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noisy images with extremely low SNR have been considered. In all
cases, the results are successful. Restored images with considerable
high SNR, even in the worst conditions, are obtained by the DDLF.
The performance and quality of the DDLF depend on the order of
the 2-D lattice filter, the choice of delta parameters�1 and�2, and
the initial values.
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Optimal Parameter Selection in the Phase
Differencing Algorithm for 2-D Phase Estimation

Joseph M. Francos and Benjamin Friedlander

Abstract—A parametric model and a corresponding algorithm for
estimating two-dimensional (2-D) phase functions are presented in a
previous paper. The performance of the phase estimation algorithm
and, hence, the performance of any algorithm that employs it, strongly
depends on the choice of the two free parameters of the algorithm. In
this correspondence, we systematically analyze the performance of the
phase estimation algorithm and derive rules for selecting the algorithm
parameters such that the mean squared error in estimating the signal
phase is minimized. It is shown analytically and verified using Monte-
Carlo simulations that this choice of parameters results in unbiased
estimates of the phase and spatial frequency functions. The variances
of both the estimated phase and frequency functions are very close to the
corresponding Cramér–Rao lower bounds.

I. INTRODUCTION

Phase information has fundamental importance in many one- and
two-dimensional (1-D and 2-D) signal processing problems. In one
dimension, the first derivative of the phase is the instantaneous
frequency of the signal, whereas for multidimensional data, the partial
derivatives of the phase along each of the spatial axes provide
the local spatial frequency of the analyzed field. When dealing
with 2-D signals, estimates of the phase are required in different
applications such as 2-D homomorphic signal processing, magnetic
resonance imaging (MRI) [3], optical imaging, [6], estimation of
shape from texture [10], [11], and interferometric synthetic aperture
radar (INSAR) [4], [5], where the signal phase is proportional to
the elevation of the scattering point on the ground. Hence, ground
elevations and terrain maps can be produced from the INSAR data.
See also [2] and [9] and the references therein.

A critical problem in analyzing the phase information is the
need to unwrap the phase of the observed 2-D signal to enable a
meaningful interpretation of the data. Ideally, in the absence of noise
and phase aliasing, we could unwrap the phase function by following
an integration path and adding multiples of2� to the phase whenever
a sudden drop from� to�� occurs. To ensure that no phase-aliasing
occurs, the original scene must be properly sampled so that phase
differences between two adjacent samples are smaller than� rad. This
requirement cannot be generally satisfied, and hence, in the presence
of noise and phase aliasing, this simple phase unwrapping method is
inadequate. Many of the existing 2-D phase unwrapping techniques
involve local analysis of the phase image by means of sequential
processing of the differences between adjacent pixels (see, e.g., [7])
or by employing edge detection techniques (see, e.g., [5]). Since in
those schemes local errors result in global errors, their usefulness
in the presence of noise is limited. An alternative, global method for
2-D phase unwrapping is to obtain a least squares estimate of the true
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phase by minimizing the differences between the first-order discrete
partial derivatives of the wrapped phase function and those of the
unknown unwrapped solution function (see, [8] and the references
therein). However, using this method, any error in estimating the
phase gradient at the boundaries (for example, due to noise) would
influence the results of the entire phase unwrapping procedure. In [9],
we proposed a parametric approach for 2-D phase unwrapping. The
algorithm employsglobal analysis of the observed signal, and hence,
it is insensitive to local errors. In the proposed model, the phase
and amplitude are unrelated. This 2-D phase unwrapping algorithm
is based on the phase differencing (PD) algorithm [1].

The PD algorithm extends the high-order ambiguity function
(HAF) based estimation algorithm (see [12] for a detailed exposition
as well as [13] for a ML estimator) to the case of 2-D signals. It is
therefore suggested that the reader be familiar with the derivations
in [12]. Assuming the phase of the observed field is a continuous
function of the field coordinates so that it can be approximated by
a 2-D polynomial function of these coordinates, the PD algorithm
provides estimates of all the phase parameters and, thus, of the phase
function itself. It is therefore an efficient tool for instantaneous spatial
frequency (IF) estimation, as well. In its initial step, the phase-
unwrapping algorithm fits a 2-D polynomial model to the phase
of the observed signal. Note that the algorithm attempts to fit a
2-D polynomial phase model to the data itself and is not at all
concerned with the wrapped phase image as some of the existing
phase unwrapping techniques. Since the model inherently assumes the
phase to be a smooth function of the coordinates, it is not concerned
with the 2� ambiguities of the phase function. In this method, the
phase function model can be estimated, even for low SNR and phase
aliasing scenarios in which the local edge detection-based algorithms
are clearly not effective. In the unwrapping step, the estimated phase
is used as a reference information, which directs the actual phase
unwrapping process. The phase of each sample of the observed field
is unwrapped by increasing (decreasing) it by the multiple of2� that
is the nearest to the difference between the principle value of the
phase and the estimated phase value at this coordinate.

In [11], we derive an algorithm for estimating the orientation
in space of a planar surface from its texture information. The
algorithm employs the fact that the perspective projection transforms
the phase function of any sinusoidal component of the homogeneous
surface texture from a linear function of the surface coordinates to a
nonlinear, yet continuous, function of the image coordinates. Thus,
the first step of the algorithm is to obtain an estimate of the phase of
the dominant sinusoidal component in the image plane using the PD
algorithm. By substituting the estimated phase into the equation that
relates it, through the physical model of the perspective projection,
with the phase function on the homogeneous surface, we obtain highly
accurate estimates of the unknown tilt and slant angles of the surface.

Next, we introduce some definitions and notations. Let

y(n;m) = v(n;m) + w(n;m);

n = 0; 1; . . . ; N � 1; m = 0; 1; . . . ;M � 1 (1)

be the observed field, wherefw(n;m)g is an additive white Gaussian
noise with variance�2; v(n;m) = A expfj�S+1(n;m)g, and

�S+1(n;m) =
f0�k;`:0�k+`�S+1g

c(k; `)nkm`
: (2)

Applying the phase differencing operator PDn ;m [�] (see [1]
and [2]) to v(n;m) results in a 2-D exponential whose spatial
frequency(!S; �s) is given by

!S = (�1)Sc(P + 1; S � P )(P + 1)!(S � P )!�Pn �
S�P
m (3)

�S = (�1)Sc(P; S + 1� P )P !(S + 1� P )!�Pn �
S�P
m : (4)

Hence, estimating(!S; �S) using any standard frequency estimation
technique results in an estimate ofc(P+1; S�P ) andc(P; S+1�P ).
Based on this result, all the parameters of the polynomial phase signal
are estimated, as explained in [1].

Note from (3) and (4) that since the phase coefficients are estimated
form the exponential’s frequency, they can be estimated unambigu-
ously (i.e., with no aliasing) as long asj!S j � � and j�S j � �,
which implies that

jc(P + 1; S � P )j �
�

(P + 1)!(S � P )!�Pn �
S�P
m

(5)

and similarly for c(P; S + 1 � P ). However, since a parametric
model is fitted to the observed signal, the phase function itself can be
sampledunder the Nyquist rate because the phase estimation is not
performed through a waveform-based procedure. Therefore, phase
differences between adjacent samples may be greater than� rad
without affecting the ability of the algorithm to estimate the phase
parameters, as long as the constraint (5) is satisfied. In other words,
the proposed phase estimation algorithm can perform very well in
the presence of phase aliasing due to a low sampling rate and noise.
This point is further illustrated in Section III as well as in [9].

The performance of the phase estimation algorithm and, hence,
the performance of any procedure that employs it, such as the
phase unwrapping procedure [9] or the tilt and slant estimation [11],
strongly depends on the choice of the two free parameters of the
algorithm. In this correspondence, we systematically analyze the
performance of the phase estimation algorithm and derive selection
rules for the algorithm parameters such that the mean squared error
(MSE) in estimating the signal phase is minimized. From (5), it is
concluded that each selection of the algorithm parameters�n and
�m has implications on the range of values the polynomial phase
coefficients may assume.

II. THE OPTIMAL SELECTION OF �n AND �m

In Appendix A, we obtain approximate expressions for the mean
squared error in estimating the parameters of the highest layer of
the phase model when the observed field is given by (1). Since
these expressions are difficult to evaluate, we restrict our attention
in Appendix B to the case where the SNR is high. This assumption
allows us to derive closed-form expressions for the mean squared
errors. Our goal in this section is to analyze these expressions
and to find the values of the algorithm parameters�n and �m
that minimize the error variance of the phase estimates. Through
numerical evaluation of the mean squared error expressions for
polynomial phase signals of different total degrees, we determine
the optimal values of�n and �m such that the mean squared error
is minimized.

Let SNR= A

�
. In Appendix B, it is shown that under the high

SNR assumption,Ef�c(P +1; S�P )g � 0, andEf�c(P;S+1�
P )g � 0, i.e., the estimates of the coefficients in theS+1 layer of a
polynomial phase signal of total degreeS + 1 are unbiased for high
SNR. We note that the expressions derived in Appendices A and B
are valid only for the coefficients in theS +1 layer of a polynomial
phase signal of total degreeS + 1. Complete performance analysis
of the estimation algorithm is beyond the scope of the present work
since the errors in estimating the parameters of lower layers are, in
part, due to the propagation of errors in estimating the coefficients
of higher layers. However, as we show next, this derivation is very
useful for the purpose of choosing the optimal set of the algorithm
parameters:�n and �m.

To illustrate the behavior of the MSE in estimating the phase
parameters for high SNR, we present a typical example. Consider
a constant amplitude polynomial phase signal of total degree
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Fig. 1. MSE of ĉ(2, 2) as a function of the ratios�n=N , and�m=N .

4 in additive white noise such that the SNR is 25 dB. The
field dimensions areN = M = 50. The phase parameters are
c = [1; 0:5; 0:64;�0:008; 0:002;�0:0048; 2:4 � 10�5; 0; 1:6 � 10�5;
1:6 � 10�5; 0; 0; 8 � 10�7; 0; 0]T , where c is defined by c =
[c(0; 0); c(0; 1); c(1; 0); c(0; 2); c(1; 1); c(2; 0); . . . ; . . . ; c(0; S + 1);
. . . ; c(S+1; 0)]T . [Thus, for example,c(2; 2) = 8�10�7]. Using (17)
and (18), we depict in Fig. 1 the MSE surface ofĉ(2; 2) (normalized
with respect toc2(2; 2)) as a function of the ratios�n=N and�m=M .
Note that the MSE surface is rather “flat” in the vicinity of its global
minimum point. To verify the validly of the theoretical analysis, we
computed the MSE in estimating the phase coefficients using Monte
Carlo simulations for some specific examples for a wide range of
�n and�m values. The results match well the theoretical results. For
example, the experimentally evaluated normalized MSE surface of
ĉ(2; 2) of the foregoing example is depicted in Fig. 2. The results
are based on 100 independent realizations of the signal for each
�n and �m.

Considering the simulation results for polynomial phase signals of
total degree 2 to total degree 5, we find that the global minimum of the
MSE in estimating the parametersc(P+1; S�P ) andc(P; S+1�P ),
i.e., the parameters in theS+1 layer of the polynomial phase model,
occur for the ratios of�n=N , which are given in Table I. In this
table, we use the notation� to denote that any value of�n, such
that 0 � �n � N � 1 can be chosen. Similar results are obtained
for the ratio�m=M . These are summarized in Table II. We therefore
conclude that the selection of an optimal�n is not a function of the
optimal selection of�m, and vice versa.

III. A PPROXIMATE ANALYSIS OF THE MSE FOR AN ARBITRARY SNR

In the previous section, we concluded that for high SNR, the
MSE surfaces are essentially flat in the vicinity of the minimum
point. On the basis of this conclusion, we replace in this section the
optimal �n and�m with the close-to-optimal choice�n = N

P+1
, and

�m = M

S�P+1
. This choice of�n and �m enables us to analyze the

performance of the phase estimation algorithm for anarbitrary SNR
and to derive simple expressions of the MSE in estimating the model
parameters and functions thereof. The details of the derivation are

Fig. 2. Experimentally computed MSE of̂c(2, 2) as a function of the ratios
�n=N , and �m=M .

TABLE I
OPTIMAL �n=N RATIOS THAT MINIMIZE THE MSE

presented in Appendix C. Using these derivations, we conclude that
for �n = N

P+1 and�m = M

S�P+1 , the MSE in estimating a parameter
in the highest layer of the phase model is given by (6), shown at the
bottom of the page, whereC(P; S;SNR) is a function ofP; S; and
the SNR only, which is given by

C(P; S;SNR)

S�P

q=0

P

p=0

(Pp )(
S�P
q )

i=0

P

p

S�P

q

i

2

i!
1

SNR

i

� 1: (7)

For the case in whichN � P , we obtain

Ef[�c(P + 1; S � P )]2g

�
6C(P; S;SNR)

[(P + 1)!(S � P )!]2 N

P+1

2P+3 M

S�P+1

2S�2P+1
: (8)

Similar MSE expressions can be derived forEf[�c(P;S+1�P )]2g.
To further illustrate the effectiveness of the proposed parameter se-

lection rule, we consider the 30� 30 polynomial phase signal of total-
degree 2, whose noise-free phase function, as well as the observed
phase, are shown in Fig. 3. In this example, the SNR of the observed
signal is very low (SNR= 0 dB), and the sampling rate is low as well;
therefore, the phase function is severely aliased. The phase parameter
vector isc = [0; 0:2513; 0:2513;�0:1;�0:15;�0:1]T . Using Monte
Carlo simulations, we investigate the behavior of the variance, bias,
and MSE of the phase estimate for two distinct sets of�n and �m.
Since, in many cases, the local spatial frequency of the signal is of
interest, we investigate the performance of its estimate as well. The
Monte Carlo simulations are based on 200 independent realizations
of the observed field. In one case, which is denoted by solid lines

Ef[�c(P + 1; S � P )]2g �
6C(P; S;SNR)(P + 1)2(N2 � (P + 1)2)

((P + 1)!(S � P )!)2 N

P+1

2P+1 M

S�P+1

2S�2P+1
(N � P + 1)2(N + P + 1)2

(6)
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TABLE II
OPTIMAL �m=M RATIOS THAT MINIMIZE THE MSE

Fig. 3. Observed and noise-free phase functions of the observed signal.

in Fig. 4, we choose�n = N

P+1
and �m = M

S�P+1
. Note that these

values of�n and �m change when different parameters in different
layers are estimated. By adopting this selection rule, we implicitly
assume that there is no error propagation due to errors in estimating
the coefficients of higher layers. In the second case, which is denoted
by dashed lines in Fig. 4, we set�n = �m = 2 for all the algorithm
iterations. In Fig. 4, we show the variance, the bias, and the MSE
of the phase function estimate along a diagonal cross-section of the
field from (0; 0) to (N �1;M �1). The error variance of then-axis
frequency estimate along the same diagonal cross section is depicted
as well. The experimental results indicate that indeed, as suggested
by the theoretical analysis, this choice of the algorithm parameters
provides an essentially unbiased estimate of both the phase and the
frequency functions. Both for the phase and the frequency estimates,
the bias is considerably smaller than the standard deviation of the
estimates, and hence, the MSE and the error variance curves are
essentially identical.

In [2], we derived the Craḿer–Rao lower bound (CRB) on the
parameter estimates of the model defined in (1) and (2). The CRB
provides the lower bound on the error variance in estimating the phase
parameters for any unbiased estimator of the phase model. Since
the phase and frequency estimates were found to be unbiased, the
variance of these estimates can be compared with the corresponding
CRB. The CRB on the phase and frequency estimates is depicted in
Fig. 4 using dashed-dotted lines. The numerical results demonstrate
that the nearly optimal selection rule of�n and�m yields estimation
error variance that is very close to the bound, both for the phase
and the frequency estimates, despite the severe phase aliasing and
the small dimensions of the observed field. However, the arbitrary
choice of the algorithm parameters�n = �m = 2 produces estimates
with a much higher bias, variance, and MSE.

IV. CONCLUSION

In [9], a parametric modeling approach is proposed as the basic
building block in an algorithm for unwrapping the phase of 2-D
signals. In [11], we derive an algorithm for estimating the orientation
in space of a planar surface from its texture information. The

Fig. 4. Variance, bias, and MSE of the phase and frequency estimates for
optimal and nonoptimal choice of the algorithm parameters at SNR= 0 dB
and an undersampled phase.

algorithms derived for both problems employ the PD algorithm [1],
[2] to estimate the phase function of the observed signal. In this
correspondence, we provide a performance analysis of the phase
estimation algorithm. This analysis is essential since it provides
guidelines for optimal selection of the algorithm parameters�n
and �m. The parameter selection has a strong influence on the
PD algorithm performance and, hence, on the performance of any
procedure that employs it. Comparison of the theoretical performance
of the algorithm with the CRB verifies the experimental observation
that it provides accurate estimates at a relatively low computational
cost.

We finally note that in order to satisfy the constraint (5), it may
be necessary to use nonoptimal choices of the algorithm parameters
when the observed data is small in dimensions to allow a wider range
of phase parameters to be accommodated.

APPENDIX A
STATISTICAL ANALYSIS OF THE HIGHEST LAYER COEFFICIENTS

Define

y
(� )(n+ p�n; m+ q�m)

=
y(n+ p�n;m+ q�m); p+ q even
y�(n+ p�n;m+ q�m); p+ q odd

: (9)

Let gN;M(!; �) be a 2-D complex valued function depending on
two real variables! and� and on two positive integersN andM .
Here,! and� are the 2-D frequency domain variables, whereasN

and M are the observed field dimensions. DefinefN;M(!; �) =
jgN;M(!; �)j2 and assume thatfN;M(!; �) has its global maximum
at (!; �) = (!S; �S). More specifically

gN;M(!; �) = DFTfPDn ;m [v(n;m)]g

= expfjS(�n; �m)g

N�1�P�

n=0

M�1�(S�P)�

m=0

� expfj[(!S � !)n+ (�S � �)m)g (10)
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where the last equality follows from [1, Th. 1]. Using [2, Lemma 2],
we have that the perturbation ofgN;M(!; �) from its true value due
to the additive noise is given by

�gN;M(!; �)

= DFTfPDn ;m [y(n;m)]g

� DFTfPDn ;m [v(n;m)]g

=

N�1�P�

n=0

M�1�(S�P )�

m=0

S�P

q=0

P

p=0

y
(� )

� (n+ p�n; m+ q�m)
( )

( )

�

S�P

q=0

P

p=0

v
(� )(n+ p�n;m+ q�m)

( )

( )

� expf�j(!n+ �m)g

=

N�1�P�

n=0

M�1�(S�P)�

m=0

�(n;m)

� expfj[(!S � !)n+ (�S � �)m)g � expfjS(�n; �m)g (11)

where we define

�(n;m) =

S�P

q=0

P

p=0

1

+
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

( )
( )

� 1:

(12)

LetK = (N�P�n)[M�(S�P )�m]. In addition, let1(k) denote the
unit step function. EvaluatinggN;M(!; �) and�gN;M(!S; �S) and
their partial derivatives with respect to! and� at (!S; �S), we have

for the second derivatives offN;M(!; �) that
@ f (! ;� )

@!@�
= 0

and that

@2fN;M(!; �)s

@!2
= 2K2 1

4
(N � P�n � 1)2

�
1

3
(N � P�n � 1)(N � P�n � 0:5)

� 1(N � 1� P�n)1(M � 1� (S � P )�m)

(13)

@2fN;M(!S; �S)

@�2
= 2K2 1

4
[M � (S � P )�m � 1]2

�
1

3
[M � (S � P )�m � 1]

� [M � (S � P )�m � 0:5] 1(N � 1� P�n)

� 1(M � 1� (S � P )�m): (14)

Hence, the Hessian matrix is diagonal, and therefore, the estimation
of c(P + 1; S � P ) via !S is approximately decoupled from the
estimation ofc(P; S + 1 � P ) via �S . In other words, we have the
following set of independent equations:

�! � �
@2fN;M(!S; �S)

@!2

�1
@�fN;M(!S; �S)

@!
(15)

�� � �
@2fN;M(!S; �S)

@�2

�1
@�fN;M(!S; �S)

@�
: (16)

The mean squared value of�c(P + 1; S � P ) due to the noise
is given by

Ef[�c(P + 1; S � P )]2g

�
1

(P + 1)!(S � P )!�Pn �
S�P
m

2

@2fN;M(!S; �S)

@!2

�2

�E
@�fN;M(!S; �S)

@!

2

(17)

and the mean squared value of�c(P; S + 1 � P ) due to the noise
is given by

Ef[�c(P; S + 1� P )]2g

�
1

P !(S + 1� P )!�Pn �
S�P
m

2

@2fN;M(!S; �S)

@�2

�2

� E
@�fN;M(!S; �S)

@�

2

(18)

where

E
@�fN;M(!S; �S)

@!

2

= �K2
E

N�1�P�

n=0

M�1�(S�P)�

m=0

N � P�n � 1

2
� n

� (��(n;m)c� �(n;m))

�

N�1�P�

`=0

M�1�(S�P)�

k=0

N � P�n � 1

2
� `

� (��(`; k)� �(`; k))

= �K2
N�1�P�

n=0

M�1�(S�P)�

m=0

N�1�P�

`=0

M�1�(S�P)�

k=0

�
N � P�n � 1

2
� n

N � P�n � 1

2
� `

� fE[��(n;m)��(`; k)]� 2RefE[��(n;m)�(`; k)]g

+E[�(n;m)�(`; k)]g (19)

and

E
@�fN;M(!S; �S)

@�

2

= �K2
N�1�P�

n=0

M�1�(S�P)�

m=0

N�1�P�

`=0

M�1�(S�P)�

k=0

�
M � (S � P )�m � 1

2
�m

�
M � (S � P )�m � 1

2
� k

� fE[��(n;m)��(`; k)]� 2RefE[��(n;m)�(`; k)]g

+ E[�(n;m)�(`; k)]g: (20)
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APPENDIX B
THE HIGH SNR CASE

Rewriting (12), we have

�(n;m) =

S�P

q=0

P

p=0

1

+
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n; m+ q�m)

( )
( )

� 1

=

S�P

q=0

P

p=0

( )( )

i=0

P

p

S�P

q

i

�
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

i

� 1

�

S�P

q=0

P

p=0

P

p

S � P

q

�
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)
(21)

where the second equality results from expanding the first expression
into a series form, whereas the above first-order approximation is
valid as long as the noise variance is small relative to the energy of

v(n;m), and hence, all the high powers ofw (n+p� ;m+q� )

v (n+p� ;m+q� )
,

can be neglected.

Since Efw (n+p� ;m+q� )

v (n+p� ;m+q� )
g = 0, we have substituting

(10)–(14) into (15) and (16) that under the high SNR assumption
Ef�c(P + 1; S � P )g � 0 andEf�c(P;S + 1 � P )g � 0, i.e.,
the estimates ofc(P + 1; S � P ) andc(P; S + 1� P ) are unbiased
for high SNR. Next, we give a first-order approximation of the MSE
(and variance) of the estimated parameters, i.e., we wish to evaluate
Ef[�c(P + 1; S � P )]2g andEf[�c(P; S + 1� P )]2g. Using the
first-order approximation of�(n;m) (21), we have (22), shown at
the bottom of the page. Sincew(n;m) is a complex valued, circular
Gaussian, white noise

E w(� )(n+ p�n;m+ q�m)w
(� )(`+ s�n; k + t�m)

=

�2; n+ p�n = `+ s�n; and
m+ q�m = k + t�m; and
jp+ q � s� tj odd

0; otherwise

: (23)

After some algebraic manipulations, we find that

E
@�fN;M(!S; �S)

@!

2

�
1

6
�2K2 �

S�P

r=�(S�P )

(�1)r
2S � 2P

S � P � jrj

� [M � (S � P + jrj)�m]

� 1(M � 1� (S � P )�m � jrj�m)

�

P

z=�P

(�1)z
2P

P � jzj
(N � P�n � jzj�n)

� [(N � P�n)
2 � 2(N � P�n)jzj�n � 2(z�n)

2 � 1]

� 1(N � 1� P�n � jzj�n): (24)

Substitution of (24) and (13) into (17) gives the desired variance
Ef[�c(P + 1; S � P )]2g. Following a similar procedure

E
@�fN;M(!S; �S)

@�

2

�
1

6
�2K2 �

P

r=�P

(�1)r
2P

P � jrj

� [N � (P + jrj)�n]1(N � 1� P�n � jrj�n)

�

S�P

z=�(S�P )

(�1)z
2S � 2P

S � P � jzj

� (M � (S � P )�m � jzj�m)

� [(M � (S � P )�m)
2 � 2(M � (S � P )�m)jzj�m

� 2(z�m)
2 � 1] � 1(M � 1� (S � P )�m � jzj�m): (25)

Substitution of this expression and (14) into (18) gives the desired
varianceEf[�c(P; S + 1 � P )]2g. Note that for the high SNR
case, both expressions in (17) and (18) are independent of the signal
parameters.

APPENDIX C
DETAILS OF THE APPROXIMATE ANALYSIS

OF THE MSE FOR AN ARBITRARY SNR

Using the choice of�n=N = 1
P+1

and�m=M = 1
S�P+1

, we wish
to analyze the performance of the phase estimation algorithm for an
arbitrary SNR. This choice of�n and�m has the advantage of group-
ing the field samples into subgroups in such a way that the subgroups
are all mutually exclusive, whereas each contains uniformly spaced
samples from the entire observed field. Thus, expectations of the type

E
@�fN;M(!S; �S)

@!

2

� �K2
N�1�P�

n=0

M�1�(S�P)�

m=0

N�1�P�

`=0

M�1�(S�P)�

k=0

�
N � P�n � 1

2
� n

N � P�n � 1

2
� `

S�P

q=0

P

p=0

S�P

t=0

P

s=0

P

p

P

s

S � P

q

S � P

t

� E
w(� )(n+ p�n; m+ q�m)

v(� )(n+ p�n;m+ q�m)

w(� )(`+ s�n; k + t�m)

v(� )(`+ s�n; k + t�m)

� 2Re E
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

w(� )(`+ s�n; k + t�m)

v(� )(`+ s�n; k + t�m)

+ E
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

w(� )(`+ s�n; k + t�m)

v(� )(`+ s�n; k + t�m)
: (22)
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Ef�(n;m)�(`; k)g, where�(n;m) is defined in (12), can be easily
computed. This is due to the property that�(n;m) is a function of
only one subgroup of field samples, whereas�(`; k) is a function of a
different and mutually exclusive subgroup of field samples. Because
the noise is white and circular Gaussian, the expected values are
zero, unless(`; k) = (n;m).

More specifically, sincefw(n;m)g is a circular white Gaussian
noise,Ef[w(n;m)]rg = 0 for any positive integerr, whereas the
expected values of cross products that involve more than one sample
are also zero. Using (12), we find that

E[�(n;m)] = E

S�P

q=0

P

p=0

1

+
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

( )( )

� 1

= 0: (26)

Hence, we have, using (15) and (16), thatEf�c(P+1; S�P )g � 0,
andEf�c(P;S +1�P )g � 0, i.e., for the case of a circular white
Gaussian observation noise the estimates ofc(P + 1; S � P ) and
c(P; S + 1 � P ) are unbiased forany SNR.

Finally, we wish to evaluate (17) and (18) when we choose
�n=N = 1

P+1
, and�m=M = 1

S�P+1
. We begin by evaluating (19)

and (20).

E
@�fN;M(!S; �S)

@!

2

= �K2
N�1�P�

n=0

M�1�(S�P)�

m=0

N � P�n � 1

2
� n

2

� fE[��(n;m)]2 � 2E[��(n;m)�(n;m)] + E[�(n;m)]2g

(27)

E
@�fN;M(!S; �S)

@�

2

= �K2
N�1�P�

n=0

M�1�(S�P)�

m=0

M � (S � P )�m � 1

2
�m

2

� fE[��(n;m)]2 � 2E[��(n;m)�(n;m)] + E[�(n;m)]2 :

(28)

Sincefw(n;m)g is a circular white Gaussian noise, we have using
(12) and (21) thatE[�(n;m)]2 = 0; E[��(n;m)]2 = 0 and that

E

S�P

q=0

P

p=0

( )( )

i=0

P

p

S�P

q

i

�
w(� )(n+ p�n; m+ q�m)

v(� )(n+ p�n; m+ q�m)

i

= 1: (29)

In addition,Ef[w(n;m)]r[w�(n;m)]sg = 0 for any non-negative
distinct integersr and s, whereasEf[w(n;m)]r[w�(n;m)]rg =
r!(�2)r for any nonnegative integerr, (e.g., [12]). Therefore, using
the first equality in (21)

E[�(n;m)��(n;m)]

=

S�P

q=0

P

p=0

S�P

t=0

P

s=0
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i=0
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�
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S�P

q

i

P

s

S�P

t

j

� E
w(� )(n+ p�n;m+ q�m)

v(� )(n+ p�n;m+ q�m)

i

�
w(� )(n+ s�n; m+ t�m)

v(� )(n+ s�n; m+ t�m)
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� 1� 1 + 1

=

S�P

q=0

P

p=0

( )( )

i=0

P

p

S�P

q

i

2

i!

�
�2

jv(n+ p�n;m+ q�m)j2

i

� 1

=

S�P

q=0

P

p=0

( )( )

i=0

P

p

S�P

q

i

2

i!
1

SNR

i

� 1 (30)

where the second equality is due to (30) and due tofw(n;m)g being
a white noise field.

Since for �m = M

S�P+1
; M � (S � P )�m = M

S�P+1

and for �n = N

P+1
, N � P�n = N

P+1
, we have that

N�1�P�
n=0 (N�P� �1

2 � n)2 = 1
12

N

P+1 [(
N

P+1 )
2 � 1]. Thus,

using the equalitiesE[�(n;m)]2 = 0 and E[��(n;m)]2 = 0, we
obtain (6) by substituting (30) into (27), followed by substitution
of (27) and (13) into (17).
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