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Abstract

We consider the asymptotic properties of the sample mean and the sample

covariance sequence of a field composed of the sum of a purely-indeterministic

and evanescent components. The asymptotic normality of the sample mean and

sample covariances is established. A Bartlett-type formula for the asymptotic

covariance matrix of the sample covariances of this field, is derived.
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1 Introduction

The problem of linear prediction of homogenous random fields in two or more variables was first

introduced rigorously in Helson and Lowdenslager [10]. The problem of defining past and future

on the two-dimensional lattice (i.e., Z2) was defined in [10] in terms of “half plane” total-ordering.

Further analysis of the prediction problem led to a generalization of the Wold decomposition [11].

The well known Wold decomposition of stationary complex valued processes indexed by Z (see

Doob [4, p. 576]) contains two stationary parts: the purely-indeterministic process (which is pro-

ducing the innovations) and the deterministic process. This decomposition can be equivalently

reformulated using spectral notations: the spectral measure of the purely-indeterministic process

is absolutely continuous with respect to the Lebesgue measure, and the spectral measure of the de-

terministic process is singular (i.e., the spectral measures of these orthogonal components yield the

Lebesgue decomposition of the spectral measure of the process). When we consider homogenous

random fields indexed by other groups (like those indexed by Z2) we obtain a Wold decomposition

with respect to any given total order on the group. When the group is not Z (like R or Z2) the

deterministic process can have as a direct summand a deterministic process of a special type, the

evanescent process.

Evanescent processes were first introduced in [11] (on R). In Korezlioglu and Loubaton [15],

“horizontal” and “vertical” total-orders and the corresponding horizontally and vertically evanes-

cent components of a homogeneous random field on Z2 are defined. In Kallianpur [13], as well

as in Chiang [2], similar techniques are employed to obtain four-fold orthogonal decompositions

of regular (non-deterministic) homogeneous random fields. In Francos et. al. [5] this decompo-

sition of random fields on Z2 was further extended. This is done by considering all the rational

nonsymmetrical half plane linear orders (RNSHP), each inducing a different partitioning of the

two-dimensional lattice into two sets by a broken straight line of rational slope. Clearly, there

are countably many such linear orders. The Wold decomposition of a regular random field into

purely-indeterministic and deterministic components is the same for all RNSHP orders. The de-

composition in [5] asserts that we can represent the deterministic component of the field as a mu-

tually orthogonal sum of a “half-plane deterministic” field and a countable number of evanescent

fields. The half-plane deterministic field has no innovations, nor column-to-column innovations,

with respect to any RNSHP linear order. Each evanescent field spans a Hilbert space identical to

the one spanned by its column-to-column innovations, where the column-to-column innovation at

each lattice point is defined as the difference between the actual value of the deterministic field

and its projection on the Hilbert space spanned by the deterministic field samples in all previous

columns. (Clearly, the term “column” is redefined for each definition of the linear order). Each of
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the evanescent fields can be revealed only by using the corresponding linear order. This decompo-

sition yields a corresponding spectral decomposition, i.e., we can decompose the spectral measure

of the deterministic part into a countable sum of mutually singular spectral measures, such that

the spectral measure of each evanescent component is concentrated on a line with a rational slope.

Based on these results, a parametric model for the evanescent field is derived in [5]. Finally, [3]

provides a detailed analysis of the spectral and ergodic properties of evanescent fields.

Evanescent random fields are of great practical importance. Such fields arise quite naturally in

problems of texture modeling, estimation, and coding of images (see, e.g., [6] and the references

therein), and in space-time adaptive processing of airborne radar data, (see [7] and the references

therein). In [7] it is shown that the same parametric model that results from the 2-D Wold-

like decomposition naturally arises as the physical model in the problem of space-time processing

of airborne radar data: In the space-time domain the target model is that of a 2-D harmonic

component. The sum of the white noise field due to the internally generated receiver amplifier

noise, and the sky noise contribution, is the purely-indeterministic component of the space-time

field decomposition. The presence of a jammer (an undesired interference source, transmitting high

power noise aimed at “blinding” the radar system) results in a barrage of noise localized in angle,

determined by the angle of the jammer with respect to the radar, and uniformly distributed over all

Doppler frequencies (since the transmitted noise is white). Hence, in the space-time domain each

jammer is modeled as an horizontal evanescent component such that its 1-D modulating process

is the random process of the jammer amplitudes. The jammer samples from different pulses are

uncorrelated. In the angle-Doppler domain each jammer contributes a 1-D delta function, parallel

to the Doppler axis and located at a specific angle. The ground clutter, caused by returns from

the ground of the transmitted radar pulse, results in an additional evanescent component of the

observed 2-D space-time field.

The correspondence between the model arising from the 2-D Wold like decomposition and

the STAP physical model can be exploited to derive computationally efficient fully adaptive and

partially adaptive detection algorithms. These detection schemes require the estimation of the

noise and interference components of the field, which are then substituted into the expression

of the interference-plus-noise covariance matrix. Thus, an estimate of the fully-adaptive weight

vector is obtained, and a corresponding test is derived. In order to analyze the performance of

such detectors, and in order to determine their operational parameters, analysis of the properties

of the sample mean and covariances of the field is an essential building block.

To the best of our knowledge, the problem of analyzing the asymptotic properties of the sample

mean and sample covariance sequence of evanescent random fields, or of regular homogenous
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random fields in general, is an open problem. In this paper we consider the asymptotic properties

of the sample mean and sample covariance sequence of a field composed of the sum of evanescent

components and a purely-indeterministic component.

There is a fairly rich literature concerning the asymptotic normality of the (weighted) sample

mean (in the form of central limit theorems), and sample covariance sequence for 1-D stationary

processes. Asymptotic normality of the sample covariances of linear processes was first introduced

by Bartlett (see Brockwell and Davis [1], Propositions 7.3.1-7.3.4). The asymptotic normality of

the sample covariances for real multivariate time series with continuous spectra was established

by Hannan ([8], pp. 209-212). Li et. al. [14] proved the asymptotic normality of the sample

covariances for a time series with mixed spectra, where the observed mixed-spectrum process is

the sum of a stationary process with a continuous spectra, and a finite number of real sinusoids. In,

Li [16] completed the generalization of Bartlett’s result to the case of complex multivariate time

series with mixed spectra. In [9], Ivanov and Leonenko deal with the statistical analysis of random

fields. In this framework they also consider the asymptotic normality of various estimators of 2-

D models, and in particular the asymptotic normality of the weighted sample mean and sample

covariances of homogeneous random fields satisfying constraints on the field moments, and mixing

rate. These mixing conditions are not satisfied by random fields having evanescent components,

due to the singularity of the spectral measure of the evanescent components (which implies that

the field correlation function does not decay fast enough for the mixing conditions to hold).

The asymptotic normality of the sample covariance sequence of a homogenous field composed

of only harmonic and purely-indeterministic components with no evanescent components, can be

shown based on the results of [14], subject to some restricting assumptions on the properties of the

purely-indeterministic component. In this paper we prove, subject to some restricting conditions,

a central limit theorem (CLT) establishing the asymptotic normality of the sample mean of a

horizontal evanescent field, observed in the presence of a purely-indeterministic component. We

then derive a Bartlett-type formula for the covariances of the sample covariance sequence of the

observed field. Finally, we establish the asymptotic normality of the sample covariance function

of the observed field.

2 Notations and Definitions

We begin by recalling the basic definitions, [3],[5]. A homogeneous random field {y(n,m)} is called

regular with respect to the usual lexicographic order if for every (n,m), E[y(n,m) − ŷ(n,m)]2 =

σ2 > 0 where ŷ(n,m) is the projection of y(n,m) on the c.l.m.
[
{y(k, l) : k < n, l ∈ Z} ∪
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{y(n, l) : l < m}
]
. A “rotation” of the usual lexicographic order, such that the resulting NSHP is

delimited by a line with rational slope, leads to a generalization of the above order definition. More

specifically, for a Rational Non Symmetrical Half Plane (RNSHP) induced by any two coprime

integers (a, b), we define the past Pa,b by

Pa,b = {(n,m) ∈ Z2 : na + mb < 0 , or na + mb = 0 and m ≤ 0}. (1)

Then P = Pa,b satisfies

(i) P ∩ (−P ) = {0}, (ii) P ∪ (−P ) = Z2, (iii) P + P ⊂ P (usual addition).

By (i)-(iii), P induces on Z2 a linear order, which is defined by (p, q) ¹ (n,m) if and only if

(p − n, q −m) ∈ P . Let O denote the set of all possible RNSHP definitions on the 2-D lattice.

It has been shown in [3],[5] that the model of the evanescent field corresponding to the RNSHP

defined by (a, b) ∈ O is given by

e(a,b)(n,m) =
I(a,b)∑
i=1

e
(a,b)
i (n, m)

=
I(a,b)∑
i=1

s
(a,b)
i (na + mb) cos

(
ν

(a,b)
i (nc + md)

)
+ t

(a,b)
i (na + mb) sin

(
ν

(a,b)
i (nc + md)

)
(2)

where c and d are coprime integers such that |ad−bc| = 1. For the case where (a, b) = (0, 1) we set

(c, d) = (1, 0), (due to the lack of uniqueness) and for (a, b) = (1, 0) we similarly set (c, d) = (0, 1).

The processes {s(a,b)
i (p)}, {s(a,b)

j (p)}, {t(a,b)
k (p)}, {t(a,b)

` (p)} are purely indeterministic and mutually

orthogonal for all i, j, k, `, i 6= j, k 6= `. For all i the processes {s(a,b)
i (p)} and {t(a,b)

i (p)} have an

identical autocorrelation function. The number of evanescent components, I(a,b) ∈ Z, as well as

the frequency parameters, ν
(a,b)
i ∈ [0, 2π), are deterministic constants, such that ν

(a,b)
i 6= ν

(a,b)
j and

ν
(a,b)
i + ν

(a,b)
j 6= 2π for all i, j, i 6= j. An evanescent component with parameters (a, b) = (1, 0) and

(c, d) = (0, 1) is usually called horizontal evanescent.

In this paper we consider the case where the observed 2-D field is real valued, regular, and

homogeneous such that its 2-D Wold decomposition contains a horizontal evanescent component

and a purely-indeterministic component. More specifically, let {y(n,m)}, (n,m) ∈ D where

D = {(i, j) | 0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1} denote this observed field, such that its 2-D Wold

decomposition is given by

y(n,m) = e(1,0)(n,m) + w(n,m). (3)

Assumption 1: The purely-indeterministic component, {w(n,m)} admits the following 2-D
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infinite order MA representation,

w(n,m) =
∞∑

i=−∞

∞∑
j=−∞

b(i, j)u(n− i,m− j) , (4)

where {u(n,m)} is an i.i.d. 2-D zero mean field, with variance σ2
u,

E

[
u4(n,m)

]
= λσ4

u < ∞ (5)

and
∑∞

i=−∞
∑∞

j=−∞ |b(i, j)| < ∞.

It is not difficult to verify that

Cww(τ, ρ) = E[w(n + τ,m + ρ)w(n,m)] = σ2
u

∞∑
i=−∞

∞∑
j=−∞

b(i, j)b(i + τ, j + ρ) (6)

Moreover, one can easily show that Cww(τ, ρ) is absolutely summable with respect to τ and ρ.

The field {e(1,0)(n,m)} is an evanescent random field, i.e.,

e(1,0)(n,m) =
I(1,0)∑
i=1

[
s
(1,0)
i (n) cos

(
ν(1,0)

i
m

)
+ t(1,0)

i
(n) sin

(
ν

(1,0)
i m

) ]
. (7)

In the following, for simplicity, we omit the index (1,0). The processes {si(n)} and {ti(n)} have

an identical autocorrelation function given by

Ci(τ) = E[si(n + τ)si(n)] = E[ti(n + τ)ti(n)]. (8)

Assumption 2: The modulating 1-D purely-indeterministic processes {si(n)} and {ti(n)} of

each evanescent field are linear processes admitting infinite order MA representations such that,

si(n) =
∞∑

j=−∞
ai(j)ξi(n− j) , (9)

and

ti(n) =
∞∑

j=−∞
ai(j)ζi(n− j) , (10)

where {ξi(n)}, {ζi(n)} are i.i.d. 1-D zero mean processes, independent of each other and of

{w(n,m)}. Both have an identical variance σ2
i such that

E

[
ξ4
i (n)

]
= E

[
ζ4
i (n)

]
= ησ4

i < ∞ (11)
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and
∑∞

j=−∞ |ai(j)| < ∞.

Remark: The 2-D Wold decomposition implies that {w(n,m)}, the purely indeterministic

component of the regular field, admits an innovations driven 2-D NSHP MA representation, such

that the sequence of MA model coefficients is square summable. Similarly, the modulating 1-D

purely-indeterministic processes {si(n)} and {ti(n)} of each evanescent field admit innovations

driven causal MA representations, such that the sequence of MA model coefficients is square

summable. Also, the innovations sequences are orthogonal, and not necessarily i.i.d. Thus, the

family of random fields satisfying Assumption 1 and 2 is a subset of the set of fields modeled by

(3). As shown throughout the proofs below, the added restrictions are needed in order to achieve

the boundedness conditions and the convergence rates required for the asymptotic results of this

paper to hold. We analyze this point in a greater detail in Section 5.

For any random field {u(n,m)} the sample mean is defined by

ūN,M =
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m). (12)

The sample mean of 1-D processes is similarly defined. Clearly the sample mean is an unbiased

estimator of the field’s mean.

For any two jointly homogeneous random fields {u(n,m)} and {v(n, m)} the sample covariance

function of any two such fields is defined by

C̃N,M
uv (τ, ρ) =

1

NM

N−1∑
n=0

M−1∑
m=0

u(n + τ,m + ρ)v(n,m). (13)

Similarly, the sample covariance function of the stationary 1-D processes {u(n)} and {v(n)} is

defined by

C̃N
uv(τ) =

1

N

N−1∑
n=0

u(n + τ)v(n). (14)

In the following, for simplicity, we will omit the superscript notation N, M and the sample covari-

ance function will be denoted by C̃uv(τ, ρ) (and similarly for C̃uv(τ)).

Using (8), the covariance function of {e(n,m)} is given by

Cee(τ, ρ) = E[e(n + τ, m + ρ)e(n, m)] =
I∑

i=1

Ci(τ) cos(νiρ). (15)

The spectral measure of the evanescent field is not absolutely continuous with respect to the

Lebesgue measure on the torus, and therefore its covariance function is not absolutely summable
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with respect to τ and ρ. Note that Assumption 2 implies the absolute summability of the covariance

function Ci(τ) with respect to τ .

The mutual orthogonality of the evanescent and noise fields ensures that,

Cyy(τ, ρ) = Cee(τ, ρ) + Cww(τ, ρ). (16)

The sample covariance function of {y(n,m)} is a function of the sample covariance functions

of {e(n, m)} and {w(n,m)}:

C̃yy(τ, ρ) = 1
NM

N−1∑
n=0

M−1∑
m=0

(e(n + τ,m + ρ) + w(n + τ,m + ρ)) (e(n,m) + w(n,m))

= C̃ee(τ, ρ) + C̃ew(τ, ρ) + C̃we(τ, ρ) + C̃ww(τ, ρ).

(17)

It can be easily verified that C̃yy(τ, ρ) is an unbiased estimator of Cyy(τ, ρ), i.e.

E
[
C̃yy(τ, ρ)

]
= Cyy(τ, ρ). (18)

Let {Ψi} be a sequence of rectangles such that Ψi = {(n,m) ∈ Z2 | 0 ≤ n ≤ Ni − 1, 0 ≤ m ≤
Mi − 1}.

Definition 1: The sequence of subsets {Ψi} is said to tend to infinity (we adopt the notation

Ψi → ∞) as i → ∞ if lim
i→∞

min(Ni,Mi) = ∞ and lim inf Ni/Mi > 0 and lim sup Ni/Mi < ∞. To

simplify notations, we shall omit in the following the subscript i. Thus, the notation Ψ(N,M) →∞
implies that both N and M tend to infinity as functions of i, and at roughly the same rate.

3 Asymptotic normality of the sample mean

In this section we establish the asymptotic normality of the sample mean of the observed field.

From (3) and (7) we have

ȳN,M = ēN,M + w̄N,M

=
I∑

i=1

[
s̄iN

1

M

M−1∑
m=0

cos (νim) + t̄iN
1

M

M−1∑
m=0

sin (νim)

]
+ w̄N,M (19)

Theorem 1. Let {y(n,m)} be given by (3) and (7), such that Assumption 1 and Assumption 2

are satisfied. Then:

7



1. If there exists an index k, 1 ≤ k ≤ I, such that νk = 0, then as Ψ(N,M) → ∞, the

random variable N
1
2 ȳN,M is asymptotically normal with zero asymptotic mean and asymptotic

variance ṽ given by

ṽ = σ2
k

( ∞∑
j=−∞

ak(j)

)2

. (20)

2. If νi 6= 0 for all 1 ≤ i ≤ I, then as Ψ(N, M) → ∞, the random variable N
1
2 M

1
2 ȳN,M is

asymptotically normal with zero asymptotic mean and asymptotic variance v given by

v = σ2
u

( ∞∑
i=−∞

∞∑
j=−∞

b(i, j)

)2

. (21)

Proof: By the Central Limit Theorem for 1-D linear processes, [1], Theorem 7.1.2, we know

that for all 1 ≤ i ≤ I the random variable N
1
2 s̄iN is asymptotically normal with a zero asymp-

totic mean and asymptotic variance σ2
i

(∑∞
j=−∞ ai(j)

)2

. Using exactly the same arguments for

sample mean of 2-D moving average field w(n,m) one can easily show that the random vari-

able N
1
2 M

1
2 w̄N,M is asymptotically normal with zero asymptotic mean and asymptotic variance

σ2
u

(∑∞
i=−∞

∑∞
j=−∞ b(i, j)

)2

.

If condition 1 of the theorem is satisfied, then

N
1
2 ȳN,M = N

1
2 s̄kN

+ N
1
2

I∑
i=1
i6=k

[
s̄iN

1

M

M−1∑
m=0

cos (νim) + t̄iN
1

M

M−1∑
m=0

sin (νim)

]
+ N

1
2 w̄N,M . (22)

The asymptotic normality of N
1
2 s̄iN implies that it converges in distribution to a zero-mean, finite-

variance, normal random variable. Hence this random sequence is bounded in probability, (we say

that the sequence {XN} is bounded in probability if for every ε > 0 there exist δ(ε) such that

P (|XN | > δ(ε)) < ε for all N), i.e., N
1
2 s̄iN = OP (1). For similar arguments N

1
2 M

1
2 w̄N,M = OP (1).

Thus, since for ν ∈ [0, 2π) we have

1

M

M−1∑
m=0

cos (νm) =
sin

(
[M − 1

2
]ν

)
+ sin

(
ν
2

)

2M sin
(

ν
2

) =

{
O(M−1), ν 6= 0;

1, ν = 0.

1

M

M−1∑
m=0

sin (νm) =
cos

(
ν
2

)− cos
(
[M − 1

2
]ν

)

2M sin
(

ν
2

) =

{
O(M−1), ν 6= 0;

0, ν = 0.
(23)

we conclude based on Definition 1 that

N
1
2 ȳN,M = N

1
2 s̄kN + oP (1), (24)
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(we say that the sequence {XN} convergence in probability to zero, and use the notation XN =

oP (1) , if for every ε > 0, P (|XN | > ε) → 0 as N →∞). Hence, by the CLT for 1-D processes, we

have that N
1
2 ȳN,M is asymptotically normal with zero asymptotic mean and asymptotic variance

σ2
k

(∑∞
j=−∞ ak(j)

)2

, which proves the first part of the theorem.

For the case where νi 6= 0 for all 1 ≤ i ≤ I, we have using (23),

N
1
2 M

1
2 ȳN,M = N

1
2

I∑
i=1

[
s̄iN

1

M
1
2

M−1∑
m=0

cos (νim) + t̄iN
1

M
1
2

M−1∑
m=0

sin (νim)

]
+ N

1
2 M

1
2 w̄N,M

= N
1
2 M

1
2 w̄N,M + oP (1) (25)

Therefore if condition 2 is satisfied we have following the same considerations as in [1], Theo-

rem 7.1.2, that N
1
2 M

1
2 ȳN,M is asymptotically normal with zero asymptotic mean and asymptotic

variance σ2
u

(∑∞
i=−∞

∑∞
j=−∞ b(i, j)

)2

.

Using similar arguments to those in the proof, an immediate consequence of Theorem 1 is that

as Ψ(N, M) →∞
ȳN,M = oP (1) (26)

4 Asymptotic normality of the sample covariances

In this section we establish the asymptotic normality of the sample covariances of the observed

field.

Let

∆C̃uv(τ, ρ) = C̃uv(τ, ρ)− Cuv(τ, ρ), (27)

and similarly for 1-D processes

∆C̃uv(τ) = C̃uv(τ)− Cuv(τ). (28)

We shall need the following proposition:

Proposition 1. Let Ψ(N,M) →∞. Then,

N
1
2 ∆C̃yy(τ, ρ) = N

1
2 X(τ, ρ) + oP (1) (29)

where

X(τ, ρ) =
I∑

i=1

[
δ{νi 6=kπ}{1

2
[∆C̃sisi

(τ) + ∆C̃titi(τ)] cos(νiρ) +
1

2
[C̃tisi

(τ)− C̃siti(τ)] sin(νiρ)}

+δ{νi=kπ}∆C̃sisi
(τ) cos(νiρ)

]
(30)
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and where δ{·} is the indicator function and k = {0, 1}.

Proof: See Appendix A for a detailed proof.

Let g and h be arbitrary non-negative finite integers. Denote by ∆C̃yy the (2h + 1)× (2g + 1)

matrix of sample covariances

∆C̃yy =




∆C̃yy(−h,−g) ∆C̃yy(−h,−g + 1) . . .

∆C̃yy(−h + 1,−g) ∆C̃yy(−h + 1,−g + 1) . . .
...

... . . .
...

... . . .

∆C̃yy(h,−g) ∆C̃yy(h,−g + 1) . . .

. . . ∆C̃yy(−h, g − 1) ∆C̃yy(−h, g)

. . . ∆C̃yy(−h + 1, g − 1) ∆C̃yy(−h + 1, g)

. . .
...

...

. . .
...

...

. . . ∆C̃yy(h, g − 1) ∆C̃yy(h, g)




(31)

The main objective of this section is to establish the limiting distribution of the (2g + 1)(2h +

1)× 1 vector N
1
2 vec(∆C̃yy) as Ψ(N, M) →∞.

Define a matrix X in a similar way to (31). It is clear from (29) that as Ψ(N, M) →∞

N
1
2 ∆C̃yy = N

1
2X + oP (1) (32)

where oP (1) is a (2h+1)× (2g +1) matrix where every entry decays to zero in probability. Define

the (h + 1)× 1 vector

∆C̃sisi
=

[
∆C̃sisi

(0), ∆C̃sisi
(1), . . . , ∆C̃sisi

(h)
]T

(33)

and define the vector ∆C̃titi in the similar manner. Let also define the h× 1 vector

C̃siti =
[
C̃siti(1), C̃siti(2), . . . , C̃siti(h)

]T

(34)

and define the vector C̃tisi
in the similar manner. From the definition of the 1-D sample covariance

function and the definitions of the processes {si(n)}, {ti(n)} it may be shown (see Appendix B)

that for any 0 < τ ≤ h

N
1
2 ∆C̃sisi

(τ) = N
1
2 ∆C̃sisi

(−τ) + op(1)

N
1
2 ∆C̃titi(τ) = N

1
2 ∆C̃titi(−τ) + op(1)

N
1
2 [C̃tisi

(τ)− C̃siti(τ)] = −N
1
2 [C̃tisi

(−τ)− C̃siti(−τ)] + op(1) (35)

10



Hence, N
1
2 ∆C̃sisi

(τ) and N
1
2 ∆C̃titi(τ) are ”even in probability” functions of τ , while N

1
2 [C̃tisi

(τ)−
C̃siti(τ)] is an ”odd in probability” function of τ .

Define the (2g + 1)× 1 vector

COSi =
[

cos(−gνi), . . . . . . , cos(gνi)
]T

(36)

Similarly we will define the vector SINi. Finally, define the even mirror duplication (2h+1)×(h+1)

matrix D+ by

D+ =




0 . . . 0 1

0 . . . 1 0
...

...
...

...

0 1 . . . 0

1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 . . . 1 0

0 . . . 0 1




(37)

and the odd mirror duplication (2h + 1)× h matrix D− by

D− =




0 . . . 0 −1

0 . . . −1 0
...

...
...

...

−1 0 . . . 0

0 0 . . . 0

1 0 . . . 0
...

...
...

...

0 . . . 1 0

0 . . . 0 1




(38)

Hence we can write N
1
2X as:

N
1
2X = N

1
2

I∑
i=1

[
δ{νi 6=kπ}

1

2

{
D+(∆C̃sisi

+ ∆C̃titi)COST
i + D−(C̃tisi

− C̃siti)SINT
i

}

+δ{νi=kπ}D+∆C̃sisi
COST

i

]
+ oP (1) (39)
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Using simple matrix manipulations (see [12], p. 254) we have

N
1
2 vec(X) = N

1
2

I∑
i=1

[
δ{νi 6=kπ}

1

2

{
(COSi ⊗D+)(∆C̃sisi

+ ∆C̃titi) + (SINi ⊗D−)(C̃tisi
− C̃siti)

}

+ δ{νi=kπ}(COSi ⊗D+)∆C̃sisi

]
+ vec(oP (1)) (40)

Now we are in position to prove the main result of this section.

Theorem 2. Let {y(n,m)} be given by (3) and (7), such that Assumption 1 and Assumption 2

are satisfied. Then, as Ψ(N, M) → ∞, the vector N
1
2 vec(∆C̃yy) is asymptotically normal with

zero asymptotic mean and asymptotic covariance matrix Γ, given by

Γ =
I∑

i=1

[
δ{νi 6=kπ}

1

4

{
(COSi ⊗D+)2Vi(COSi ⊗D+)T + (SINi ⊗D−)Ui(SINi ⊗D−)T

}

+δ{νi=kπ}(COSi ⊗D+)Vi(COSi ⊗D+)T

]
(41)

where Vi = [vi]τκ, (τ, κ = 0, . . . , h), is given by

viτκ = (η − 3)Ci(τ)Ci(κ) +
∞∑

z=−∞

[
Ci(z)Ci(z + τ − κ) + Ci(z + τ)Ci(z − κ)

]
(42)

and Ui = [ui]τκ, (τ, κ = 1, . . . , h), is given by

uiτκ = 2
∞∑

z=−∞

[
Ci(z)Ci(z + τ − κ)− Ci(z + τ)Ci(z − κ)

]
. (43)

Proof: We begin by showing that the vectors N
1
2 ∆C̃sisi

, N
1
2 ∆C̃titi and N

1
2 (C̃tisi

− C̃siti)

are asymptotically jointly normal. Since the proof follows the technique of [1], Propositions 7.3.2

and 7.3.3, we only provide its outlines.

First, we assume that the modulating 1-D processes {si(n)} and {ti(n)} of each evanescent

field are finite order MA processes, i.e.,

si(n) =
m∑

j=−m

ai(j)ξi(n− j) , (44)

ti(n) =
m∑

j=−m

ai(j)ζi(n− j) , (45)

where ξi(n), ζi(n) satisfy the same conditions as in Assumption 2.
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Define a sequence of random [3(h + 1)− 1]× 1 vectors R(n) by

R(n) =




si(n)si(n)− Ci(0)
...

si(n)si(n + h)− Ci(h)

ti(n)ti(n)− Ci(0)
...

ti(n)ti(n + h)− Ci(h)

ti(n)si(n + 1)− si(n)ti(n + 1)
...

ti(n)si(n + h)− si(n)ti(n + h)




(46)

Thus, {R(n)} is a strictly stationary (2m+h)-dependent sequence (for a definition of m-dependence,

see [1], Definition 6.4.3) and

N−1

N−1∑
n=0

R(n) =




∆C̃sisi

∆C̃titi

C̃tisi
− C̃siti


 (47)

Therefore, we wish to prove the asymptotic normality of N− 1
2

∑N−1
n=0 R(n). By definition (see, e.g.,

[1], Definition 6.4.2) we need to show that (i) the sequence N−1λT
∑N−1

n=0 R(n) is asymptotically

normal with zero mean and covariance N−1λTΛλ for every λ ∈ R(3h+2) such that λTΛλ > 0,

where Λ = N−1var(
∑N−1

n=0 R(n)); and (ii) that Λ has no zero diagonal elements.

Since si(n) and ti(n) are independent with zero mean, it can be easily verified that the vector

(C̃tisi
− C̃siti) is uncorrelated with the vectors ∆C̃sisi

and ∆C̃titi . Moreover, the latter two are

independent. Hence,

Λ = lim
N→∞

Nvar







∆C̃sisi

∆C̃titi

C̃tisi
− C̃siti





 =



Vi 0 0

0 Vi 0

0 0 Ui


 (48)

where Vi and Ui are given by (42), (43), respectively. (Evaluation of the elements of Vi follows

from a direct application of the classical Bartlett formula for 1-D linear processes, [1], Propositions

7.3.1 - 7.3.3. See Appendix C for the evaluation of the entries of Ui).

To establish the positivity of the diagonal elements of Λ we consider first the diagonal elements

of Ui. Let Si(e
jω) denote the spectral density function of the processes {si(n)} and {ti(n)}. Clearly,

Si(e
jω) is real, even, and continuous. Thus,

uiκκ = 2
∞∑

z=−∞

[
C2

i (z)− Ci(z + κ)Ci(z − κ)

]
= 2

∫ π

−π

S2
i (e

jω)[1− ej2κω]dω (49)
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where we have used Parseval’s theorem to establish the last equality. Since the imaginary part

of the integral expression vanishes, while [1 − cos(2κω)] ≥ 0 and vanishes on a finite number of

points, the continuity and non-negativity of S2
i (e

jω) imply the positivity of the diagonal elements

of Ui. Similar arguments establish the positivity of the diagonal elements of Vi.

For any of the above vectors λ ∈ R(3h+2), the sequence λT R(n) is a strictly stationary, zero

mean, (2m+h)-dependent process. Hence, applying the central limit theorem for strictly stationary

m-dependent sequences ( [1], Theorem 6.4.2), the asymptotic normality of N−1λT
∑N−1

n=0 R(n) is

established. Extension to the case where the modulating processes {si(n)} and {ti(n)} of each

evanescent field are infinite order MA processes (by letting m → ∞) follows from exactly the

same reasons as in [1], Proposition 7.3.3. We have thus established the asymptotic normality of

(47).

Since N
1
2 (C̃tisi

− C̃siti) , N
1
2 ∆C̃sisi

and N
1
2 ∆C̃titi are jointly asymptotically normal, by [1],

Proposition 6.4.2, N
1
2 vec(X) is asymptotically normal with a zero asymptotic mean and an asymp-

totic covariance matrix Γ given by (41). Therefore, by Proposition 1 above, and by [1], Proposition

6.3.3, N
1
2 vec(∆C̃yy) has the same limiting distribution as N

1
2 vec(X), i.e. N

1
2 vec(∆C̃yy) is asymp-

totically normal with a zero asymptotic mean and an asymptotic covariance matrix Γ given by

(41).

As a result of above theorem, equation (41), combined with the 1-D Bartlett formulae (42)

and (43), provides a Bartlett-type formula for the asymptotic covariance matrix of the sample

covariances.

Finally we note that in Appendix D it is proven that the results on the asymptotic normality

we have proven for N
1
2 C̃yy(τ, ρ) hold for N

1
2 Ĉyy(τ, ρ), as well, where

Ĉuv(τ, ρ) =
1

NM

N−1−τ∑
n=0

M−1−ρ∑
m=0

(u(n + τ, m + ρ)− uN,M)(v(n, m)− vN,M). (50)

5 Discussion

In the last section we have established the limiting distribution of the sample covariances of a

horizontal evanescent field observed in the presence of a purely-indeterministic field. Using a

“naive” analogy with the case of a 1-D mixed-spectrum regular process, one could expect an

(MN)
1
2 convergence rate to the limiting distribution. However, it turns out that the rate is N

1
2 .

This fact could be explained by observing that the stochastic properties of the evanescent field

are determined by those of its modulating 1-D processes. Since the rate of convergence of the
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sample covariances of the modulating processes is N
1
2 , so is the rate for the evanescent field itself.

As a result of this slow convergence rate, one can expect that in estimating the covariances of a

2-D homogeneous random field, the dominant estimation error would be due to the evanescent

components.

Finally, as mentioned in Section 2, the 2-D Wold decomposition implies that {w(n,m)}, the

purely indeterministic component of the regular field, admits an innovations driven 2-D NSHP MA

representation, such that the sequence of MA model coefficients is square summable. Similarly, the

modulating 1-D purely-indeterministic processes {si(n)} and {ti(n)} of each evanescent field admit

innovations driven causal MA representations, such that the sequence of MA model coefficients is

square summable. Thus, the set of random fields considered here is a subset of the set of fields

modeled by (3). Yet, the absolute summability of the sequences of MA model coefficients, assumed

in Assumptions 1 and 2 guaranties that the asymptotic variances in (20), (21) are bounded. On

the other hand, if the sequences {ak(j)} and {b(i, j)} are only square summable, the desired

boundedness cannot be guarantied. Furthermore, in establishing the asymptotic normality of

the sample covariances, one has to evaluate the convergence rates of various quantities to their

limits. Such rates can be obtained assuming absolute summability of the sequences of MA model

coefficients, yet square summability is too weak to enable the evaluation of these rates. (See

(52) for a typical example.) In addition, orthogonality of the innovations sequence by itself, is in

general too weak for establishing central limit theorem type of results. In order to establish the

asymptotic normality for the sample mean and sample covariances of the field modeled by (3), we

assume that the driving noise sequences are i.i.d. The question of wether these conditions can be

relaxed and replaced by other constraints, such as constraints on the moments and mixing rates

of the field components, is beyond the scope of this paper.

6 Conclusions

In the paper we have considered the asymptotic properties of the sample mean and of the sample

covariance sequence of a field composed of a sum of horizontal evanescent components and a purely-

indeterministic component. We have proved that the sample mean and the sample covariances

of the field are asymptotically normal, and derived a Bartlett-type asymptotic formula for the

covariances of the sample covariances.
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Appendix A

Proof of the Proposition 1:

Proof: From (16) and (17), it follows that,

∆C̃yy(τ, ρ) = C̃ee(τ, ρ) + C̃ew(τ, ρ) + C̃we(τ, ρ)+

C̃ww(τ, ρ)− Cee(τ, ρ)− Cww(τ, ρ)

= C̃ew(τ, ρ) + C̃we(τ, ρ) + ∆C̃ee(τ, ρ) + ∆C̃ww(τ, ρ).

(51)

First we consider convergence in probability of N
1
2 C̃ew(τ, ρ) as Ψ(N,M) → ∞, where we let

n− p = u,m− r = z:

E
[
|N 1

2 C̃ew(τ, ρ)|2
]

=
N

(NM)2
E

[( N−1∑
n=0

M−1∑
m=0

e(n + τ,m + ρ) w(n, m)

)2]

=
1

NM2

N−1∑
n,p=0

M−1∑
m,r=0

Cee(n− p,m− r)Cww(n− p, m− r)

≤ 1

NM2

N−1∑
n=0

M−1∑
m=0

∑

p,r∈Z
|Cee(n− p,m− r)Cww(n− p,m− r)|

=
1

NM2

N−1∑
n=0

M−1∑
m=0

∑

u,v∈Z
|Cee(u, v)Cww(u, v)|

=
1

M

∑

u,v∈Z

∣∣∣∣
I∑

i=1

Ci(u) cos(νiv)Cww(u, v)

∣∣∣∣

≤ 1

M

∑

u,v∈Z

I∑
i=1

∣∣Ci(u)Cww(u, v)
∣∣

≤ 1

M

∑

u,v∈Z

I∑
i=1

∑

u′∈Z

∣∣Ci(u
′)
∣∣ ·

∣∣Cww(u, v)
∣∣

=
1

M

I∑
i=1

∑

u′∈Z

∣∣Ci(u
′)
∣∣ ·

∑

u,v∈Z

∣∣Cww(u, v)
∣∣ = O(M−1). (52)
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where the last equality is due to Assumption 1 and Assumption 2 that guarantee the absolute

summability of {Cww(u, z)} with respect to u and z, while {Ci(u)} is absolutely summable with

respect to u. Since convergence of the sequence N
1
2 C̃ew(τ, ρ) to zero in L2 implies its convergence

to zero in probability, we have

N
1
2 C̃ew(τ, ρ) = oP (1) (53)

as Ψ(N, M) →∞. Similarly,

N
1
2 C̃we(τ, ρ) = oP (1) (54)

as Ψ(N, M) →∞.

Next we consider convergence in probability of N
1
2 ∆C̃ww(τ, ρ) as Ψ(N, M) → ∞. Note that

since C̃ww(τ, ρ) is an unbiased estimator of Cww(τ, ρ),

E
[
|N 1

2 ∆C̃ww(τ, ρ)|2
]

= NE
[
C̃2

ww(τ, ρ)
]
−NC2

ww(τ, ρ)

= N

{
1

N2M2

N−1∑
n,p=0

M−1∑
m,r=0

E [w(n + τ,m + ρ)w(n, m)w(p + τ, r + ρ)w(p, r)]− C2
ww(τ, ρ)

}
.

(55)

Similarly to 1-D case one can evaluate 4th order moment,

E [w(n + τ,m + ρ)w(n,m)w(p + τ, r + ρ)w(p, r)] =

C2
ww(τ, ρ) + Cww(n− p,m− r)2 + Cww(n− p + τ, m− r + ρ)Cww(n− p− τ,m− r − ρ) +

(λ− 3)σ4
u

∞∑
i=−∞

∞∑
j=−∞

b(i, j)b(i + τ, j + ρ)b(i + n− p, j + m− r)b(i + n− p + τ, j + m− r + ρ)

(56)

Substituting (56) into (55) and using similar arguments to those employed in the derivation of

(52), one can rewrite (55),

E
[
|N 1

2 ∆C̃ww(τ, ρ)|2
]

=

1

M

∞∑
u=−∞

∞∑
z=−∞

{
Cww(u, z)2 + Cww(u + τ, z + ρ)Cww(u− τ, z − ρ) +

(λ− 3)σ4
u

∞∑
i=−∞

∞∑
j=−∞

b(i, j)b(i + τ, j + ρ)b(i + u, j + z)b(i + u + τ, j + z + ρ)

}
−→

Ψ(N,M)→∞
0

(57)

which is due to Assumption 1 that guarantees that {b(u, z)} as well as {Cww(u, z)} are absolutely

summable, and hence the sequences {C2
ww(u, z)}, {Cww(u + τ, z + ρ)Cww(u − τ, z − ρ)}, and

{b(i, j)b(i + τ, j + ρ)b(i + u, j + z)b(i + u + τ, j + z + ρ)} are absolutely summable for any τ , ρ.
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Since convergence of a sequence to zero in L2 implies its convergence to zero in probability, we

have as Ψ(N, M) →∞
N

1
2 ∆C̃ww(τ, ρ) = oP (1) (58)

Based on (7), and in similarly to (17)-(27), we have

∆C̃ee(τ, ρ) =
I∑

i,j=1

∆C̃eiej
(τ, ρ) (59)

where if i = j

∆C̃eiei
(τ, ρ) =

1

2
[∆C̃sisi

(τ) + ∆C̃titi(τ)] cos(νiρ) +

1

2
[C̃tisi

(τ)− C̃siti(τ)] sin(νiρ) +

1

2
[C̃sisi

(τ)− C̃titi(τ)]
1

M

M−1∑
m=0

cos(νi[ρ + 2m]) +

1

2
[C̃tisi

(τ) + C̃siti(τ)]
1

M

M−1∑
m=0

sin(νi[ρ + 2m]) (60)

and if i 6= j

∆C̃eiej
(τ, ρ) =

1

2
[C̃sisj

(τ) + C̃titj(τ)]
1

M

M−1∑
m=0

cos([νiρ + (νi − νj)m]) +

1

2
[C̃tisj

(τ)− C̃sitj(τ)]
1

M

M−1∑
m=0

sin([νiρ + (νi − νj)m]) +

1

2
[C̃sisj

(τ)− C̃titj(τ)]
1

M

M−1∑
m=0

cos([νiρ + (νi + νj)m]) +

1

2
[C̃tisj

(τ) + C̃sitj(τ)]
1

M

M−1∑
m=0

sin([νiρ + (νi + νj)m]). (61)

We consider convergence in probability of the terms in (60) and (61). Using (7) and the basic

definitions in (13)- (14), we have that for νi = kπ, k = {0, 1},

∆C̃eiei
(τ, ρ) = ∆C̃sisi

(τ) cos(νiρ) = (−1)kρ∆C̃sisi
(62)

For the case where νi 6= kπ we begin by evaluating the last two terms of (60). Similarly to (23),
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one can show that for νi 6= kπ,

1

M2

( M−1∑
m=0

cos(νi[ρ + 2m])

)2

= o(1)

1

M2

( M−1∑
m=0

sin(νi[ρ + 2m])

)2

= o(1) (63)

Using the definitions of the processes {si(n)}, {ti(n)} and Assumption 2 one can write (see e.g.,

[1], pp. 226-227)

NE
[
{C̃sisi

(τ)− C̃titi(τ)}2
]

=
1

N

N−1∑
n,p=0

(
E [si(n + τ)si(n)si(p + τ)si(p)] +

E [ti(n + τ)ti(n)ti(p + τ)ti(p)]− 2E [si(n + τ)si(n)ti(p + τ)ti(p)]

)
=

1

N

N−1∑
n,p=0

{
2(η − 3)σ4

i

∞∑
j=−∞

ai(j)ai(j + τ)ai(j + n− p)ai(j + n− p + τ) +

2C2
i (τ) + 2C2

i (n− p) + 2Ci(n− p + τ)Ci(n− p− τ)− 2C2
i (τ)

}
≤

∞∑
z=−∞

{
2(η − 3)σ4

i

∞∑
j=−∞

ai(j)ai(j + τ)ai(j + z)ai(j + z + τ) +

2C2
i (z) + 2Ci(z + τ)Ci(z − τ)

}
= O(1) (64)

where the absolute summability of {ai(j)} implies the boundedness of the last sum. However,

since E

[∣∣∣∣N
1
2

M
[C̃sisi

(τ)− C̃titi(τ)]
∑M−1

m=0 cos(νi[ρ + 2m])

∣∣∣∣
2
]

= NE
[
{C̃sisi

(τ)− Ctiti(τ)}2
]

1
M2

( ∑M−1
m=0 cos(νi[ρ + 2m])

)2

we have by combining (63), (64), and

Definition 1

E

[∣∣∣∣
N

1
2

M
[C̃sisi

(τ)− C̃titi(τ)]
M−1∑
m=0

cos(νi[ρ + 2m])

∣∣∣∣
2
]

= o(1) (65)

Since convergence of a sequence to zero in L2 implies its convergence to zero in probability,

N
1
2

M
[C̃sisi

(τ)− C̃titi(τ)]
M−1∑
m=0

cos(νi[ρ + 2m]) = oP (1) (66)
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Similarly to (64),

NE
[
{C̃tisi

(τ) + C̃siti(τ)}2
]

=
1

N

N−1∑
n,p=0

(
E [ti(n + τ)si(n)ti(p + τ)si(p)] +

E [si(n + τ)ti(n)si(p + τ)ti(p)] + 2E [ti(n + τ)si(n)si(p + τ)ti(p)]

)
=

1

N

N−1∑
n,p=0

{
2C2

i (n− p) + 2Ci(n− p + τ)Ci(n− p− τ)

}
≤

∞∑
z=−∞

{
2C2

i (z) + 2Ci(z + τ)Ci(z − τ)

}
= O(1) (67)

Hence, combining (63), (67), and Definition 1 we have

N
1
2

M
[C̃tisi

(τ) + C̃siti(τ)]
M−1∑
m=0

sin(νi[ρ + 2m]) = oP (1) (68)

Employing the same considerations to summands in (61) one can show that

N
1
2 ∆C̃eiej

(τ, ρ) = oP (1) (69)

Substituting (62),(66) and (68) into the (60), and together with (69) one can write

N
1
2 ∆C̃ee(τ, ρ) = N

1
2

I∑
i=1

[
δ{νi 6=kπ}

1

2
{[∆C̃sisi

(τ) + ∆C̃titi(τ)] cos(νiρ) +

1

2
[C̃tisi

(τ)− C̃siti(τ)] sin(νiρ)}+ δ{νi=kπ}∆C̃sisi
(τ) cos(νiρ)

]
+ oP (1) (70)

Collecting (51),(53),(54),(58) and (70) proves the Proposition.

Appendix B

In the following we prove the asymptotic equalities stated in (35):

N
1
2 [∆C̃sisi

(τ)−∆C̃sisi
(−τ)] = N− 1

2

N−1∑
n=N−τ

si(n + τ)si(n)−N− 1
2

−1∑
n=−τ

si(n + τ)si(n) (71)

Using the triangle and the Cauchy-Schwartz inequalities, we have,
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E

[∣∣∣∣
N−1∑

n=N−τ

si(n + τ)si(n)−
−1∑

n=−τ

si(n + τ)si(n)

∣∣∣∣
]
≤

−1∑
n=−τ

E

[∣∣∣∣si(n + τ)si(n)

∣∣∣∣
]

+
N−1∑

n=N−τ

E

[∣∣∣∣si(n + τ)si(n)

∣∣∣∣
]
≤

−1∑
n=−τ

√
E [si(n + τ)2] E [si(n)2] +

N−1∑
n=N−τ

√
E [si(n + τ)2] E [si(n)2] =

2τCsisi
(0) < ∞.

(72)

By Markov’s inequality, this implies that

N
1
2 [∆C̃sisi

(τ)−∆C̃sisi
(−τ)] = op(1) (73)

The proofs of the remaining two asymptotic equalities in (35) follows along identical lines.

Appendix C

In this appendix we derive the expression for the general element of the matrix Ui, defined in (43)

Ui = [ui]τκ = NE

[
{C̃tisi

(τ)− C̃siti(τ)}{C̃tisi
(κ)− C̃siti(κ)}

]
=

1

N

N−1∑
n,p=0

{
E

[
ti(n + τ)si(n)ti(p + κ)si(p)

]
− E

[
ti(n + τ)si(n)si(p + κ)ti(p)

]
−

E

[
si(n + τ)ti(n)ti(p + κ)si(p)

]
+ E

[
si(n + τ)ti(n)si(p + κ)ti(p)

]}
=

2
∑

|z|<N

(1− |z|
N

)

[
Ci(z)Ci(z + τ − κ)− Ci(z + τ)Ci(z − κ)

]
(74)

where in the last equality we have used the independence of the processes {si(n)}, {ti(n)}. Since

by Assumption 2 all summands in the last line of (74) are absolutely summable, we obtain

[ui]τκ = lim
N→∞

NE

[
{C̃tisi

(τ)− C̃siti(τ)}{C̃tisi
(κ)− C̃siti(κ)}

]
=

2
∞∑

z=−∞

[
Ci(z)Ci(z + τ − κ)− Ci(z + τ)Ci(z − κ)

]
(75)

as stated in (43).
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Appendix D

Asymptotic Normality for the Centered Sample Covariances: For any two homogeneous

random fields {u(n,m)} and {v(n,m)}, with finite second order moments, the centered sample

covariance function between {u(n,m)} and {v(n,m)} can be defined as:

Ĉuv(τ, ρ) =
1

NM

N−1−τ∑
n=0

M−1−ρ∑
m=0

(u(n + τ, m + ρ)− uN,M)(v(n, m)− vN,M). (76)

Let us begin by showing that the difference between N
1
2 C̃yy(τ, ρ) and N

1
2 Ĉyy(τ, ρ) convergence

to zero in probability.

C̃yy(τ, ρ)− Ĉyy(τ, ρ) = N−1M−1

N−1∑
n=0

M−1∑
m=0

y(n + τ,m + ρ)y(n,m)

−N−1M−1

N−τ−1∑
n=0

M−ρ−1∑
m=0

(y(n + τ, m + ρ)− yN,M)(y(n,m)− yN,M) = I1 + I2 (77)

where

I1 = N−1M−1

[ N−1∑
n=N−τ

M−1∑
m=0

y(n + τ, m + ρ)y(n,m) +
N−1∑
n=0

M−1∑
m=M−ρ

y(n + τ, m + ρ)y(n,m)

−
N−1∑

n=N−τ

M−1∑
m=M−ρ

y(n + τ, m + ρ)y(n,m)

]
. (78)

and

I2 = yN,MN−1M−1

[ N−τ−1∑
n=0

M−ρ−1∑
m=0

y(n,m) +
N−τ−1∑

n=0

M−ρ−1∑
m=0

y(n + τ,m + ρ)

−yNM(M − ρ)(N − τ)

]
(79)

For the first term of I1, using the triangle and the Cauchy-Schwartz inequalities, we have,

N−1M−1E

[∣∣∣∣
N−1∑

n=N−τ

M−1∑
m=0

y(n + τ, m + ρ)y(n, m)

∣∣∣∣
]
≤

N−1M−1
N−1∑

n=N−τ

M−1∑
m=0

E

[∣∣∣∣y(n + τ, m + ρ)y(n,m)

∣∣∣∣
]
≤

N−1M−1
N−1∑

n=N−τ

M−1∑
m=0

√
E [y(n + τ, m + ρ)2] E [y(n,m)2] =

N−1M−1τM
√

Cyy(0, 0)Cyy(0, 0)

(80)
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Similarly one can show that

E [|I1|] = O(N−1) + O(M−1) + O(N−1M−1) (81)

Since we always assume that N and M tend to infinity at the same rate, we have

E
[
N

1
2 |I1|

]
= o(1) (82)

By Markov’s inequality, this implies that

N
1
2 I1 = oP (1). (83)

For the second term I2 we know from Theorem 1 that N
1
2 yN,M is either OP (1), or oP (1).

Moreover, using (26) it is not difficult to show

N−1M−1

N−τ−1∑
n=0

M−ρ−1∑
m=0

y(n,m) + N−1M−1

N−τ−1∑
n=0

M−ρ−1∑
m=0

y(n + τ, m + ρ)

−yNM(1− ρM−1)(1− τN−1) = oP (1) (84)

Hence,

N
1
2 I2 = oP (1). (85)

and finally

N
1
2 C̃yy(τ, ρ)−N

1
2 Ĉyy(τ, ρ) = oP (1). (86)

Since convergence in probability implies convergence in distribution we conclude based on [1],

Proposition 6.3.3, that the results of the asymptotic normality we have proven for N
1
2 C̃yy(τ, ρ)

hold also for N
1
2 Ĉyy(τ, ρ).
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