequency ig0, 0), regardless of the values of and

3. This nonuniqueness implies that the EET cannot produc&%\n be applied to the observed field, regardless of the existence

complete estimate of the spectral support parameters of th@séhe field of evanescent components with a nonzero fre-

evanescent components. Hence, a different algorithm, whicl{HEney parameter. However, our exper.|mental res-ults .|nd|cate
tgat improved performance of the algorithm for estimating the

described in Section IV-C, is derived in order to estimate t 3
g, /3) parameters of evanescent components with?) =0

3) pairs of evanescent components whose frequenc . ) I .
(e, 5) P P 9 y is_ achieved by first filtering evanescent components with

rameter is zero. In this example, we illustrate the performance :
a nonzero frequency parameter out of the observed field.

of the proposed algorithm, using Monte Carlo simulations. Trl?sing this procedure, we first apply the EET-based algorithm,

experimental resqlts are ba_\sed on %OO m_dependent real'Zatl(s)LTrSnmarized in Table I, to the observed field and obtain the
of the observed field for different field sizes.

In this example, the 2-D random field is a sum of a purels ectral support parameters of the evanescent components

. S hose frequency parameter is nonzero. Having estimated the
indeterministic component and two evanescent components,
ectral supports of these components, we apply the proce-

S
The spectral support parameteg _Olf) the two evanescent C%ﬁfe described in Section IV-D to eliminate the contributions
ponents are(«t,3) = (2,-1), = = 0, and (o, 8) =

(1,3), v — 0, respectively. The purely indeterministicOf t_hese ‘evanescent components to the observed field. The
co’mp’onent of thé observed fiéld is identical to the pureFSIdual field contains only evanesce nt compon e.nts with a zero
indeterministic component in Example 1. The modulatiné](equency parameter a_nd apl_Jrer mdeterm_mlstlc_component.

' The performance gain obtained by adopting this procedure

1-D purely indeterministic processes of the two eV"’mescelgtsignificant in cases where the dimensions of the observed

components are second-order Gaussian MA processes, Vﬁ'gﬂd are relatively small. The performance gain becomes less

the same paramgters as those of the evanescent COmponegitgmficant as the dimensions of the observed field are made
Example 1. For illustration purposes, a contour map of t rger

absolute value of the Fourier transform of one realization o
the observed field is depicted in Fig. 7. VIl. CONCLUSIONS

The experimental results demonstrate that the error ratqp this paper, we derived a computationally efficient esti-
in estimating the(c, 3) pair of the evanescent componenfnation algorithm for the parameters of the evanescent and
is low, as long as the dimensions of the observed field g@rely indeterministic components of a homogeneous random
large. The error rate was zero for 100 100 and 200x field. The algorithm is based on a nonlinear operator derived
200 fields. However, the error rate sharply increases when {Rethis paper. The operator uniquely maps each evanescent
dimensions of the observed field are small. For example, fé\!imponent to a single exponential. The exponential’s spatial
a50x 50 f|6|d, the error rate reached 0.49. We thus COﬂClU%quency is a function of the Spectra| Support parameters of
that the proposed algorithm for estimating the, 5) pairs the evanescent component. Hence, employing this transforma-
of evanescent fields witr” = 0 is useful for relatively tion, the problem of estimating the spectral support parameters
large data arrays and is considerably less robust than the EdfTan evanescent field is replaced by the simpler problem of
algorithm for estimating the spectral support parameters @$timating the spatial frequency of a 2-D exponential.
evanescent components wizt)é“"a) # 0. The performance of the proposed algorithm was investi-

Since, here, the algorithm is searching only for evanesceaydted using Monte Carlo simulations. It was found that the
components with a zero frequency parameter, in principle,gtror rates in estimating théy, 3) pairs of the evanescent
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components are low and rapidly decrease as the dimensiofr$ H. Yang and Y. Hua, “Statistical decomposition of an eigendecomposi-

of the observed field are made Iarger. The estimates of the tion based method for 2-D frequency estimatioAyitomatica vol. 30,
f £ th field found pp. 157-168, 1994.
requency parameters of the evanescent fields were found {§ c. R. Rao, L. zhao, and B. Zhou, “Maximum likelihood estimation of

be unbiased. 2-D superimposed exponential signallgEE Trans. Signal Processing

In case the probability density function of the observed field_, Vol. 42. pp. 1795-1802, 1994. . o
. . A . . 9] A. K. Jain, “Advances in mathematical models for image processing,
is known, a maximum-likelihood estimate (MLE) of the field " pyoc. IEEE vol. 69, pp. 502-528, 1981.

parameters can be found by maximizing the log-likelihool0] S. R. Parker and A. H. Kayran, “Lattice parameter autoregressive

: ; ; _modeling of two-dimensional fields—Part I: The quarter plane case,”
function of the observations with respect to the model pa IEEE Trans. Acoust. Speech, Signal Processwa, ASSP-32. pp.

rameters. Since this objective function is highly nonlinear in  g72_ggs, 1984,
the problem parameters, the maximization problem cannot B&l C. W. Therrien, T. F. Quatieri, and D. E. Dudgeon, “Statistical model-

solved analytically, and we must resort to numerical methods. Egggd algorithms for image analysiBfoc. IEEE vol. 74, pp. 532-551,

In order to avoid the enormous computational burden of an x2] H. Derin and P. A. Kelly, “Discrete-index markov-type random pro-
haustive search, a two-step procedure based on the evanescengesses,Proc. IEEE vol. 77, pp. 1485-1510, 1989.

t tial al ith b | d. In the first st [éL3] N. Balram and J. M. F. Moura, “Noncausal gauss markov random fields:
0 exponential algorithm can be employed. In theé Nrst Stage,” p,rameter structure and estimatiotEEE Trans. Inform. Theoryvol.

a suboptimal estimate of the parametric models of the field 39, pp. 1333-1355, 1993.
components is obtained using the algorithm derived in thﬁy] J. M. Francos, A. Narasimhan, and J. W. Woods, “Maximum likelihood

aper. In the second stade. these estimates initialize an iterative pqrameter estimation pf the harmonic, evanescent anq purely indetermin-
paper. ge, istic components of discrete homogeneous random fiel#&E Trans.

numerical maximization of the log likelihood function. Inform. Theory vol. 42, pp. 916-930, 1996.

Alternative approaches for estimating the spectral suppdtp! J- M. Francos, A. Narasimhan, and J. W. Woods, “Maximum likelihood
parameter estimation of discrete homogeneous random fields with mixed

parameters of the evanescent components can be derive'd BY spectral distributions,"[EEE Trans. Signal Processing/ol. 44, pp.
taking the Radon or Hough transforms of the observed field 1242-1255, 1996.

; ; _ ; ; A. J. Isaksson, “Analysis of identified 2-D noncausal modelEEE
periodogram. Periodogram-based estimation of the spect[ﬁ'éﬂ Trans. Inform. Theomyvol. 39, pp. 525534, 1993,

support parameters using the Radon transform requires {hg J. M. Francos, “The cramer-rao bound on the estimation of complex val-
evaluation of a line integral for each pair of orientation  ued deterministic random fields in unknown colored noise,” submitted

. . for publication.
and distance from the origin parameters and a search %] G. Cohen and J. M. Francos, “Efficient parameter estimation of evanes-

the projections with highest energy. On the other hand, the™ cent random fields,” submitted for publication. '
algorithm based on the evanescent to exponential transfol@pl B. Porat, Digital Processing of Random SignalsEnglewood Cliffs,

. . .. . NJ: Prentice-Hall, 1994.
is computationally more efficient as no such search in tITEO] A. K. Jain, Fundamentals of Digital Image ProcessingEnglewood

parameter space is required. Moreover, using the evanescent- cCliffs, NJ: Prentice-Hall, 1989.

to-exponential transform, we avoid the resolution limitationgl D- E. Dudgeon and R. M. MersereaMultidimensional Digital Signal

fth . is sh . 0 Si lati Processing Englewood Cliffs, NJ: Prentice-Hall, 1984.
of the periodogram. It is shown using Monte Carlo simulationso; 3. M. Francos, A. Narasimhan, and J. W. Woods, “Maximum likelihood

that the methods based on the Hough and Radon transforms parameter estimation of textures using a wold decomposition based

i it i model,” IEEE Trans. Image Processingol. 4, pp. 1655-1666, 1995.
are considerably more sensitive to noise than the method ba&%? R Shram 3 M. Francos?an Sy ';,gearlmaﬂ? “Texture coding tsing a

on the nonlinear evanescent to exponential mapping. _ wold decomposition based modelEEE Trans. Image Processingol.
We therefore conclude that the suggested algorithm provides 5, pp. 1382-1386, 1996.

: ; ; : 4] R. Krishnamurthy, J. W. Woods, and J. M. Francos, “Adaptive restora-
an attractive solution to the problem of estimating the parar{? tion of textured images with mixed spectra using a generalized wiener

eters of a homogeneous random field with a mixed spectral fiter,” IEEE Trans. Image Processingol. 5, pp. 648652, 1996.
distribution. Since the proposed algorithm does not directly
employ the structure of the field covariance matrix, the need
to estimate this matrix, whose dimensions can be very large is Joseph M. Francos(SM'97) was born on Novem-
avoided. Unlike previously suggested algorithms, the propos ber 6, 1959 in Tel-Aviv, Israel. He received the B.Sc.
method does not require, in any of its stages, numerical so degree in computer engineering in 1982 and the
. . . . AR D.Sc. degree in electrical engineering in 1990, both
tion of a multidimensional nonlinear minimization problem. from the Technion—Israel Institute of Technology,
Haifa.
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