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Cramér–Rao Bound on the Estimation Accuracy
of Complex-Valued Homogeneous

Gaussian Random Fields
Joseph M. Francos, Senior Member, IEEE

Abstract—This paper considers the problem of the achievable
accuracy in jointly estimating the parameters of a complex-valued
two-dimensional (2-D) Gaussian and homogeneous random field
from a single observed realization of it. Based on the 2-D Wold de-
composition, the field is modeled as a sum of purely indetermin-
istic, evanescent, and harmonic components. Using this parametric
model, we first solve a key problem common to many open prob-
lems in parametric estimation of homogeneous random fields: that
of expressing the field mean and covariance functions in terms of
the model parameters. Employing the parametric representation
of the observed field mean and covariance, we derive a closed-form
expression for the Fisher information matrix (FIM) of complex-
valued homogeneous Gaussian random fields with mixed spectral
distribution. Consequently, the Cramér–Rao lower bound on the
error variance in jointly estimating the model parameters is eval-
uated.

Index Terms—Cramér–Rao bounds, Fisher information, homo-
geneous random fields, 2-D Wold decomposition.

I. INTRODUCTION

I N THIS paper, we consider two fundamental problems in
parametric modeling and estimation of two-dimensional

(2-D) complex-valued homogeneous random fields with mixed
spectral distribution. Employing the parametric model that fol-
lows from the 2-D Wold-like decomposition of homogeneous
random fields, [1], we first obtain closed-form expressions for
the field mean and covariance functions in terms of the model
parameters. Assuming the observed random field is Gaussian,
we then investigate the problem of the achievable accuracy
in jointly estimating the parameters of the field model. These
fundamental problems are of great theoretical and practical
importance. They arise in various wave propagation estimation
problems such as in space–time adaptive processing of radar
signals [6] and the special case of real-valued 2-D random
fields arises quite naturally in terms of texture modeling and
estimation in images [16].

From the 2-D Wold-like decomposition, we have that any
2-D regular and homogeneous discrete random field can
be represented as a sum of two mutually orthogonal com-
ponents: apurely indeterministicfield and a deterministic
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one. The purely indeterministic component has a unique
white innovations driven nonsymmetrical half-plane (NSHP)
moving average representation. In general, the support of the
NSHP moving average model has infinite dimensions. The
deterministic component is further orthogonally decomposed
into a harmonic field and a countable number of mutually
orthogonalevanescentfields. This decomposition results in a
corresponding decomposition of the spectral measure of the
regular random field into a countable sum of mutually singular
spectral measures. The spectral distribution function of the
purely indeterministic component is absolutely continuous.
Furthermore, since the random field is regular, the spectral
density of the purely indeterministic component is zero at most
on a set of Lebesgue measure zero [2]. The spectral measure of
the deterministic component, which is singular with respect to
the spectral measure of the purely indeterministic component,
is therefore concentrated on a set of Lebesgue measure zero in
the frequency plane. It is shown in [1] that under some mild
assumptions (that always hold in practice), each evanescent
component can be modeled by a separable model, given by
the product of a one-dimensional (1-D) purely indeterministic
process in one dimension and an exponential in the orthogonal
dimension (or a linear combination of such separable random
fields). Hence, the spectral supports of the different evanescent
components have the form of lines, where the slope of each line
is a rational number. In [16], the 2-D Wold-like decomposition,
and the resulting random field model, are employed for mod-
eling, analysis, and synthesis of natural textures. Illustrative
synthetic examples can be found in [17].

It is shown in [9] that the same parametric model that results
from the above orthogonal decomposition naturally arises as the
physical model in the problem of space–time processing of air-
borne radar data. In this problem, the target model is that of an
harmonic component. The purely indeterministic component of
the space–time field is the sum of a white noise field due to
the internally generated receiver amplifier noise and a colored
noise field due to the sky noise contribution. The presence of
a jammer is modeled by an evanescent component whose 1-D
modulating process is a white noise. In the angle-Doppler do-
main, the ground clutter produces a “clutter ridge,” supported
on a diagonal line (that generally wraps around). This ground
clutter is modeled by an additional evanescent component of
the observed 2-D space–time field. (See [6] and [7] for a de-
tailed description of this problem.)

Assuming that the NSHP moving average model of the
purely indeterministic component has finite support and that
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the 1-D purely indeterministic process of each evanescent
component is a finite-order moving average process, we derive
closed-form expressions for the mean and covariance functions
of the field in terms of the model parameters. Due to the
generality of this modeling, the derivation provides a solution
to the problem of expressing the mean and covariance functions
of essentially any complex-valued homogeneous random
field in terms of the model parameters. This result opens the
way for parametricsolutions that can simplify and improve
existing methods of space–time adaptive processing. In [9], we
exploit the correspondence between the parametric model that
follows from the 2-D Wold-like decomposition and the STAP
physical model to derive a computationally efficient algorithm
for parametric estimation and mitigation of the jamming and
clutter fields.

Assuming the observed field is Gaussian, the parametric
representation of the field mean and covariance is employed
in this paper to derive a closed-formexactexpression for the
Fisher information matrix (FIM) of complex-valued homoge-
neous Gaussian random fields with mixed spectral distribution.
Consequently, we obtain an expression for the Cramér–Rao
lower bound on the error variance injointly estimating the
parameters of the harmonic, evanescent, and purely indeter-
ministic components of the field from afinite dimension single
observed realizationof it. It is further shown that regardless
of the parametric models of the purely indeterministic and
evanescent components, the lower bound on the error variance
in estimating the parameters of the harmonic component is
decoupled from the bound on the parameters of the purely inde-
terministic and evanescent components. Moreover, the bound
on the parameters of the purely indeterministic and evanescent
components is independent of the harmonic component.

The asymptotic Cramér–Rao bound (CRB) on the parame-
ters of a Gaussian purely indeterministic field was derived by
Whittle [3]. In [5], a matrix enhancement and matrix pencil
method for estimating the parameters of 2-D superimposed,
complex-valued exponential signals was suggested. Assuming
the noise field iswhite, the Cramér–Rao lower bound for this
problem was derived as well. The problem of ML estimation
of 2-D superimposed, complex-valued exponential signals has
been recently considered in [8]. However, most of the literature
on parametric modeling and estimation of 2-D random fields
is concerned with the parameter estimation of real-valued 2-D
AR fields, (see, e.g., [3], [4], and [10]–[12]), and the statistical
inference of Markov random fields (MRFs) (see, e.g., [13],
[14], and the references therein). The underlying assumption in
these papers is that the random field is purely indeterministic,
and hence, it can be fit with a white- or correlated-noise
driven linear model. In the Gaussian case, all of the foregoing
problems are only special cases of the general problem, which
is addressed here.

In [17], we have developed a conditional ML algorithm for
jointly estimating the parameters of the harmonic, evanescent,
and purely indeterministic components of a complex-valued ho-
mogeneous random field from a single observed realization of
it. TheconditionalCramér–Rao lower bound on the covariance
matrix of the estimates was derived as well, assuming the purely
indeterministic component is a circular Gaussian field, and that

the evanescent component is of a special type. In this paper,
we derive anexactCramér–Rao lower bound on the error vari-
ance in jointly estimating the parameters of essentially any com-
plex-valued homogeneous Gaussian random field that can be
modeled by a finite-order model. In this derivation, the field may
contain all of the 2-D Wold decomposition components.

The paper is organized as follows. In Section II, we briefly
review the results of the 2-D Wold-like decomposition. In Sec-
tion III, we employ the parametric model that follows from the
2-D Wold-like decomposition to obtain a general expression for
the covariance matrix of the field in terms of its model parame-
ters. In Section IV, it is assumed that the 1-D purely indetermin-
istic processes of the evanescent fields are MA processes. Using
this assumption, we derive closed-form expressions for the co-
variance matrix of the evanescent field in terms of its parametric
representation. Section V presents a derivation of a closed-form
expression of the covariance matrix for a finite-support NSHP
moving average purely indeterministic component in terms of
the MA model parameters. Assuming a nil harmonic compo-
nent and that the purely indeterministic and evanescent com-
ponents of the field are Gaussian, we derive in Section VI a
closed-form expression for the FIM of the observed field. Sec-
tion VII generalizes the derivation of Section VI to include the
case where an harmonic component exists in the observed field.
It is shown that the lower bound on the error variance in esti-
mating the parameters of the harmonic component is decoupled
from the bound on the parameters of the purely indeterministic
and evanescent components. In Section VIII, we present some
numerical examples in order to get further insight into the prop-
erties of the bound. Additional examples can be found in [18],
where the bound derived in this paper is employed to evaluate
the performance of a computationally efficient algorithm for es-
timating the parameters of the evanescent and purely indeter-
ministic components of the field.

II. HOMOGENEOUSRANDOM FIELD MODEL

The considered random field model is based on the Wold-type
decomposition of 2-D regular and homogeneous random fields,
presented in [1], and briefly summarized in this section. Let

be a complex-valued, regular, ho-
mogeneous random field. Then, can be uniquely rep-
resented by the orthogonal decomposition

(1)

The field is a deterministic random field. The field
is purely indeterministic and has a unique white in-

novations driven moving-average representation given by

(2)

where the relation is defined with respect to some NSHP
total-order definition, is the innovations field of

, , and .
It is possible to define [1] a family of NSHP total-order

definitions such that the boundary line of the NSHP has a
rational slope. Let and be two coprime integers, such that

. The angle of the slope is given by . Each
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of these supports is calledrational nonsymmetrical half-plane
(RNSHP). We denote by the set of all possible RNSHP
definitions on the 2-D lattice (i.e., the set of all NSHP defini-
tions in which the boundary line of the NSHP has a rational
slope). The introduction of the family of RNSHP total-ordering
definitions results in a countably infinite orthogonal decom-
position of the deterministic component of the random field:

. The random
field is calledhalf-plane deterministic. The fields

are the evanescent components of the field
.

It is shown in [1] that the model for the evanescent field which
corresponds to the RNSHP defined by is given by

(3)

where the 1-D purely indeterministic, complex-valued pro-
cesses , are zero-mean
and mutually orthogonal for all . Hence, the “spectral
density function” of each evanescent field has the form of
a sum of 1-D delta functions supported on lines of rational
slope in the 2-D spectral domain. Since interchanging the
roles of past and future in any total-order definition results in
identical evanescent components, it is sufficient to consider
only . We therefore assume without limiting the
generality of the derivation that , whereas can assume
any integer value.

One of the half-plane-deterministic field components, which
is often found in physical problems, is the harmonic random
field

(4)

where the s are mutually orthogonal random variables, and
are the spatial frequencies of theth harmonic. In

general, is infinite. The parametric modeling of deterministic
random fields whose spectral measures are concentrated on
curves other than lines of rational slope, or discrete points in
the frequency plane, is still an open question, to the best of our
knowledge.

Thus, if we exclude from the framework of our model those
2-D random fields whose spectral measures are concentrated on
curves other than lines of rational slope, is uniquely
represented by

(5)

where , , and are given
by (2)–(4), respectively.

III. PARAMETRIC REPRESENTATION OF THECOVARIANCE

MATRIX OF A REGULAR AND HOMOGENEOUSRANDOM FIELD

To simplify the presentation, we consider first the problem
of estimating the parameters of an observed field where no har-
monic component is present. In Section VII, this derivation is
generalized to include the case where the deterministic compo-
nent of the field comprises both harmonic and evanescent com-
ponents. In this section, we employ the 2-D Wold decomposi-
tion-based parametric random field model to obtain closed-form
expression of the field covariance matrix in terms of the para-
metric models of the decomposition components.

We next state our assumptions and introduce some necessary
notations. Let , , where

be the observed random field.
Note, however, that the observed field could just as well have
anyarbitrary shape.

Assumption 1:The values of the pairs, as well as the
number of evanescent components in (3), area-priori
known for all the evanescent components.

Assumption 2:The real and imaginary components of the
purely indeterministic component are zero mean, jointly wide
sense homogeneous fields. Let denote the covariance matrix
of the purely indeterministic component. We assume that the
covariance matrix has some known parametric form, where
is the parameter vector. At the moment, we will not specify the
functional dependence of on but, rather, leave it implicit.

Assumption 3:For each evanescent field , the
modulating complex-valued 1-D purely indeterministic process

is a zero-mean process such that its real and imagi-
nary components are jointly wide sense stationary. Let
denote the covariance matrix of . We assume that the
covariance matrix has some known parametric form, where

is the parameter vector. At the moment, we will not
specify the functional dependence of on but,
rather, leave it implicit as well.

Thus, the parameter vector of each of the evanescent com-
ponents is given by .
Therefore, the parameter vector of the evanescent field
is obtained by collecting the vectors into a single column
vector, i.e., . The pa-
rameter vector of the observed field is given by

(6)

Let

(7)

(8)
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Let

(9)

be the vector whose elements are the observed samples from the
1-D modulating process . In addition, let Re ,

Im , . In a similar way, we de-
fine the vectors , , , and ,

, . Define

(10)

Given a scalar function , we will denote the matrix, or
column vector, consisting of the values of evaluated for
all the elements of , where is a matrix, or a column vector,
by . Using this notation, we define

(11)

(12)

Thus, using (3), we have that

(13)

where denotes an element-by-element product of the vectors,
and . Rewriting (13) using real quan-
tities, we obtain

(14)

(15)

Note that whenever for some integers
, , , such that , and , ,

the same sample from the process is duplicated in the
vector . It can be shown that for a rectangular observed
field of dimensions , the number ofdistinctsamples from
the random process that are found in the observed field
is . We
therefore define theconcentrated version, of to
be an -dimensional column vector of nonrepeating samples
of the process . More specifically, for the case in which

and , is given by

(16)

whereas for the case in which and , is given
by

(17)

Note, however, that due to boundary effects, the vector is
not composed of consecutive samples from the process
unless or . In other words, for some arbitrary
and , there are missing samples in . Thus, for any ,
we have that , where is rectan-
gular matrix of zeros and ones that replicates rows of .
Similarly to the foregoing definitions, we define
Re , Im , and

(18)

We note that the covariance matrix that characterizes
the process is defined in terms of the concentrated ver-
sion vector , i.e.,

(19)

and not in terms of the covariance matrix

(20)

of the vector . The matrix is a singular matrix,
which is also given by

(21)

where

(22)

In terms of the Fisher information, both and rep-
resent the same information on the process .

Since the evanescent components are mutually or-
thogonal and since all the evanescent components are orthog-
onal to the purely indeterministic component, we conclude that

, which is the covariance matrix of, has the form

(23)

where is the covariance matrix of .
In the following, we use a 2 2 partitioned matrix notation

for the covariance matrix of any complex-valued random vector
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that is expressed using real quantities only. Hence, for example,
we let

(24)

where all four sub-blocks of the matrix are of identical dimen-
sions.

Using (3) and (13), we find that the four blocks of the sym-
metric matrix are given by

(25)
and similarly

(26)

(27)

A compact matrix representation of for any
cannot be derived due to the dependence of the matrix structure
on . However, for the case in which
[and similarly for ], a somewhat more compact
representation is possible, using Kronecker products instead of
the Hadamard products. This special case is beyond the scope
of the paper.

IV. COVARIANCE MATRIX OF EVANESCENT FIELDS WITH MA
MODULATING PROCESSES

In the previous section, we have derived a general expres-
sion for the covariance matrix of a complex-valued evanescent
random field. It was assumed that each of the 1-D purely in-
deterministic processes is a zero mean process whose
covariance matrix has some known, but unspecified, parametric
form, where is the parameter vector. In this section, we
specialize the results of the previous section. We consider the
case in which the modulating 1-D processes are moving average
processes. Using this derivation, we obtain aclosed-formex-
pression of the evanescent field covariance matrix in terms of
its model parameters.

Let . Assume that the modulating 1-D
process of each evanescent field can be mod-
eled by a finite-order MA model, i.e.,

(28)
where

and

and
(29)

and . The driving noise processes
are mutually orthogonal, complex-valued

processes such that the real and imaginary components of each
process are orthogonal real-valued white noise processes with
zero mean and variances , and , respectively.
We further assume that the MA processes are of known orders

, where .
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For the case in which and , define the
-dimensional vector ofconsec-

utivesamples

(30)

whereas for the case in which and

(31)

Hence, for both cases, we have

(32)

where is the

Toeplitz matrix, shown in (33) at the bottom of the page, and
is a rectangular matrix of zeros and ones that eliminates

rows that correspond to the samples that are
missing from due to the edge effects. These missing sam-
ples result in being composed of nonconsecutive samples
in its top and bottom.

Let Re and Im .
Thus, the four blocks of the covariance matrix of the

-order MA process are given by

(34)

(35)

(36)

and .

V. COVARIANCE MATRIX OF AN MA PURELY

INDETERMINISTIC FIELD

From the Wold-type decomposition (1), it is known that the
purely indeterministic component of the field has a unique
white innovations-driven NSHP moving average representa-
tion. In practice, the observed field is of finite dimensions.
Hence, we restrict our attention to NSHP MA models with
finite-dimensional support. More specifically, we assume that
the purely indeterministic field is a complex-valued MA field,
whose model is given by (2) with , where

(37)

and , area priori known. The driving noise of the MA
model is a complex-valued white noise field such that its real
and imaginary components are orthogonal real-valued white
noise fields, each with zero mean and variance, and ,
respectively. Thus, (2) is replaced by

(38)

In this section, we consider the representation of the covari-
ance matrix of a complex-valued 2-D MA random field in terms
of the MA model parameters for finite-order MA models. Let

(39)

Thus, the parameter vector of the purely indeterministic com-
ponent of the field is given by

Re Im (40)

Let

(41)

...
...

(33)
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Similarly, let the driving noise vector be defined by

(42)

Let denote a -dimensional row vector of zeros. In addition,
let

...
...

(43)

and

(44)

Note that is a -dimensional row vector.
Define the following banded Toeplitz

matrix

(45)

where for , and . Finally,
we define the following block matrix,
shown in (46) at the bottom of the page.

Thus we can rewrite the observations equation (38) in matrix
form as

(47)

Rewriting (47) using real quantities, we have

(48)

where , Re , Im ,
, Re , Im , and

(49)

Here, Re , and Im . Thus, the covariance
matrix of the purely indeterministic component is given in terms
of the MA model parameters by

(50)

where is a
identity matrix.

Substituting (21), (22), (25)–(27), (34)–(36), and (50) into
(23), we obtain a closed-form expression for the covariance ma-
trix of the observed homogeneous random field in terms of the
parametric models of its components.

VI. GENERAL FORM OF THECRB

Assume that the real and imaginary components of the purely
indeterministic component are jointly Gaussian and that for
each evanescent field , the modulating complex-valued
1-D purely indeterministic process is an independent
zero-mean process such that its real and imaginary components
are jointly Gaussian. Hence, the observed field is
Gaussian as well.

The general expression for the Fisher information matrix of
a real Gaussian process is given by (e.g., [20])

tr (51)

where
mean of the observation vector;
observation vector covariance matrix;

entry of the matrix .
Since the purely indeterministic and evanescent components of
the 2-D Wold-like decomposition (5) have zero mean, we have

. Hence, the first term of (51) vanishes. Thus, in this sec-
tion, we study the problem of the achievable accuracy injointly
estimating the parameters of the evanescent and purely indeter-
ministic components using a finite-size, single observed realiza-
tion of the field. In this framework, the purely indeterministic
component can be viewed as an unknown colored noise field.

Note from (21), (22), and (25)–(27) that dependence of the
observed field covariance function on the parameters
exists both through the dependence of the exponential fre-
quency on these parameters as well as through the dependence
of the indices of the modulating process
on and . Therefore, we must assume that the pair
of each evanescent component is known and derive the CRB
under this assumption. Indeed, since in the space–time adaptive
radar problem the interference-to-background noise ratio is
quite high [6] and since the dimensions of the observed field
are limited, the integer pair can be estimated with very
low probability of error.

... (46)



FRANCOS: CRAMÉR–RAO BOUND ON THE ESTIMATION ACCURACY OF GAUSSIAN RANDOM FIELDS 717

Using the orthogonality of the evanescent components, their
orthogonality to the purely indeterministic component, and (23),
we find that

(52)

and for all and

(53)

Substituting (52) and (53) into (51), we find that the FIM en-
tries that correspond to parameters of the purely indeterministic
and evanescent components are given by

tr (54)

tr (55)

and

tr (56)

where , and .
Using (25)–(27), and since is independent of ,

we find that

(57)

Similar derivations produce expressions for

and

as well. Finally

(58)

Similar derivations produce expressions for

and

A. FIM for Evanescent Components With Gaussian MA
Modulating Processes

The parameter vector of the 1-D purely indeterministic mod-
ulating MA process is the -dimensional
vector

Re

Re Re

Im Im

Im (59)

Assume that the real and imaginary components of the
driving noise process , which are defined in
Section IV, are also Gaussian. Thus, taking the partial deriva-
tives of , we have (60) and (61), shown at the bottom of
the next page, and for all

Re
(62)

where

(63)
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(64)

(65)

and , where is the up shift matrix

otherwise.
(66)

In a similar way, we have for all

Im
(67)

where

(68)

(69)

(70)

and .
Substituting (21) and (22), (25)–(27) and (60)–(70) into (57)

and (58), we obtain closed-form expressions for

and

for the case in which the modulating 1-D processes of the
evanescent fields are MA processes.

B. FIM for an MA Purely Indeterministic Component

Assume that the real and imaginary components of the MA
model driving noise field defined in Section V are
also Gaussian. Thus, taking the partial derivatives with respect
to the MA model parameters, we get

Re
(71)

where is a -dimen-
sional row vector whose element
equals one, whereas all its other elements are zero. Hence

Re
(72)

where is the upshift matrix

otherwise.
(73)

Similarly

Im
(74)

Taking the partial derivatives of with respect to the MA
model parameters, we have for

Re

(75)

where , in (76), shown at the bottom of the next page, is
a matrix. Similarly

Im

(77)

In addition, let

(78)

(79)

(60)

(61)
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Then

(80)

(81)

Substituting (23), (24), (50), (75), (77), (80), and (81) into (54),
we obtain a closed-form expression for the FIM block that corre-
sponds to the 2-D Gaussian MA random field. In the case where
the observed field comprises only a moving-average purely in-
deterministic component, inversion of (54) after the above sub-
stitutions have been made provides the exact CRB on the error
variance in jointly estimating the parameters of the purely in-
deterministic field. When evanescent components are present,
substituting (21), (22), (25)–(27) and (60)–(70) into (57) and
(58), we obtain closed-form expressions for

and

for the case in which the modulating 1-D processes of the
evanescent fields are MA processes. A final substitution into
(54)–(56) provides the CRB on the error variance in estimating
the parameters of essentially any homogeneous Gaussian
random field with nil harmonic component. In the next section,
we extend this derivation and consider the problem of the
achievable estimation accuracy of both the harmonic, evanes-
cent, and purely indeterministic components of a homogeneous
random field.

VII. FISHER INFORMATION MATRIX IN THE PRESENCE OF THE

HARMONIC COMPONENT

In this section, we extend the derivation of the previous
sections and address the problem of the achievable estimation
accuracy of both the harmonic, evanescent, and purely indeter-
ministic components of a homogeneous Gaussian random field.
Note that when expressed in the general form (4), the coeffi-
cients of the harmonic component are complex-valued,
mutually orthogonal random variables. However, in general,
only a single realization of the random field is available.
Hence, we cannot infer anything about the variation of these
coefficients over different realizations. The best we can do is to
estimate the particular values that the’s take for the given
realization; in other words, we might just as well treat the’s

as unknown constants and the harmonic component as the
unknown mean of the observed realization. In the following,
we assume that the numberof harmonic components in the
observed field isa priori known.

Let

(82)

In addition, let , ,
. Similarly to the definitions of Section III,

we define the vectors , , , , , and . Hence, in this
case, in (51). The parameter vector of the observed field

is now given by

(83)

Define (84), shown at the bottom of the next page, where
the th column of consists of the values of theth harmonic
component evaluated for all . We therefore have

(85)

where

(86)

and Re , Im . Taking the partial deriva-
tives of , we get

(87)

where is the th column of . Since the evanescent compo-
nents, as well as the purely indeterministic component, are zero
mean fields, the mean vector is independent of their parameters.
Hence

(88)

(89)

... (76)
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In addition, note that since the field covariance functionis
independent of the mean

(90)

(91)

and

(92)

Hence, the tr term in (51) vanishes for all the FIM
entries that correspond to parameters of the harmonic mean.
Therefore, , , , and for the evanes-
cent components, we have that for all and ,
, , . Hence, we conclude that the

lower bound on the error variance in estimating the parameters
of the harmonic component is decoupled from the bound on the
parameters of the purely indeterministic and evanescent compo-
nents.

Using (87) and (90), we conclude that the FIM elements that
correspond to the amplitude parameters of the harmonic com-
ponent are given by

(93)

Let

(94)

(95)

where and are -dimensional and -dimensional column
vectors of ones, respectively. In other words,is the vector
of the first indices of the elements of in (82), and is the
vector of the second indices of the elements of. Taking now
the partial derivatives w.r.t. the harmonic frequencies yields

diag
diag

(96)

diag
diag

(97)

where diag , diag is a matrix whose diagonal
is the vector , , and , is the th column of ,

.
Substituting (87)–(92), (96), and (97) into (51)

(98)

(99)

(100)

(101)

(102)

We have previously concluded that the lower bound on the
error variance in estimating the parameters of the harmonic
component is decoupled from the bound on the parameters of
the purely indeterministic and evanescent components. Using
(51), (54)–(56), and (88)–(92), we further conclude that the
bound on the purely indeterministic and evanescent compo-
nents is found by inverting the FIM block that corresponds to
the parameters of these components, and it isindependentof
the harmonic component parameters. Therefore, this bound is
identical to the one obtained for the case in which no harmonic
component exists. We have thus completed the derivation
of closed-form expressions for theexact Cramér–Rao lower
bound on the error variance in jointly estimating the parameters
of essentially any complex-valued homogeneous Gaussian
random field that can be modeled by a finite-order model.
In this derivation, the field may contain all of the 2-D Wold
decomposition components.

Finally, in [19], the large sample Cramér-Rao bound on the
parameters of the harmonic component in the presence of the
purely indeterministic field has been recently derived. This
model is a special case of the general model considered in this
paper. Assuming that the covariance sequence of the purely
indeterministic component satisfies certain conditions on its
rate of decay, it is shown that the large sample CRB on the
parameters of each exponential is decoupled from the bound

...
...

...
...

...
...

...
...

...
...

...
...

(84)
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TABLE I
CRBON THEPARAMETERS OF THEMA FIELD FOR EXAMPLE 1 AND EXAMPLE 2

on the parameters of the other exponentials. It is further shown
that asymptotically

CRB

CRB

CRB

CRB

where is the spectral density of the colored
noise field, and denotes the phase of .

VIII. N UMERICAL EXAMPLES

To gain more insight into the behavior of the bound on the dif-
ferent components, we resort to numerical evaluation of some
specific examples. In this section, we present several such ex-
amples that illustrate the dependence of the bound on various
parameters of the field. In all of the examples, the dimensions
of the observed field are relatively small: .

Example 1: Consider a 2-D homogeneous, purely indeter-
ministic random field modeled by a NSHP MA model with
support . The model parameters are listed in Table I. In
this example, we evaluate the Cramér–Rao lower bound on the
error variance in estimating the model parameters, as well as the
bound on the error variance in estimating the spectral density of
the field. The values of the CRB on the 2-D MA model param-
eters are also listed in Table I.

The spectral density function of this purely indeterministic
field, and the CR lower bound on the error variance in estimating
it, are depicted in Fig. 1. Note that the shape of the bound as a
function of frequency matches the shape of the MA field spec-
tral density function. It can be further shown by considering the
normalized CRB, i.e., the ratio of the squared root of the CRB
to the spectral density function of the MA field, that the lower
bound on the error variance in estimating the MA field spectral
density function is relatively higher in those frequency regions
where the MA model transfer function is close to zero. In other
words, the estimation of the MA field spectral density function

is relatively less accurate in frequency regions where the spec-
tral density function is close to zero than in regions of higher
spectral density.

Example 2: Consider a 2-D homogeneous random field con-
sisting of a sum of a purely indeterministic component and a
single evanescent component. The purely indeterministic com-
ponent is the same NSHP MA field with support whose pa-
rameters are listed in Table I. The evanescent component spec-
tral support parameters are , . The
modulating 1-D purely indeterministic process of this evanes-
cent component is a second-order Gaussian MA process such
that , , , and

.
In this example, we evaluate the CR lower bound on the error

variance in estimating the two components of the field. Note
from Table I that the bounds on the parameters of the purely
indeterministic field remain essentially identical to their values
for the case in which no evanescent component was present in
the field (Example 1). Next, we investigate the bound on the
spectral density function of the modulating 1-D MA process of
the evanescent field. Fig. 2 depicts the spectral density function
of the modulating MA process. The mean value of the spec-
tral density (dashed line) and the mean plus and minus the stan-
dard deviation computed from the CRB (dashed-dotted line) are
shown. As a reference, the solid line denotes the mean value of
the spectral density plus and minus the standard deviation com-
puted from the CRB of the same 1-D MA process for the case
in which this MA process is observed directly as a 1-D process,
(i.e., a standard 1-D problem). It is concluded that the presence
of the 2-D purely indeterministic field causes the bound on the
spectral density of the evanescent field 1-D MA process to be
higher than in the standard 1-D case. However, its shape (as a
function of frequency) remains similar to its shape in the stan-
dard 1-D case.

Example 3: Consider a 2-D homogeneous random field con-
sisting of a sum of a purely indeterministic component, a single
evanescent component, and an harmonic component. The purely
indeterministic component is the same NSHP MA field with
support whose parameters are listed in Table I. The evanes-
cent component is the same as in Example 2. The harmonic com-
ponent comprises a single exponential whose frequency varies
from experiment to experiment. In this example, we investigate
the bound on the error variance in estimating the parameters of
the exponential as a function of its frequency. Since the estima-
tion problem of the purely indeterministic and evanescent com-
ponents is independent of the estimation problem of the har-
monic component, the bounds on the parameters of both these
components are not affected by the presence of the harmonic
component. These bounds are therefore identical to the bounds
computed in Example 2.

Note using Figs. 1 and 2 that the bound on the frequency pa-
rameter of the harmonic component, which is depicted in Fig. 3,
matches the shape of the spectral density of the purely indeter-
ministic component as well as the shape of the spectral den-
sity of the modulating 1-D MA process of the evanescent field.
In other words, the bound is higher at those frequencies where
the spectral density of the 2-D MA field is higher and at those
frequencies along the spectral support of the evanescent field
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Fig. 1. Spectral density function of the MA field and the CR lower bound on the error variance in estimating it.

Fig. 2. CRBs on the spectral density function of the evanescent component
1-D MA process.

where the spectral density of the modulating 1-D purely inde-
terministic process is higher. The effect of the wraparound of the
spectral support of the evanescent field is clearly seen in Fig. 3.
Similar results are obtained for the other parameters of the ex-
ponential as well.

Example 4: Here, we consider a case in which the observed
random field has two evanescent components whose spectral
supports intersect. We compare the CRB on the accuracy of
estimating the field parameters with the CRB for the same
field, when only one of the two evanescent components is
present. More specifically, we consider a 2-D homogeneous
random field consisting of a sum of two evanescent components

, and a Gaussian purely indetermin-
istic component whose real and imaginary components are
independent zero mean white Gaussian fields with variance
and , respectively. The parameters of the different compo-
nents of the field are listed in Table II.

Fig. 3. CRB on the frequency parameter! of the exponential as a function
of the exponential’s frequency.

We consider three cases.

Case 1) Both evanescent components exist in the observed
field.

Case 2) The only evanescent component of the observed
field is .

Case 3) The only evanescent component of the observed
field is .

In Table II, we list the bounds on the error variance in estimating
the parameters of the observed field for the three cases. The re-
sults indicate that the lower bounds on the error variance in es-
timating the parameters of the different components are essen-
tially the same in all three cases being considered here.

Using this example, we conclude that in general, the presence
of evanescent random fields with intersecting spectral supports
has only a negligible effect on the CRB of each component pa-
rameters, compared with the case in which this component is the
only evanescent component of the field. Using the conclusions
of Examples 2 and 3, we finally conclude that the presence of an
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TABLE II
CRB FOR A FIELD WITH EVANESCENT COMPONENTS OFINTERSECTINGSPECTRAL SUPPORTS

evanescent component in the field has only a negligible effect on
the lower bound on the accuracy of estimating the parameters of
the other components of the field, unless the spectral support of
the evanescent component is very close to the spectral support
of a harmonic component.

IX. CONCLUSIONS

In this paper, we have elaborated on two fundamental prob-
lems in parametric modeling and estimation of 2-D complex-
valued homogeneous random fields with mixed spectral distri-
bution. Employing the parametric model that follows from the
2-D Wold-like decomposition of homogeneous random fields,
we have obtained closed-form expressions for the field mean
and covariance functions in terms of the model parameters. As-
suming the observed random field is Gaussian, we have then
investigated the problem of the achievable accuracy in jointly
estimating the field parameters from a single observed real-
ization of it. It is shown that the estimation of the harmonic
component is decoupled from that of the purely indetermin-
istic and evanescent components; furthermore, the bound on
the purely indeterministic and evanescent components is inde-
pendent of the harmonic component. Due to the generality of
the Wold decomposition-based field model, the derivation in
this paper provides a closed-form expression of the Fisher in-
formation matrix of essentially any complex-valued homoge-
neous Gaussian random field and, hence, of the corresponding
Cramér–Rao lower bound.
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