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noisy images with extremely low SNR have been considered. In all Optimal Parameter Selection in the Phase
cases, the results are successful. Restored images with considerableDifferencing Algorithm for 2-D Phase Estimation
high SNR, even in the worst conditions, are obtained by the DDLF.

The performance and quality of the DDLF depend on the order of Joseph M. Francos and Benjamin Friedlander
the 2-D lattice filter, the choice of delta paramet&rs andA,, and

the initial values.

Abstract—A parametric model and a corresponding algorithm for
estimating two-dimensional (2-D) phase functions are presented in a
previous paper. The performance of the phase estimation algorithm
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phase by minimizing the differences between the first-order discrétence, estimatingws, vs) using any standard frequency estimation
partial derivatives of the wrapped phase function and those of tteehnique results in an estimatec9f’+1, S— P) andc(P, S+1-P).
unknown unwrapped solution function (see, [8] and the referencBased on this result, all the parameters of the polynomial phase signal
therein). However, using this method, any error in estimating tlee estimated, as explained in [1].
phase gradient at the boundaries (for example, due to noise) wouldNote from (3) and (4) that since the phase coefficients are estimated
influence the results of the entire phase unwrapping procedure. In f@km the exponential’s frequency, they can be estimated unambigu-
we proposed a parametric approach for 2-D phase unwrapping. Tthesly (i.e., with no aliasing) as long dss| < = and|vs| < m,
algorithm employglobal analysis of the observed signal, and hencayhich implies that
it is insensitive to local errors. In the proposed model, the phase T
and amplitude are unrelated. This 2-D phase unwrapping algorithm le(P+1,5 = P)| < (P+ 1)I(S — P)riro ©
is based on the phase differencing (PD) algorithm [1]. ' e
The PD algorithm extends the high-order ambiguity functiognd similarly for ¢(P, S + 1 — P). However, since a parametric
(HAF) based estimation algorithm (see [12] for a detailed expositignodel is fitted to the observed signal, the phase function itself can be
as well as [13] for a ML estimator) to the case of 2-D signals. It isampledunderthe Nyquist rate because the phase estimation is not
therefore suggested that the reader be familiar with the derivatigpgyformed through a waveform-based procedure. Therefore, phase
in [12]. Assuming the phase of the observed field is a continuodéferences between adjacent samples may be greater sthead
function of the field coordinates so that it can be approximated Wjthout affecting the ability of the algorithm to estimate the phase
a 2-D polynomial function of these coordinates, the PD algorithiparameters, as long as the constraint (5) is satisfied. In other words,
provides estimates of all the phase parameters and, thus, of the pfiageproposed phase estimation algorithm can perform very well in
function itself. It is therefore an efficient tool for instantaneous spatitiie presence of phase aliasing due to a low sampling rate and noise.
frequency (IF) estimation, as well. In its initial step, the phas&his point is further illustrated in Section Ill as well as in [9].
unwrapping algorithm fits a 2-D polynomial model to the phase The performance of the phase estimation algorithm and, hence,
of the observed signal. Note that the algorithm attempts to fitthe performance of any procedure that employs it, such as the
2-D polynomial phase model to the data itself and is not at gihase unwrapping procedure [9] or the tilt and slant estimation [11],
concerned with the wrapped phase image as some of the existiigPngly depends on the choice of the two free parameters of the
phase unwrapping techniques. Since the model inherently assumesgdgerithm. In this correspondence, we systematically analyze the
phase to be a smooth function of the coordinates, it is not concerrg@iformance of the phase estimation algorithm and derive selection
with the 27 ambiguities of the phase function. In this method, theules for the algorithm parameters such that the mean squared error
phase function model can be estimated, even for low SNR and ph&¥$E) in estimating the signal phase is minimized. From (5), it is
aliasing scenarios in which the local edge detection-based algorith@@sicluded that each selection of the algorithm parameterand
are clearly not effective. In the unwrapping step, the estimated phase has implications on the range of values the polynomial phase
is used as a reference information, which directs the actual ph&gefficients may assume.
unwrapping process. The phase of each sample of the observed field
is unwrapped by increasing (decreasing) it by the multipl2zothat II. THE OPTIMAL SELECTION OF 7,, AND Tin

is the nearest to the difference between the principle value of theIn Appendix A, we obtain approximate expressions for the mean
phase and the est_lmated phas_e value at th.'s cc_)ordlnate. . ._squared error in estimating the parameters of the highest layer of
In [11], we derive an algorithm for estimating the orientatio

The phase model when the observed field is given by (1). Since

in space of a planar surface from its texture information. T . o . .
P P IWﬁese expressions are difficult to evaluate, we restrict our attention

algorithm employs the fact that the perspective projection transforI SAppendix B to the case where the SNR is high. This assumption

the phase function of any sinusoidal component of the homogene%%ws us to derive closed-form expressions for the mean squared
surface texture from a linear function of the surface coordinates tg

- . - - . ftors. Our goal in this section is to analyze these expressions
nonlinear, yet continuous, function of the image coordinates. Thlg, d to find the values of the algorithm parametess and =
the first step of the algorithm is to obtain an estimate of the phase r}t minimize the error variance of the phase estin;ates 'f”rL\rough
the dominant sinusoidal component in the image plane using the :

algorithm. By substituting the estimated phase into the equation tnumerical evaluation of the mean squared error expressions for
9 - BY 9 P q %tlynomial phase signals of different total degrees, we determine

re_Iates it, through the physical model of the perspective pro_ject_l P]’e optimal values of,, and 7., such that the mean squared error
with the phase function on the homogeneous surface, we obtain h'glsyminimized

accurate estimates of the unknown tilt and slant angles of the surfacq; _
. o . et SNR=
Next, we introduce some definitions and notations. Let

©)

‘;‘—2. In Appendix B, it is shown that under the high
SNR assumptionZ{Ac¢(P+1,5—-P)} = 0,andE{Ac(P,S+1—
y(n,m) = v(n,m) +w(n,m), P)} = 0, i.e., the estimates of the coefficients in thie- 1 layer of a
n=0,1,....N=1, m=0,1,....M—1 (1) polynomial phase signal of total_degré‘e{- 1 are unblaseq for high
SNR. We note that the expressions derived in Appendices A and B
be the observed field, whefe:(n, m)} is an additive white Gaussian are valid only for the coefficients in th& 4 1 layer of a polynomial

noise with variancer?, v(n,m) = Aexp{jos+i(n,m)}, and phase signal of total degre®e+ 1. Complete performance analysis
‘ ke of the estimation algorithm is beyond the scope of the present work
P51 (n,m) = Z c(k, On=m”. () since the errors in estimating the parameters of lower layers are, in

{0k, 0Sk LS H1} part, due to the propagation of errors in estimating the coefficients

Applying the phase differencing operator PB, ,.¢s—#[] (see [1] of higher layers. However, as we show next, this derivation is very
and [2]) to v(n.m) results in a 2-D exponential whose spatiakseful for the purpose of choosing the optimal set of the algorithm
frequency(ws, vs) is given by parametersr, and 7,,.
5 ; b s p To illustrate the behavior of the MSE in estimating the phase
ws = (=1)7e(P+ 1,5 = P)(P + 1S = P)lr, 7., ®) parameters for high SNR, we present a typical example. Consider
vs = (=1)°c¢(P,S+1—-P)P(S+1—- Pl 2", (4) a constant amplitude polynomial phase signal of total degree
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Fig. 1. MSE ofé(2, 2) as a function of the ratios, /N, and,, /. Fig. 2. Experimentally computed MSE 6{2, 2) as a function of the ratios
™ /N, and 7,,, /M.

4 in additive white noise such that the SNR is 25 dB. The

field dimensions areN = M = 50. The phase parameters are __ TABLE |

¢ = [1:0.5.0.64; —0.008,0.002, —0.0048; 2.4 - 10~°,0,1.6 - 10~°, OPTIMAL 7/ RATIOS THAT Miimize THE MSE
1.6 - 107°;0,0,8 - 1077,0,0]", where ¢ is defined byc = P-0|P=1P=2]P=3 P-4
[(0,0); ¢(0,1), ¢(1,0): ¢(0,2), ¢(1,1),(2,0);...,...;¢(0,5 + 1), PELS- P 6 | oh | P | P | pk
-, e(S+1,0)]7. [Thus, for examples(2,2) = 8:10~"]. Using (17) (PS+1-P)| ¢ | ps | 3 | P | pPi

and (18), we depict in Fig. 1 the MSE surface?2, 2) (normalized

with respect ta-*(2, 2)) as a function of the ratios, /N andr,, /M. din A dix C. Using th derivati lude th
Note that the MSE surface is rather “flat” in the vicinity of its globapresente N',n bpendix gy sing these derivations, we conclude that
BT - the MSE in estimating a parameter

minimum point. To verify the validly of the theoretical analysis, wd®" ™ = Pt and7m = 5—par, In¢€

computed the MSE in estimating the phase coefficients using Morln?ethe highest layer of the phase mode! IS given _by (6), shown at the
Carlo simulations for some specific examples for a wide range ptom of the page, vv_her(_é(R 5, SNRy s a function of’, 5, and

7, andr,, values. The results match well the theoretical results. FOF¢ SNR only, which is given by
example, the experimentally evaluated normalized MSE surface of’(P, S, SNR)

¢(2,2) of the foregoing example is depicted in Fig. 2. The results

SIEI : 2 .

i i ati i —P P tp q Py(S—P i

are based on 100 independent realizations of the signal for each s H H (p)( . ) i 1 1@
Ty and 7. i SNR

Considering the simulation results for polynomial phase signals of
total degree 2 to total degree 5, we find that the global minimum of the@r the case in whichkV >> P, we obtain
MSE in estimating th.e parameters”+1, S—P) andr:(P., S+1-P), E{[Ac(P+1,5 — P)]*}
i.e., the parameters in tife+ 1 layer of the polynomial phase model, 6C(P, 5. SNR)
occur for the ratios ofr,, /N, which are given in Table I. In this ~ 5PTs — 5= (8)
table, we use the notation to denote that any value of,, such [(P+ 1S - P)2(557) (s2p=7)

<7, <N - ined. . . . ;
that0 < Tn < N — 1 can be chosen_Slm!Iar results are obtalneglmIlar MSE expressions can be derived Bf[Ac( P, S+1— P)]?).
for the ratior,, /M. These are summarized in Table Il. We therefore . .

) . . . To further illustrate the effectiveness of the proposed parameter se-
conclude that the selection of an optimal is not a function of the . ; : .

. . - lection rule, we consider the 30 30 polynomial phase signal of total-

optimal selection ofr.,, and vice versa. ) .

degree 2, whose noise-free phase function, as well as the observed
phase, are shown in Fig. 3. In this example, the SNR of the observed
signal is very low (SNR= 0 dB), and the sampling rate is low as well;

In the previous section, we concluded that for high SNR, th@erefore, the phase function is severely aliased. The phase parameter
MSE surfaces are essentially flat in the vicinity of the minimumgector isc = [0;0.2513,0.2513; —0.1, —0.15, —0.1]"". Using Monte
point. On the basis of this conclusion, we replace in this section t@arlo simulations, we investigate the behavior of the variance, bias,
optimal ,, andr,, with the close-to-optimal choice, = 5, and and MSE of the phase estimate for two distinct sets,ofnd 7,,..

T = @7“—I{+1 This choice ofr,, andr,,, enables us to analyze theSince, in many cases, the local spatial frequency of the signal is of
performance of the phase estimation algorithm fomdritrary SNR interest, we investigate the performance of its estimate as well. The
and to derive simple expressions of the MSE in estimating the modébnte Carlo simulations are based on 200 independent realizations
parameters and functions thereof. The details of the derivation afethe observed field. In one case, which is denoted by solid lines

Ill. A PPROXIMATE ANALYSIS OF THE MSE FOR AN ARBITRARY SNR

6C(P,S,SNR)(P + 1)*(N? — (P +1)?)

((P+ 1)!(5_ p)!)z(%)ﬂ—”rl(S;%Jd)zsle—’wq(]\r _ P—|— 1)2(47\7_1_1:)_{_ 1)2

E{[Ac(P+1,5-P)*} =

(6)
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TABLE I
OPTIMAL T, /M RATIOS THAT MINIMIZE THE MSE

S—-P=0|8S-P=1|{S-P=2|S5-P=3|5-P=14
oP+1,5-P) ¢ 5-Pi2 P P P
(P, S+1-P) ¢ S=Pii sopi 5P —ri3
i |
T B\ T

so e N
; i
100 l“\ ”,‘1"‘”’)","1 ]f"'ﬁ'] N (’|\' . I
EI NB e
200 SR - i i \‘ i ” “ M | \\,\
D - |

10 0.005

m

Fig. 3. Observed and noise-free phase functions of the observed signal.Fig. 4. Variance, bias, and MSE of the phase and frequency estimates for

- N M optimal and nonoptimal choice of the algorithm parameters at SNRdB
n Flg 4, we ChOOSG’n = PA_+1 and T = m Note that these and an undersamp|ed phase_

values ofr, andr,, change when different parameters in different

layers are estimated. By adopting this selection rule, we implicitgigorithms derived for both problems employ the PD algorithm [1],
assume that there is no error propagation due to errors in estimatidpto estimate the phase function of the observed signal. In this
the coefficients of higher layers. In the second case, which is denotedrespondence, we provide a performance analysis of the phase
by dashed lines in Fig. 4, we set = 7,,, = 2 for all the algorithm estimation algorithm. This analysis is essential since it provides
iterations. In Fig. 4, we show the variance, the bias, and the MSfaidelines for optimal selection of the algorithm parametets

of the phase function estimate along a diagonal cross-section of &vl 7,,,. The parameter selection has a strong influence on the
field from (0,0) to (N — 1, M —1). The error variance of the-axis PD algorithm performance and, hence, on the performance of any
frequency estimate along the same diagonal cross section is depigegtedure that employs it. Comparison of the theoretical performance
as well. The experimental results indicate that indeed, as suggestéthe algorithm with the CRB verifies the experimental observation
by the theoretical analysis, this choice of the algorithm parametédhst it provides accurate estimates at a relatively low computational
provides an essentially unbiased estimate of both the phase anddbst.

frequency functions. Both for the phase and the frequency estimatesyVe finally note that in order to satisfy the constraint (5), it may
the bias is considerably smaller than the standard deviation of the necessary to use nonoptimal choices of the algorithm parameters
estimates, and hence, the MSE and the error variance curves when the observed data is small in dimensions to allow a wider range

essentially identical. of phase parameters to be accommodated.
In [2], we derived the Cragr-Rao lower bound (CRB) on the
parameter estimates of the model defined in (1) and (2). The CRB APPENDIX A

provides the lower bound on the error variance in estimating the phase graristicaL ANALYSIS OF THE HIGHEST LAYER COEEFICIENTS
parameters for any unbiased estimator of the phase model. SinCBefine

the phase and frequency estimates were found to be unbiased, the

variance of these estimates can be compared with the corresponding y(*(PH))(n + PTo.m + qTm)
CRB. The CRB on the phase and frequency estimates is depicted in y(n +prn.m+qrm), p+qeven
Fig. 4 using dashed-dotted lines. The numerical results demonstrate = {y*(n + pTw.m 4 qTm), p+gqodd ©)

that the nearly optimal selection rule of andr,, yields estimation

error variance that is very close to the bound, both for the phase-€t 9. (w.v) be a 2-D complex valued function depending on

and the frequency estimates, despite the severe phase aliasing Wfdreal variableso and» and on two positive integerd” and M.

the small dimensions of the observed field. However, the arbitraf{fre;w andv are the 2-D frequency domain variables, wherdas

choice of the algorithm parameters = 7., = 2 produces estimates and 3 are the observed field dimensions. Defifie 1/ (w.v) =

with a much higher bias, variance, and MSE. lgn . (w,v)|” and assume thaty, 1 (w, v) has its global maximum
at (w,v) = (ws,vs). More specifically

IV. CONCLUSION gnv(w,v) = DFT{PDn(P),m(S—P)[7)(77/5771)]}
In [9], a parametric modeling approach is proposed as the basic Nol—Pry, M—1—(5—P)r,
building block in an algorithm for unwrapping the phase of 2-D = exp{jvs(Tn, Tm)} Z Z

signals. In [11], we derive an algorithm for estimating the orientation n=0 m=0
in space of a planar surface from its texture information. The x exp{j[(ws —w)n + (vs —v)m)} (10)
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where the last equality follows from [1, Th. 1]. Using [2, Lemma 2], The mean squared value dc(P + 1,5 — P) due to the noise
we have that the perturbation gf 1 (w,v) from its true value due is given by
to the additive noise is given by

Agn,v(w,v) E{[Ac(P+1,5 - P)]}
1

= DFT{PD, (r) (s [y(n, m)]} s i [
’ S—P
—~ DFT{PD, ¢ s #[v(n, m)]} (P + 1S = P)irfrn™")
OAfN M (ws,vs)

_ Auliprn /\~T-1—(LZS'—P)Tm{91:[P{ﬁ [y X E{{— dw } } an

n=0 m=0 g=0 p=0

O fn ar(ws, vs) -
Odw?

R and the mean squared value &f(P, S + 1 — P) due to the noise
x (n —|—prn,m—|—qrm)}(1’)} is given by
S—p (P (G / 2
_ R (alpta) (1:) ¢ E{[Ac(P,S+1—- P)]"}
H H {U (n+pr,,m+ qrm)} 1 92 Fx ai (we. vs) —2
VR S PSF 1P T { o
x exp{—j(wn +vm)} : ‘T Tm
Nel—Pry, M—1—(S—P)rm OAfN i (ws.vs)]?
= Z Z n(n,m) X E{ |: o (18)
n=0 m=0
x exp{jl(ws — w)n + (vs — v)m)} - expjrs(ruma)} (11)
where

where we define

s—p( P E {3AfN,M(wS-/ vs) } °
-1 2atuensy
0

q=0 p= N—1—Pry, M—1—(S—P)7pm
s—p 2 N-—-Pr, -1
(P ¢ ) =-K°F <4 —-n
11)(*(p+q>)(n +pT,m+qTm) | 7 ! "20 ';) 2
+ : - L
v(*(P+q>)(71 + pTrsm + qTm)
(12) X (n*(n,m)e—n(n, m))}
Let K = (N —Pr,)[M—(S—P)r,]. In addition, letL (k) denote the Nel—Prp M—1—(S—P)ry , ~
unit step function. Evaluating~x s (w, v) and Agnx ar(ws, vs) and Z Z <A — P -1 ()
their partial derivatives with respect toandv at (ws, vs), we have =0 k=0 2
) \
for the second derivatives ofy, 1/ (w,v) that %&f"” =0
and that x (" (k) = n(t,k))
Pfnvaa(w,v)s o1, 2
B =2k 1(\ - Pr. —-1) Nel—Pry, M—1—(5—P)rm N—1—Pry, M—1—(5—P)rm
=-K
- %(N — Pr, —1)(N = Pr,, — 0.5)} ; 2 ; ;
LN =1=Pr )L (M —1—(S— P)r) X <A — PQT -1 n) <A — PQT -1 f)
- 1 (13 AE[ (n.m)y" (€.4)] = 2 Re{E[y" (n.m)n((, k)]}
f;v,gizus, vs) _o I{Z{Z[AI — (8= P)r —1J° + Ely(n, m)n(t,k)]} (19)
1 )
— S = (5= Py -1 and
[M = (S = P)yrm — ().5]}1(N —1-Pr) ,
OAfn m(ws,vs)
X1(M—1- (5= P)rm). (14) v
Hence, the Hessian matrix is diagonal, and therefore, the estimation Nl M S P Nl P MU= )T
of ¢«(P 4+ 1,5 — P) via ws is approximately decoupled from the =-K Z Z Z Z
estimation ofe(P, S 4 1 — P) via vs. In other words, we have the o= =0 =0 h=0
following set of independent equations: <M — (5 _QP)T’” -1 m)
O fn(ws,vs)] T OA N (ws, vs) M- (S-P)r,—1
Aw =~ — - _ 2 i / 4 Tm :
{ 9w? dw 13) X < 2 - "')
Ay o — {82,7"1\’,,«4@5‘-, Vs)}l OAfN m(ws, l/s). (16) AER (n,m)n* (L, k)] — 2Re[E[n" (n,m)n({, k)]}
ov? v + E[n(n,m)n(f, k)]}. (20)
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APPENDIX B After some algebraic manipulations, we find that
THE HicH SNR (ase A funn( 172
Rewriting (12), we have E{ {%} }
S—p P 1 5. =r - 258 -2P
s = [ H{l cient > (S0
q=0 | p=0 r=—(5-P)
( (S,p) X [Al — (S - P + |'7?|)'Tr77,]
q
(*(p ‘7>)( n +PTn m + qun) _ 1 X 1([\1 - 1 - (S - P)Tm - |r|7-m)
'11(*(”+q>)(71 + pTa, m+ qTm) £ 2p
-y <—1>~< )( - P, = |z|70)
s.p p (DO, A= P P
H H Z < ) (N = P1n)* = 2(N = P7y)|z]mn — 2(27)° — 1]
¢=0 p=0 =0 X 1(N —1— Pr, — |z|m0). (24)
w q>)(n + pTn,m + qu) - . . . .
(*(Nq) : -1 Substitution of (24) and (13) into (17) gives the desired variance
J(n+ pTo,m 4 g7 E{[Ac(P + 1,5 — P)]*}. Following a similar procedure
S—P
Z < )( ) E INfN (ws.vs)]?
q=0 v
(*(p+<1)) ) )
w (n+pr,m+qrm) P p
x 21 1 2,0 ~f 2P
’7/'(*(p+q>)(77/-|-p7'n,,mr+q7'm) ( ) ~ 60’ K- Z (-1) <P— |,|
r=—F
where the second equality results from expanding the first expression X [N — (P + [r[)7]1(N = 1 — Pr, — |r|70)
into a series form, whereas the above first-order approximation is S—p 26 _9p
valid as long as the noise variance is small relative to the energy of : Z (=1) < | |>
(Pt >> z=—(5—P)
and hence, all the high powers 6§ (ntprymtarm)
v(n, m), ghp o CPTDN (y pry mtgrm) | X (M = (S = P)ry = |2|7m)

can be neglected )
(M = (S = P)7.)” = 2(M = (S = P)1.)|2|Tm

>>(n+prn,7n+qrm) _

} 0, we have substituting o) = 1] LM = 1= (S = Py — |2|7m).  (25)
(10)—(14) into (15) and (16) that under the high SNR assumption
E{Ac(P+1,S—-P)} = 0andE{Ac¢(P,S+1— P)} =0, i.e,, Substitution of this expression and (14) into (18) gives the desired
the estimates of(P+ 1,5 — P) andc(P, S + 1 — P) are unbiased variance E{[Ac(P,S + 1 — P)]*}. Note that for the high SNR

for high SNR. Next, we give a first-order approximation of the MSkase, both expressions in (17) and (18) are independent of the signal
(and variance) of the estimated parameters, i.e., we wish to evaluaéeameters.

E{[Ac¢(P+ 1,5 — P)]*} andE{[Ac(P,S +1 — P)]Q}. Using the

first-order approximation ofy(n,m) (21), we have (22), shown at APPENDIX C
the bottom of the page. Sinee(r, ) is a complex valued, circular DETAILS OF THE APPROXIMATE ANALYSIS
Gaussian, white noise OF THE MSE FOR AN ARBITRARY SNR
[ (<)) o (xlotD)) Using the choice of,, /N = 53+ andr,,, /M = =7, we wish
Elw , (n 4 pTnsm + g7 J0 (€4 57k o+ 170 to analyze the performance of the phase estimation algorithm for an
o”, n+pm =L+ sm, and arbitrary SNR. This choice of,, andr,, has the advantage of group-
_ m+ qTm =k + 170, and. (23) ing the field samples into subgroups in such a way that the subgroups
lp+ ¢ -5 t| odd are all mutually exclusive, whereas each contains uniformly spaced
0, otherwise samples from the entire observed field. Thus, expectations of the type
N—-1-—Pr, M—1—(S—P)rmu N—1—Pr,, M—1—(5—P)7tsm
8Af]\f‘]\,7(w5', I/g) 2 .2 "
B[220 DD YD S
n=0 m=0 (—0 k=0

() S EE S ()

W) 4 praym 4 q7) 0T (4 570 K 70)
,U(*(qu))(n + pTa, m + qu) ,U(*(.<+f>)(£ + 5T, k + tTm)

- 2Re{E

w(*(,,+q+1>)(n + P, m 4 qTm) W L+ sk +tmm) 22)
PTG b i m grm) oG s ke b)) | |

WD (g pr o qra) w T+ s k4 )
VTN (0 prm - qr) 0T STk A+ )
(st

( )(

+ E
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E{n(n,m)n({, k)}, wheren(n, m) is defined in (12), can be easily
computed. This is due to the property thdt:, m) is a function of

only one subgroup of field samples, wher@és %) is a function of a
different and mutually exclusive subgroup of field samples. Because
the noise is white and circular Gaussian, the expected values are
zero, unlesg/, k) = (n,m).

More specifically, sincgw(n,m)} is a circular white Gaussian
noise, E{[w(n,m)]"} = 0 for any positive integer, whereas the
expected values of cross products that involve more than one sample
are also zero. Using (12), we find that
S—Fr P
[ I1{:

g=0 p=0

E[n(n,m)]=FE

LT
w? q>)(n + pTn, m + qTm)

n =+ pTn, M+ qTm)

(75
-1

(26)
Hence, we have, using (15) and (16), tA&tAc¢(P+1,5—P)} = 0,

+ ,U(*(P‘F‘Z))(

=0.

279

(7
Al
[

S—

)((5)(}#))

(n+prw,m~+ qmm)
v (0 4 pr m+ gT)

(*(p+<1))

],

} -1-1+4+1

sHt+1
(*( >) + STn, )n+t7-7n)

(T (b g7, m 1)

(Eye?®

~

I

g=0 p=0

X

-1
[v(n +me m+ q7m)|?

ﬁﬁ( )g_P <(§)(;ZP)>27:1<$>:1 (30)

=0

and E{Ac¢(P,S+1—- P)} = 0, i.e., for the case of a circular white where the second equality is due to (30) and dufutén, m )} being
Gaussian observation noise the estimates(df + 1,5 — P) and a white noise field.

¢(P,S 4+ 1 — P) are unbiased foany SNR.

Since for 7,

M M

M = (§ = P)rn

S—P+17 S—P+1
Finally, we wish to evaluate (17) and (18) when we choosend for ,, = LJF N — Pr, F;L, we have that
Tn,{jl\’ 70 and 7 /M = 5—o. We begin by evaluating (19) s~V—1-Fr.(N= Pl 2 = 1_2 A [(P+1~2 ~ 1], Thus,
and (20). using the equalltlef[n(n m)]? and E[n*(n,m)]* = 0, we
OAFN i (ws, vs) 2 obtain (6) by substituting (30) |nto ( 7), followed by substitution
E { Ow } of (27) and (13) into (17).

N—-1—-Pryy M—1—(5—P)71sm,

2 2

N-Pr, —1 2
_— —n
2
n=0 m=0

AE[ (nom))® = 2E[* (ny m)n(nym)] + E[ln(n,m)]*}

@7)

N—1=Pr, M—1—(S5—P)rp,

2 2

n=0 m=0
AER (n,m )]'2 —2E[n"(n,m)n(n,m)] + E[n(n,m )]2}.
(28)

—K?

(1]
(2]

(3]

M= (S=Pyrm=1_ Y\
9 [4]

(5]

=-K’

6]

Since{w(n,m)} is a circular white Gaussian noise, we have using
(12) and (21) that[n(n, m)]* = 0, E[n*(n,m)]* = 0 and that

s_p p (D)

T II Z@ ((?)(;f))

g=0 p=0
W 4 prm 4 gra) || 1. (29 9]
“(*(P‘HD) (,n + prn,m + qu)

(7]

(8]

In addition, E{[w(n,m)]"[w* (n,m)]*} = 0 for any non-negative [10]
distinct integersr and s, whereasE{[w(n,m)] [w*(n,m)]"} =
r!(o?)" for any nonnegative integer, (e.g., [12]). Therefore, using [11]
the first equality in (21)

En(n,m)n*(n,m)]

[T 1T

p=0 s=0 i=0

[12]
s—p

-1

q=0

s-p p COCETEY (B (5P

[13]

t=0
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