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Abstract Matching a pair of affine invariant regions

between images results in estimation of the affine trans-

formation between the regions. However, the parame-

ters of the affine transformations are rarely used di-
rectly for matching images, mainly due to the lack of an

appropriate error metric of the distance between them.

In this paper we derive a novel metric for measur-
ing the distance between affine transformations: Given

an image region, we show that minimization of this

metric is equivalent to the minimization of the mean

squared distance between affine transformations of a
point, sampled uniformly on the image region. More-

over, the metric of the distance between affine transfor-

mations is equivalent to the l2 norm of a linear trans-
formation of the difference between the six parameters

of the affine transformations. We employ the metric for

estimating homographies and for estimating the fun-
damental matrix between images. We show that both

homography estimation and fundamental matrix esti-

mation methods, based on the proposed metric, are

superior to current linear estimation methods as they
provide better accuracy without increasing the compu-

tational complexity.
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1 Introduction

Local image analysis through the investigation of the

relations between collections of small areas has gained
popularity in many computer vision tasks such as: Ob-

ject recognition, Camera localization, Automatic navi-

gation and 3D modeling. It offers robustness to changes

in geometric appearance (changes in point of view / in
the object) by employing the detected area for geomet-

ric normalization. The degree of normalization varies

from a simple invariance to translation [16] to invari-
ance to rotation and scale [11] or a more general affine

normalization of the image patches.

Over the last 10 years, many affine invariant feature

detectors have been proposed (such as [12],[13],[22]). A
review of local feature detectors is given in [23]. In con-

trast to point wise matches (such as SIFT [11], and Har-

ris corner detector [6]) that provide a match between
a pair of image coordinates, the matching of affine in-

variant features also provides an approximation of the

local derivatives of the deformation between the images
at the point of correspondence: A = dµ′

dµ
[15]. We de-

note such a correspondence of points along with the

derivatives of the deformation between the images at

the point of correspondence by the name affine corre-

spondence.

Although region matching methods based on affine

normalization of the regions exist for a long time, the

local affine approximation of the deformation between
the regions is rarely used for estimation of a global re-

lation between the images (such as an homography or a

fundamental matrix). One of the major reasons that the
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parameters of the affine transformation are not directly

used for estimation of the relation between images is
the lack of an appropriate error metric that provides

a geometric interpretation to the distance between the

parameters of the affine transformations. The aim of
this paper is to derive such an error metric and to em-

ploy the metric for calculating global relations between

images.

Some methods employ the local affine approxima-
tion for propagating the affine relation by searching

the surrounding of existing matches for new matches

[5],[10],[2]. Propagation methods result in a high num-

ber of affine relations between the images. However, the
parameters of the affine transformations are not used

for estimation of a global relation between the images.

In the absence of an appropriate metric between

affine transformation, methods that do employ infor-
mation from affine correspondences for calculation of a

global model try to convert the affine correspondence

into point correspondences. Generally, since an affine

transformation is determined by 3 points, it seems that
it is roughly equivalent to the matching of 3 points be-

tween images. In [3],[18],[19],[17] local affine approxi-

mation is used for generation of additional points. How-
ever, affine correspondences and point correspondences

are different mathematical entities. Furthermore, there

is no direct relation between the error in matching the
simulated points to the average geometric error between

the matched regions.

In this paper we propose an error metric for the dis-

tance between affine transformations. The error metric

measures the mean squared distance between points in
a region, subjected to two different affine transforma-

tions. We show that the error metric is equivalent to

measuring the l2 norm between linear transformations
of the 6 parameters of the affine transformations and de-

velop both linear solutions that minimize the algebraic

error, and iterative solutions for exact minimization of
the proposed metric. We further show that minimiza-

tion of the error metric produces better results in the

estimation of homographies and fundamental matrices

[4] between images than points based methods, without
increasing the computational load.

The structure of the paper is as follows: In Section

2 we derive a method for measuring the geometric er-

ror between affine transformations. Section 3 formu-
lates the problem of finding a global transformation

that minimizes the mean squared error between the

measured regions and regions projected by the trans-

formation. Linear solutions for calculation of homogra-
phy and the fundamental matrix based on the affine

error metric are described in Section 4 and non linear

solutions that minimize the affine error metric are de-

Fig. 1 A region Ω subjected to two affine transformations
T1 and T2.

scribed in Section 5. Finally, a comparison with point

based methods that employ the affine relation is pre-
sented in Section 6.

2 Affine Error Metric

In this section we develop a metric measuring the aver-

age distance between points that undergo two different
affine transformation.

Let p ∈ R
2 be a random point, sampled from a uni-

form distribution on some image region Ω. We wish to

measure the mean squared distance between the images

of p under two different affine transformations T1 and
T2. The configuration is illustrated in Figure 1.

Let µ be the mean of p andΣ the covariance matrix

of p. Also let T1(p) = A1p+b1 and T2(p) = A2p+b2

be two affine transformations of p. The vector between
T1(p) and T2(p) is therefore defined as

ǫ = T1(p)− T2(p) (1)

= A1(p− µ)−A2(p− µ) + T1(µ)− T2(µ)

As the two transformations are affine, the second order

moments of ǫ are linearly dependent on µ and Σ and

E[ǫǫT ] = (A1 −A2)Σ(A1 −A2)
T (2)

+ (T1(µ)− T2(µ))(T1(µ)− T2(µ))
T

Let the Cholesky decomposition of Σ be Σ = DDT ;

then, the second order moments matrix of ǫ takes the

form

E[ǫǫT ] = (A1D−A2D)(A1D−A2D)T (3)

+ (T1(µ)− T2(µ))(T1(µ)− T2(µ))
T

The matrix D serves as a normalization matrix for the

terms of the matrices A1 and A2; it translates the dif-

ference between the matrices to the mean distance be-
tween the image coordinates. The mean squared dis-

tance E[‖ǫ‖2] is the trace of (3).

We denote the vectorization of the normalized terms

A1D and A2D as s1 and s2 respectively. Using this
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notation, the mean squared distance between T1(p) and

T2(p) becomes

E[‖ǫ‖2] = ‖s1 − s2‖2 + ‖T1(µ)− T2(µ)‖2 (4)

The mean squared distance between the transforma-

tions of a point is therefore equivalent to the l2 norm of

the difference between two vectors:
(
sT
1
, T1(µ)

T
)T

and(
sT
2
, T2(µ)

T
)T

. Furthermore, the vectors are linearly
dependent on the terms of the affine transformation.

This brings a great computational advantage, as the

problem of minimizing the mean squared error between

the affine transformations of image regions translates
into finding a least squares solution between vectors in

R
6.

Note that, as ǫ is the error of a random, uniformly
sampled point in Ω, minimization of E[‖ǫ‖2] is equiva-
lent to minimization of the average mean squared error

between the affine transformations of points in Ω.

3 Calculation of a Global Transformation from

a Set of Matched Regions

The affine error metric derived in Section 2 can be em-
ployed for calculating a global transformation, T (p),

between two images from a set of affine correspondences.

Let µi,µ
′

i be the centers of mass of two correspond-

ing regions, Ωi and Ω′

i. Also let p be a random variable,
uniformly distributed in Ωi. The mean of p is therefore

µi and the covariance matrix of p is the second order

centralized moment matrix of Ωi:

Σi =

∫
Ωi
(α− µi)(α− µi)

T dα∫
Ωi

dα
(5)

The matched regions are first employed to extract
a set of affine correspondences: It is shown in [15] that

a coordinate system, q, invariant to affine transforma-

tions, can be determined from the second order moment

matrix of the region, such that

q = RD−1

i (p− µi) (6)

where R is an unknown rotation matrix and DiD
T
i is

the Cholesky factorization of Σi. We use the SIFT de-

scriptor [11] to detect the unknown rotation (identified

as the direction of the dominant gradient of the image
at Ω). Let Ni = RD−1

i be the affine normalization ma-

trix for Ωi. In a similar manner let N′

i be the affine

normalization matrix of Ω′

i. The affine normalizations
yield an estimation of an affine relation between the

regions (as in [1]):

Ti(p) = µ′

i + (N′

i)
−1Ni(p− µi) (7)

Note that the affine normalization matrix is also related

to the affine error metric as N−1

i is a factorization of
Σi. It can therefore be used instead of Di in (4) for

normalization of the affine transformation matrix.

We next employ the affine approximation of the
global transformation T at µi for calculation of T . The

mean squared error between the transformation of Ωi

by T to the transformation of Ωi by Ti is given by (4):

E[‖ǫi‖2] = ‖si − ti‖2 + ‖µ′

i − T (µi)‖
2

(8)

where si is a vectorization of AiN
−1

i and ti is a vector-

ization of dT
dp

|µi
N−1

i .

Given n matched regions, and assuming equal prob-
ability of a point p to originate from each matched

region, minimization of (8) jointly for all i = 1...n is

equivalent to minimizing the l2 norm of the vector




T (µ
1
)

t1
...

T (µn)

tn




−




µ′

1

s1
...

µ′

n

sn




(9)

Note that in cases where ti and T (µi) are linearly de-

pendent on the parameters of the global transformation

T (such as a case where T is an affine transformation)
the problem can be easily solved as a least squares so-

lution for the terms of T .

4 Linear Solutions for Homography and

Fundamental Matrix Estimation

When estimating the parameters of an homography or

of the fundamental matrix, minimization of the affine
norm (9) between the measured regions is non linear.

However, we can utilize (9) to derive a linear minimiza-

tion scheme of the algebraic error between the images
by using homogeneous coordinates. In the following sec-

tion we describe linear solutions for estimating the ho-

mography between a pair of images and for estimating

the fundamental matrix between images.

4.1 Using the Affine Metric for Linear Calculation of

Homographies

Finding an homography between a pair of images is a

common task in computer vision as it describes the re-

lation between different views of the same world plane

by pinhole cameras [9]. In this section we derive equa-
tions for calculating the homography by minimizing

the affine error metric. The problem is more complex

than solving for an affine transformation as both the
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point correspondence and the local derivatives of the

deformation are not linearly dependent on the terms of
the homography. However, with a proper normalization,

minimization of the algebraic error using homogeneous

coordinates provides a good approximation of the opti-
mal result.

We first evaluate (9) for the case where the transfor-

mation is an homography. Let A,µ,µ′ be the param-
eters of an affine transformation that locally approxi-

mates the homography. We denote the terms of A as

A =

(
a1 a2
a3 a4

)
(10)

and the terms of the homography, H, expanded in ho-

mogeneous coordinates, as

H =




h1 h2 h3

h4 h5 h6

h7 h8 h9


 (11)

where

H(µ) =

(
h1µx + h2µy + h3

h7µx + h8µy + h9

,
h4µx + h5µy + h6

h7µx + h8µy + h9

)T

(12)

and µx,µy are the first and second coordinates of µ. By

denoting k = h7µx + h8µy + h9, the derivatives of H

are given by

dH

dµ
=

1

k

(
h1 − h7H(µ)x h2 − h8H(µ)x
h4 − h7H(µ)y h5 − h8H(µ)y

)
(13)

Since µ′ is a noisy observation on H(µ), then following

(13):

dH

dµ
=

1

k

(
h1 − h7µ

′

x h2 − h8µ
′

x

h4 − h7µ
′

y h5 − h8µ
′

y

)
(14)

The minimummean squared distance between the global

homography and the local affine measured approxima-
tions can be expressed by substituting (12) and (14) to

(9). Note that the minimization of the mean geometric

error in (9) does not result in a linear set of equations.

However, given n matched regions, by multiplying the
terms of the vectors by the appropriate ki, we convert

the problem into the minimization of

∥∥∥∥∥∥∥∥∥∥∥




k1H(µ
1
)

k1t1
...

kNH(µn)

kNtn




−




k1µ
′

1

k1s1
...

kNµ′

n

kNsn




∥∥∥∥∥∥∥∥∥∥∥

2

(15)

where µi, µ
′

i, si and ti, i = 1, ..., N , are known from the

affine correspondences and h1, ..., h9 are the unknowns.

The minimization problem forms a set of 6N lin-

ear homogeneous equations. The equations can be ex-
pressed in the form Lh = 0 where h is a vectorization

of H and L depends only on the matched regions. We

then solve the least squares problem given that ‖h‖ = 1.
This problem is solved by setting h to be the last col-

umn of V, where L = UΣVT is the SVD of L (see for

example [9]).
Note that this set of equations minimizes the al-

gebraic error and not the geometric error. A pre nor-

malization of the coordinates so that the mean value

of {µi}i=1,...,n and {µ′

i}i=1,...,n is zero and the average
distance from the origin is

√
2 (as in [8]) is therefore re-

quired to ensure that the ki’s do not change drastically

between the equations.

4.2 Using the Affine Metric for Calculation of the

Fundamental Matrix

In this section we employ the affine normalization for

calculating the fundamental matrix between a pair of

images. In contrast with the homography calculation,

the fundamental matrix is not a global transformation
of points between images as it relates points in one im-

age to the corresponding epipolar lines in the other im-

age. However, the affine error metric can be employed to
correctly normalize the constraints on the affine trans-

formation from an affine relation (a non-linear solution

for exact minimization of the affine error metric is de-
scribed in Section 5.3).

We denote the terms of the fundamental matrix as

F =




f1 f2 f3
f4 f5 f6
f7 f8 f9


 (16)

The relation between the fundamental matrix and point-

wise correspondences between a pair of images is given

by

(
µ′

x µ′

y 1
)
F




µx

µy

1


 = 0 (17)

For simplicity, we first consider the case where µ′ =
µ = 0. In this case the pointwise relation implies that

f9 = 0 (18)

Since an affine correspondence also provides the deriva-

tives at the point of correspondence, we obtain two ad-
ditional linear constraints by taking the derivatives of

(17) with respect to µ and letting dµ′

dµ
= A and f9 = 0.

The resulting equations are
(
f7
f8

)
+AT

(
f3
f6

)
= 0 (19)
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Equation (18) represents a pointwise relation and equa-

tion (19) represents a relation dependent on the deriva-
tives in the proximity of the correspondence point. In

Section 4.1 we showed that proper normalization of the

terms in A is achieved by multiplication with N−1 (as
N−1N−T = Σ). We therefore multiply (19) on the left

by N−T to yield

N−T

(
f7
f8

)
+ (AN−1)T

(
f3
f6

)
= 0 (20)

We can further simplify the equation since A can be

expressed, (see, (7)) using the normalization matrices

of the matched regions as A = N′−1N, therefore

N−T

(
f7
f8

)
+N′−T

(
f3
f6

)
= 0 (21)

Each affine correspondence therefore results in 3 linear
homogeneous constraints on the fundamental matrix.

The extension to the general case where µ and µ′

can take any value, is obtained by shifting the coordi-
nate systems. Let Sµ be a matrix that shifts the coor-

dinate system by µ,

Sµ =




1 0 µx

0 1 µy

0 0 1


 (22)

Then, by using the constraints (18) and (21) on the

terms of F̃ = Sµ′FSµ, we form a set of 3 homogeneous

linear equations as the shift of coordinates, shifts µ and
µ′ to 0. As in the homography estimation, a pre nor-

malization of the coordinates is required, so that the

mean value of {µi}i=1,...,n and {µ′

i}i=1,...,n is zero and
the average distance from the origin is

√
2.

5 Non Linear Minimization of the Affine

Geometric Error in Both Images

The minimization of the l2 norm in (9) detailed in Sec-
tion 3 only takes into consideration errors between re-

gions in the second image and the transformations of

the corresponding regions from the first image. Hence,
the errors are only measured in the second image and

do not reflect errors in the first image (measured by

the distance between regions in the first image and the
transformations of the corresponding regions in the sec-

ond image). Such an objective function is convenient for

the derivation of linear solutions such as those described

in Section 4. However, if we omit the requirement of a
linear solution, the error in both images can be taken

into account in order to improve the estimate of the

parameters of the model.

Fig. 2 Two measured regions Ω,Ω′ and the rectified regions
Ω̂,Ω̂′. The affine relation between Ω̂ and Ω̂′ perfectly agrees
with the global model, G. The non linear solution minimizes
the mean squared error between the measured and the recti-
fied regions.

Given a global model, G, that represents the rela-
tion between two observations of a scene (a homography

or an epipolar relation), the affine relation between Ω

and Ω′ does not necessarily comply to the model. We

therefore wish to create new, rectified regions, Ω̂ and
Ω̂′ that do agree with the model. The rectified regions

should be as close as possible to the original, observed

regions. The configuration is illustrated in Figure 2. By
minimizing the affine norm we can guarantee that the

average mean squared distance between each point in

the rectified regions and its matching point in the orig-
inal regions will be minimal.

We express the affine transformations relating the

observed and rectified regions by their affine normal-

izations using (7). Let N̂ be the affine normalization
matrix of Ω̂ and µ̂ the center of mass of the region.

Also let N̂′ and µ̂′ be the corresponding parameters

of Ω̂′ . The affine relations between the rectified and
measured regions are then expressed as

p̂ = N̂−1N(p− µ) + µ̂ (23)

p̂′ = N̂′
−1

N′(p′ − µ′) + µ̂′ (24)

where p̂ and p are the corresponding coordinates of

the rectified and the observed regions respectively. Note
that as our analysis depends only on a first-order ap-

proximation of the deformation between regions, the

relation between the rectified regions and the measured
regions is affine. According to Section 2, minimization

of the mean squared distance between the rectified re-

gions and the observed regions is equivalent to min-
imization of (4) between the identity transformation

(that leaves Ω and Ω′ unchanged) and the affine trans-

formations in (23) and (24).

We therefore express the mean squared distance (4)
between Ω and Ω̂ as the affine error metric between

two affine transformations. The first transformation,

T1, represents the rectifying transformation:A1 = N̂−1N,
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T1(µ) = µ̂. The second transformation, T2, represents

the identity transformation: A2 = I , T2(µ) = µ. Re-
call from the definition of N in Section 3 and from the

discussion that follows the derivation of (7), that N is

the affine normalization matrix of Ω, and that N−1 is
a factorization of Σ. Thus, normalizing both A1 and I

by N−1 and substituting the terms into (4) we have:

E[‖ǫ‖2] =
∥∥∥N̂−1 −N−1

∥∥∥
2

HS
+ ‖µ̂− µ‖2 (25)

where HS stands for the Hilbert-Schmidt norm. The

same derivation applies to Ω′.

Equation (25) gives us a simple way to formalize

the mean squared difference between the measured re-
gions and the rectified regions. Let m be the vectoriza-

tion of the measured quantities: µ,N−1,µ′,N′−1. Also

let m̂ be the vectorization of the rectified quantities:
µ̂, N̂−1, µ̂

′
, N̂′−1. Then, the mean squared difference

between the measured regions and the estimated re-

gions is given by

‖m− m̂‖2 (26)

Note that the problem of minimizing the mean squared

distance between the measured and rectified regions is
expressed by (26) as minimizing the Euclidian distance

between the parameters of the affine normalization of

the regions. This relation is employed next for estimat-

ing global relations between the images.

5.1 Iterative Minimization of the Geometric Error

The minimization of the mean squared distance be-

tween the measured and the rectified regions (26) can

be employed for estimation both of homographies and
the epipolar relation between uncalibrated cameras. In

both cases the solution is iterative as the dependence

of (26) on the parameters of the models is non-linear.

In this section we describe the non-linear optimization
process.

LetU be the parameter vector of the relevant model

(a homography or a parametrization of a camera ma-

trix) and Vi ,i = 1...n be the parameters defining recti-
fied regions (so that givenU andVi we can calculate Ω̂i

and Ω̂′

i). Then, given a set of n affine correspondences

(defined by µi,µ
′

i,N
−1

i ,N′−1

i , i = 1...n), we wish to
find U, and Vi ,i = 1...n that minimize the sum of

the squared Euclidean distance, (26), over all pairs of

matched regions. We initialize the iterative process by

the linear methods described in Section 4 and employ a
Levenberg-Marquardt optimization process to estimate

both the parameters of the model and the parameters

of the rectified regions.

The details of the iterative process are as follows:

Let

L = [UT ,VT
1
, ...,VT

n ]
T (27)

be the vector of the parameters to be estimated. Also

let m̂i be a vectorization of the parameters of the rec-
tified regions µ̂i, N̂

−1

i , µ̂
′

i, N̂
′−1

i . We denote the vector

representation of all the rectified regions as

M̂ = (m̂T
1
, ..., m̂T

n )
T (28)

Last, we define the measurement vector M as

M = (mT
1
, ...,mT

n )
T (29)

where mi is a vectorization of µi, N
−1

i , µ′

i and N′−1

i .

Thus, minimization of the mean squared displace-

ment between points in the matched regions turns into
finding an optimal set of parameters L that minimizes

the l2 distance
∥∥∥M− M̂

∥∥∥ (30)

As indicated above, we solve the minimization problem
by a Levenberg-Marquardt optimization process: given

a set of n matched regions, we perform a minimization

over |U|+n|Vi| parameters. The minimization problem

exhibits a sparse structure as given the model param-
eters U, there is no dependency between parameters

of different regions. Therefore dm̂i

dVj
= 0 in cases where

i 6= j and the Jacobian dM̂
dL

exhibits a sparse structure.
We employ the sparse Levenberg-Marquardt algo-

rithm given in [9] for the iterative solution. Due to the

sparse structure of the Jacobian matrix, the complex-

ity of the optimization problem is linear in the number
of matched regions instead of quadratic as in the non-

sparse case.

5.2 Optimal Homography Calculation

In this section we detail on using the optimization pro-
cess described in Section 5.1 for estimation of an op-

timal Homography, H. We define the vector of model

parameters U, the parameters defining the rectified re-
gions Vi ,i = 1...n and their relation to the parameters

of the rectified regions M̂.

We set U to be the vectorization of H. Since by
their definition, the rectified regions are related by a

homography, it is sufficient to parameterize the regions

in only one image (as parametrization in the other im-

age provides no additional constraints). Therefore,Vi is
defined to be the vectorization of µ̂T

i and N̂−1

i . The rec-

tified regions in the second image are calculated from

the regions in the first image using the homography.
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As the affine relation between Ω̂ and Ω̂′ is known by

(7), the affine normalization matrix of a rectified region
from the first image, N̂, is related to N̂′ by

dp̂
′

dp̂
= N̂′−1N̂ (31)

where dp̂′

dp̂
is defined by the homography. Therefore

N̂′−1 =
dp̂

′

dp̂
N̂−1 (32)

The estimated center of mass of a region in the second
image µ̂

′ can also be directly calculated by the homog-

raphy H and µ̂.

Given a set of n measured affine correspondences

(denoted as mi, i = 1...n) , the estimated affine corre-

spondences (28) are therefore fully parameterized by L.
As described in Section 5.1 ,the problem is then solved

by a Levenberg-Marquardt iterative solution.

5.3 Optimal Fundamental Matrix Calculation

In this section we detail on using the optimization pro-

cess described in Section 5.1 for estimating the camera
matrices relating two views. We define the vector of

model parameters U, the parameters defining the rec-

tified regions Vi ,i = 1...n and their relation to the
parameters of the rectified regions M̂.

In the case of pointwise matches, estimation of the

relations between a pair of cameras also produces an es-

timation of the world points that project those matches.

In a similar manner, we show that a set of world planes
can be estimated together with the camera relations.

Given a pair of matching rectified regions Ω̂ and Ω̂′,

we employ affine normalized coordinate systems to es-

timate the world plane that is viewed by the regions.

Recall that as the rectified regions are related by an
affine transformation, an affine normalized coordinate,

q, defines corresponding points in both regions. As the

rectified regions fully agree with the camera configu-
ration, there exist x ∈ R3 that is projected to those

points.

Let ξ ∈ R3 denote the center of mass of the world

region projected to both rectified regions. We denote

the local relation between the world coordinates around
ξ and the affine normalized coordinate, q, as Q = dx

dq
∈

R3×2. The configuration is described in Figure 3. Note

that the differential relation, Q, and the point, ξ, define

a world plane containing ξ.

The rectified affine normalization matrices N̂ and

N̂′ are related to Q by the affine normalized coordinate

Fig. 3 The estimated region, viewed by the two cameras, is
represented by the coordinates of its center of mass, ξ, and
by the differential relation between movements in the affine
normalized coordinate systems to movements around x = ξ:
Q = dx

dq
, evaluated at the center of mass .

system. Let p̂ and p̂
′ be the projection of x on the two

views, then

N̂−1 =
dp̂

dq
=

dp̂

dx

dx

dq
=

dp̂

dx
Q (33)

N̂′
−1

=
dp̂

′

dq
=

dp̂
′

dx

dx

dq
=

dp̂
′

dx
Q (34)

As in the gold-standard calculation of the funda-
mental matrix in the pointwise case [9], we set the first

camera to be fixed: P = (I|0) and estimate the param-

eters of the second camera P ′. Note that dp̂
dx

, dp̂′

dx
and

the projection of ξ on the two views (µ̂ and µ̂
′) can be

calculated from P and P ′.

Given a set of n measured affine correspondences

(denoted by mi, i = 1...n), the rectified regions (28)

are therefore fully parameterized by P ′ ,ξi and Qi, i =
1...n. We set U to be the vectorization of P ′ and Vi

to be the vectorization of ξi and Qi. As described in

Section 5.1 ,the problem is then solved by a Levenberg-
Marquardt iterative solution.

6 Experiments

In the following section we compare the accuracy of

the proposed methods for homography estimation and
fundamental matrix estimation with two other estima-

tion methods. The first method discards the affine re-

lation and uses only the center of mass of the regions

for matching. The second method employs the affine re-
lation to extract three corresponding points from each

matched region. As a local affine invariant coordinate

system can be extracted from each matched region [15],
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Fig. 4 Cumulative distribution function of the mean squared
distance in both images (for each experiment) from the cen-
ter of mass of the regions in the second image to the trans-
formation of the centers of mass of the region in the first
image by the calculated homography. 1000 experiments were
carried out for each pair of images. In each experiment, 4
matched regions were chosen at random; an homography was
then calculated from the chosen 4 regions using each of the
homography estimation methods.

two more points of correspondence are the transforma-

tions of unit vectors in the directions of the x axis and
the y axis in the normalized coordinate systems to the

coordinate systems of the images.

For each of the methods we first perform linear esti-

mation using homogeneous coordinates, we then refine
the solution by an iterative method as described in Sec-

tion 5 to minimize the error in both images. We present

both the results of the linear methods and of the itera-

tive solutions.

We use MSER [12] regions, matched between pairs

of images prior to the experiments to generate a set of

inlier matches between the images. Each pair of matched

regions is then used to generate a local estimation of the
affine deformation between the images.

6.1 Estimation of homographies

The “Covariant Features Dataset” [14] is used for com-

parison of the accuracy of the homography estimation

methods as the images in the dataset are related by

homographies. The dataset contains series of images
(named as: bikes, graf, bark, boat, leuven, trees, ubc

and wall) with viewpoint changes, illumination changes,

blur and compression errors. Each series consists of 6

images. The first image serves as a reference image;

the rest of the images show an increasing amount of
geometric and radiometric changes from the reference

image (caused by changes of the viewpoint, zoom and

illumination).

In each series, we compare the reference image to

the rest of the images. We perform 1000 experiments

for each pair of images. In each experiment, 4 matched
regions are chosen at random; an homography is then

calculated from the chosen 4 regions. As we have no

knowledge on the true location of the regions, we mea-
sure the error in both images on all the matched regions

as the root of the mean squared distance between the

measured center of mass of the regions to the transfor-

mation of the centers of mass from the other image by
the homography:

(
1

2n

n∑

i=1

d(µ′

i, H(µi))
2 + d(µi, H

−1(µ′

i))
2

) 1

2

(35)

The linear pointwise estimations are performed by using

the DLT method and the iterative methods by the gold-
standard algorithm for homography estimation [7]. In

Figure 4 we depict the cumulative distribution function

of the root mean squared error for all of the compared

methods. Note that in this case the iterative solution
and the linear solution for estimating the homography

from 4 points are the same as this is the minimal con-

figuration for homography estimation. An example of
the regions transformed from the first image to the sec-

ond image by homographies calculated using each of

the estimation methods is shown in Figure 5.

The results clearly show that discarding the infor-

mation in the affine matches greatly reduce the accu-

racy of the homography estimation. In addition, the re-
sults show that minimization of the mean squared error

between the regions results in better accuracy than min-

imization of the error between 3 simulated points from

each region both when using linear estimation meth-
ods and by the iterative solution. As the computational

complexity of the 3 points based method and of the

affine normalized method is the same (linear complex-
ity in the number of regions) the superiority of the affine

normalized method proposed in this paper is clear.

6.2 Fundamental matrix estimation

A test for the accuracy in estimating the fundamental

matrix is performed using the “Daisy dataset” [20],[21].
The dataset consist of pairs of images taken with a cal-

ibrated stereo rig. As in the previous experiment, we

perform 1000 experiments for each pair of images. In
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 The transfer of regions from the first image to the sec-
ond by the calculated homographies. The homographies were
calculated using six methods: 5(a) - linear pointwise calcula-
tion using only the center of mass of the regions, 5(b) - itera-
tive pointwise calculation using only the center of mass of the
regions, 5(c) - linear calculation from 3 points of each region,
5(d) - iterative calculation from 3 points of each region, 5(e) -
linear calculation using the proposed method, 5(f) - iterative
calculation using the proposed method . The original MSER
regions detected in the second image are marked in red, the
transferred regions by the homographies are marked in green
and the intersections of the regions are marked in yellow.

each experiment, 8 matched regions are chosen at ran-

dom; a fundamental matrix is then calculated from the
chosen 8 regions. We measure the error in both im-

ages on all the matched regions as the root of the mean

squared distance between the measured center of mass

of the regions to the epipolar line, calculated from the
centers of mass of the region on the other image:

(
1

2n

n∑

i=1

d(µ′

i, F [µi, 1]
T
)2 + d(µi, F

T [µ′

i, 1]
T
)2

) 1

2

(36)

The linear pointwise estimations are performed by us-
ing the normalized 8 points method and the iterative

pointwise solutions are obtained by the gold-standard

algorithm for calculating the fundamental matrix [8].

Figure 6 depicts the cumulative distribution function
of the average distance. An example of epipolar lines,

calculated using the methods compared in this paper,

is shown in Figure 7.
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Fig. 6 Cumulative distribution function of the mean squared
distance (for each experiment) from the center of mass of
the regions in each image to epipolar lines, generated by the
calculated fundamental matrices and the centers of mass of
the regions in the other image. 1000 experiments were carried
out for each pair of images. In each experiment, 8 matched
regions were chosen at random; a fundamental matrix was
then calculated from the chosen 8 regions using each of the
fundamental matrix estimation methods.

As in the estimation of homographies, the results
clearly show that discarding the information in the affine

matches greatly reduces the accuracy of the fundamen-

tal matrix estimation. Once again, it is shown that
the proposed method is more accurate then choosing

3 points from each region. Moreover, as the computa-

tional complexity of these methods is the same, it is

clearly better to minimize the affine normalized error
than to minimize the error between simulated points.

7 Discussion - the Error Measured by

Simulated Points

We showed in Section 5, equation (25), that minimiza-

tion of the mean squared error between an estimated
region and the measured region is equivalent to mini-

mization of

‖n̂1 − n1‖2 + ‖n̂2 − n2‖2 + ‖µ̂− µ‖2 (37)

where n̂1, n̂2 are the columns of N̂−1 and n1, n2 are the

columns of N−1. We now turn to look at what error is

being minimized in the case where the transformation
is represented by simulated points. In such case, the

original region is represented by µ,µ+ n1 and µ+ n2.

The corresponding points in the estimated region are
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Fig. 7 Example of epipolar lines calculated by the methods
compared in this paper. The top and bottom images are cor-
responding sections from the two images used for calculating
the fundamental matrix. Each color is associated with a dif-
ferent method: cyan - the proposed iterative affine normalized
method, red - the proposed linear affine normalized method,
green - iterative minimization using 3 points, blue - linear
estimation using 3 points, yellow - iterative minimization us-
ing only the center of mass of the regions, magenta - linear
estimation using only the center of mass of the regions. Note
that the epipolar lines calculated by the proposed method are
in the best agreement among all the tested methods.

µ̂,µ̂+ n̂1 and µ̂+ n̂2 and the measured error is

‖n̂1 − n1 + µ̂− µ‖2 + ‖n̂2 − n2 + µ̂− µ‖2 + ‖µ̂− µ‖2

(38)

By comparing (38) to the mean squared error between

the measured and estimated regions (37), it is clear

that the points based method is overly biased towards

minimization of the error of the center of the region.
Therefore, there is no direct relation between the mean

squared error between the regions and the error mea-

sured from simulated points.

8 Conclusion

In this paper we provide a geometric meaning to the

distance between the parameters of affine transforma-

tions. We show that a proper normalization of the affine
transformation parameters results in equivalence of the

proposed metric with the l2 norm between the normal-

ized affine parameters. We employ the normalization to
derive methods for estimating homographies between

images and for estimating the fundamental matrix be-

tween images.
To the best of our knowledge, this is the first method

that provides a geometric meaning to the distance be-

tween the parameters of an affine transformation. A

direct treatment of the affine parameters as a vector in
R

6 does not have a geometric meaning as it does not

take into account the size and shape of the region. In

addition, as we show in this paper, the mean squared
error between different transformations of a region is

not represented accurately by simulating points from

the region.
The experiments carried out in this paper show that

the proposed method is preferable to the current ap-

proach that simulates points according to the affine

normalization of a region, as it yields more accurate
results with the same computational load. The experi-

ments further verify that discarding the affine transfor-

mation by using only the center of mass of the regions
greatly degrades the accuracy of the estimates.
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