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Combined Affine Geometric Transformations and
Spatially Dependent Radiometric Deformations: A
Decoupled Linear Estimation Framework
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Abstract—This paper considers the problem of registering two
observations of the same object, where the observations differ due
to a combined effect of an affine geometric transformation and
nonuniform illumination changes. The problem of deriving new
representations of the observations that are both invariant to geo-
metric transformations and linear in the illumination model is ana-
lyzed. In this framework, we present a novel method for linear esti-
mation of illumination changes in an affine invariant manner, thus,
decoupling the original problem into two simpler ones. The com-
putational complexity of the method is low as it requires no more
than solving a linear set of equations. The prior step of illumina-
tion estimation is shown to improve the accuracy of state-of-the-art
registration techniques by a factor of two.

Index Terms—Affine invariance, affine invariant features, geo-
metric distortion, illumination invariance, object tracking, pose
estimation.

I. INTRODUCTION

HE same object, viewed from different points, or under

different illumination conditions, can have many different
appearances. Relating the different appearances to the object
and analyzing the changes in the appearance are very complex
problems.

In many cases, the change of viewing point results in a geo-
metric transformation of the observation like shift, rotation, or
scale of the image coordinates. The problem of “aligning” the
different coordinate systems to a single coordinate system is
called image registration. Image registration is essential for inte-
grating data from different measurements. The information de-
rived from the geometric transformation is used in applications
such as object tracking [1] and pose estimation [2]. Applications
that detect changes in objects, such as in image-based quality
control, require both the registration of the object and compen-
sation for illumination changes. A survey of registration tech-
niques is given in [3].
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In this paper, we focus on affine transformations of the coor-
dinate system. The affine transformation consists of linear trans-
formations (rotation, scaling, and shear) and a translation (shift).
It provides a good approximation for the changes in pose of ob-
jects that are relatively far from the camera. The affine transfor-
mation also serves as the basic block in the analysis and registra-
tion of general and nonrigid geometric transformations. When
the area considered is small enough, the affine transformation
serves as a first-order Taylor series approximation of any differ-
entiable geometric transformation.

The most popular methods for estimating the geometric
transformations today are based on local features, such as
intensity-based regions (IBR) and edge-based region (EBR)
[4], and scale-invariant feature transform (SIFT) [5] and max-
imally stable extremal regions (MSER) [6]. These methods
identify features of small regions in the image and extract
the transformation from the correspondence of the features.
The correspondence problem is solved by using features that
are invariant to the geometric transformation. Affine invariant
features include multiscale autoconvolution (MSA) [7], affine
invariant moments [8], cross-weighted (CW) moments [9],
and trace transform [10]. Affine and illumination invariant
features for color images are presented in [11]; however, the
illumination changes are global and not location dependent.

Most methods employing local features handle illumination
changes by normalization of the illumination in the considered
area, or by using edge (corner) information, which is less sen-
sitive to the variations in illumination. However, as shown in
the following, the localization of the features and the success of
the registration process are effected by the changes in lighting
conditions.

Global registration methods estimate the parameters of the
geometric transformation from the whole image without a prior
stage of local feature extraction [12]-[14]. Since global algo-
rithms treat the image as a whole, the background should be
separated from the registered part of the image prior to the reg-
istration. Global algorithms tend to show robustness to noise.
Sensitivity to radiometric changes, on the other hand, is a major
disadvantage of most global approaches.

Some affine registration methods avoid dealing with the illu-
mination changes by discarding the radiometric information and
treating the image as a binary image. A comparison of several
binary registration methods is presented in [15]. It is shown in
[15] that although the method complexity grows linearly with
the number of pixels, the calculation of moments is only a mar-
ginal factor in the total calculation time, mainly due to the need
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to solve high-order polynomial equations. The reported calcu-
lation time is about 1 s even for small images.

The variation in illumination between images of the same ob-
ject creates a major complication for recognition and registra-
tion algorithms. Most registration methods measure properties
in the image that are either robust or invariant to the illumination
changes [16]. However, such methods assume that the changes
in the illumination are location independent; therefore, they are
only applicable in small regions of the image.

The dominating approach for representing the effects of loca-
tion-dependent illumination changes, when no geometric trans-
formation is involved (i.e., camera and object are fixed), is by a
linear combination of basis images. The idea of representing il-
lumination changes by a linear combination of images was pro-
posed by Shashua [17]. Hallinan [18] represented illumination
changes by a linear combination of basis images and used prin-
cipal component analysis (PCA) to find an approximation of the
basis images. In cases, where the shape of an object is convex
and the object is Lambertian (the apparent brightness of the sur-
face is the same regardless of the viewing angle), it was shown
by Belheumer and Kriegman [16] that the set of all images under
arbitrary illuminations forms a convex cone. The cone can be
constructed from as few as three images. Further study was done
by Basri and Jacobs [19], who used spherical harmonics to show
that the set of images produced by a Lambertian convex surface
lies close to a 9-D space.

As previously mentioned, the difficulties associated with the
joint geometric—radiometric estimation problem have led to the
current state, where only a few attempts have been made to solve
it. The lack of pointwise correspondence (due to the geometric
transformation) and the lack of intensitywise alignment (due
to the radiometric mapping) do not allow for a simple direct
usage of the intensity information of the images. Seemingly, the
geometric and radiometric problems are strongly coupled and
may not be answered separately. As such, straightforward ap-
proaches for solving this problem typically lead to a high-di-
mensional nonlinear nonconvex optimization problem. Only a
few works have explicitly modeled joint geometric—radiometric
deformations. Indeed, among these, most evade the inherent
nonlinearity of this estimation problem through linear approx-
imation and/or variational optimization-based approaches [20],
[21]. An explicit solution to joint geometric—radiometric esti-
mation problem, where the radiometric change is a nonlinear
mapping of the image intensities is given [22]. The assumed ra-
diometric changes, however, are not location dependent. The es-
timation of location-dependent radiometric changes in the pres-
ence of an affine transformation is described in [23]. It requires
several images of different spectral bands. Therefore, it is not
suitable for grayscale images.

The goal of this paper is to fill the gap between the existing
methods for estimating geometric changes only and those for
estimating radiometric changes only. We propose a global and
linear solution to the problem of estimating the illumination in
an invariant manner to the affine geometric changes. Linear,
affine invariant constraints on the illumination of an isolated
object are derived using image moments. We show that using
the derived constraints, the illumination is estimated in an in-
variant manner to the geometric transformation. The computa-
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Fig. 1. Images of differently illuminated object and an affine-transformed
linear combination thereof.

tional complexity of the method is low as it requires no more
than solving a linear set of equations.

The paper is organized as follows. Section II defines the
problem of jointly estimating the illumination and affine geo-
metric changes. Section III elaborates on the search for linear
and affine invariant transformations, and presents a solution
to the problem. Section IV introduces linear solutions to the
illumination estimation problem. Sections V-VII describe
experiments that test the performance and robustness of the
illumination estimation, and the effect of prior illumination
estimation on the accuracy of registration.

II. PROBLEM DEFINITION

This section introduces the mathematical model used to
describe the problem of object registration in the presence of
varying illumination.

We begin by defining the geometric estimation problem. Let
f : R? — R be an integrable image function with bounded sup-
port, and ¢ = Ax + b an invertible affine geometric defor-
mation that acts on f and produces an observation % such that
h = fo¢ = f(Ax + b). Thus, in the absence of illumina-
tion variation, the registration problem is formulated as follows:
given the functions (images) h and f, such that h = f o ¢, find
.

The radiometric changes (when both the camera and object
are fixed) are modeled by linear combinations of a number of
basis images. Let f;, ¢ = 1,...,n be a set of basis functions,
then f =Y., a; f; describes the image of an object viewed at
a certain illumination state.

The combined model of an affine geometric transformation
and a spatially varying radiometric deformation discussed in this
paper is therefore defined by

h= (> aifi|o¢. (1)
i=1
Thus, given only the observation h and the basis images f;, i =
1,...,n, we wish to find the coefficients a; and the geometric
transformation ¢. Fig. 1 displays an affine-transformed mixture
of differently illuminated images of the object.
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The same notations ¢, f, and f; are used throughout this
paper to describe the affine transformation, the geometrically
undeformed illuminated image, and the model illumination
basis functions, respectively.

III. SEARCH FOR AN AFFINE INVARIANT LINEAR TRANSFORM

Searching for a linear method to estimate the illumination co-
efficients a; in (1) leads to a search for a transformation that is
both invariant to the geometric changes and linear in the param-
eters of the illumination model. A linear transformation can be
written as a kernel operator

7(7) = [ k) fx)ax @
JR2
where f,k € Lo (functions with finite energy). The affine in-
variance requirement is formulated as follows:

T(fo)="T(f)

However, as the following theorem shows, a transformation that
is both linear and affine invariant does not exist. The only such
transformation is the null transformation (7'(f) = 0).
Theorem 1: A transformation 71" that obeys both (2) and (3)
is the null transformation.
Proof: Since T(f o ¢) =

3)

T(f) then
1) = [ K0 f(x)ix
:/ k(x)f(Ax + b)dx.
R2

A change of variables y = Ax + b leads to
1

EA Yy -b dy.
r(f) = Aot (A)] e (A" (y = b)) f(y)dy
By the Cauchy—Schwarz inequality
1
IT(f)]* < [t (A /s kz( '(y — b))dy
< [ Py

= [det(A)]? /RQ“A (y — b))dy.

Changing the variables again and lettingx = A~!(y —b) leads

to

I |
< W/W |det(A)|k2(x)dx
det(A)]

T(f)I*

Since T should be invariant to any A € GI(2), then |det(A)]
can be arbitrary large and

T(f) = 0.

|
Clearly, either the affine invariance or the linearity require-
ments needs to be relaxed. One possible approach, which is
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taken here restricts the transformation to be linear only for im-
ages sharing the same support. Let Q¢ C R? be a bounded re-
gion calculated only from the support of f. Also let 1o, (x) be
an indicator function for Q¢

1, ifxe Qf
lo,(x) = {07 else.
We define the functional
1
T(la,, [)= = [ k(a,x)f(x)dx @)
||19f||L1 J R2

where £ is a kernel function that is chosen so that the affine
invariance requirement is fulfilled, as shown in the following.
Since Q¢ depends only on the image support, the functional is
linear for images (functions) sharing the same support.

Let h be an affine transformation of f, (h = f o ¢). Also
let £2;, be the corresponding region to {27 under the affine trans-
formation (2, = {x|A~!(x — b) € Q;}). The desired geo-
metric invariance of the functional (4) is therefore formulated
as follows:

T(lq,, f)

=T(1q,,h). 4)

Applying the functional to h leads to

T(lq,,h) =T(la, o ¢,h)

_ 1
I1a; o ¢llr,

A change in the integration variable y =
|det(A)|dx leads to

/ k(lg, o ¢,x)f(Ax + b)dx.
Ax + b, dy =

1
1o, o ¢lr, [det(A)]

x [ ko, 0007 (9)I(3)iy.

T(lq,,h) =

Since the area of {2 changes as the Jacobian of the affine trans-

formation, we have that [[1¢, o ¢z, |det(A)] = |[1o,||z,.
therefore
1 _
(1o, h) = | ko 00,670y ©
||1Qf||L1 R?

Since the relation applies to every image f, the affine invari-
ance requirement (5) on (4) and (6) translates to the following
requirement on the kernel:

(x)) )

k(19f7x) = k(le °© ¢7¢71

A. Solution to the Kernel Equation

Each kernel that satisfies (7) provides a single linear affine in-
variant constraint on the illumination coefficients. We therefore
look for parametric families of solutions to (7), leading to sets of
linear constraints on the illumination coefficients. One possible
solution to (7) is to choose

k(lﬁ_mx) = IQf(X) (8)
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which implies that (4) becomes the normalized sum (1.1 norm)
of the image intensities in the area defined by 2. Equation (7)
holds for the kernel since

k(lg, 0§, ¢ (x)) = 1o, 0po ¢ (x) = 1g,(x). (9

Additional kernels may be derived by applying geometric trans-
formations to 2f. Such kernels can be expressed as a composi-
tion of functions
k(la,,x) = 1o, o9 (x) (10)

where 1) : R? — R? is a geometric transformation. ) may also
depend on the properties of {1;. Using the choice (10), (7) takes
the form

Lo, o9h(x) =1, opopog™'(x). (11)
Therefore, for (11) to hold for every ¢ and v, ¢ and 7 are re-
quired to commute.

Let Q; C R? be a region in an intensity image f. Its center
of mass is defined as mg, = (mlnf F Mg, )T, where

1
mqg, = ———— x - 1o, (x)dx. 12
= iy J 00 2
Let o be a scale factor o € (0, 1] and let
1
bara(X) = —(x —mq,) + mg, (13)

be a scaling of the coordinates around mgq .. Around the center
of mass, the scaling operator 1) and the affine transformation
¢ commute and therefore (11) holds. Using v, we can finally
define the affine invariant kernel as follows:

ka(la,,x) = lo, 0 g, a(x) = 1o, (x) (14
where Qf o = {x | 1o, o(x) € Qr}.

We remain with the problem of choosing corresponding re-
gions Q7 and €. A trivial choice would be the support of the
images. Such an implementation was presented in previous con-
ference papers [24], [25]. In this paper, we use elliptic regions
calculated from the supports of the regions. The elliptic regions
are less sensitive to small changes in the support. In addition, as
will be shown in the following, the convex shape of the ellipse
allows fast calculation of the transformation.

Given an image f and an affine transformation of the image
h, ellipses with the same first- and second-order moments as
the corresponding images also satisfy the same affine model [4].
The elliptic region can be calculated from the support of f by
taking Q; = {x|M~'/?x < s}, where M is the second-order
moments matrix of the support and s is a parameter that deter-
mines the size of the ellipse. We therefore choose €2y and €, to
be corresponding ellipses with the same first- and second-order
moments as the supports of f and h, respectively. Example
of affine-transformed images and the corresponding regions is
shown in Fig. 2.
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Fig. 2. Original image f, an affine transformation %, and the choice of {2 with
various scaling parameters. (a) 27 0.5. (b) 21,0.5. (¢) 2f,0.4. (d) 24,0.4.

IV. DERIVING LINEAR CONSTRAINTS FOR
THE ILLUMINATION ESTIMATION

Let

holf. 2 0) =~ [

= — (x) - 1o, (x)dx
||1Qf||L1 R2

15)
be the linear affine invariant transformation, as derived in
Section III. Next, we show in the following that the affine
invariance and linearity of the transformation lead to an explicit
formulation of the illumination estimation problem using a
linear set of equations.

Let h be an observation on an affine-transformed object, sub-
ject to an unknown illumination, as defined in (1). Notice that
since f; are differently illuminated observations of the object at
the same pose, they share the same support. We define the el-
lipse calculated from their support as §2;.

Due to the linearity and affine invariance of the transform
derived in (4)—(7), we have that

to(h, Qp, ) = po (Z a; - f,;,Qf,a>

i=1

=S a-wo(fiQp0). (16)
=1

Thus, every value of « yields a single linear constraint on
the illumination coefficients a;. Let a,...,a,, be a set of
m different scaling parameters. Evaluating po for each of
these scaling parameters results in the following set of linear
equations in a1, ..., a,:

Tg' (a1) Ty () ay Ty (a1)

T () T () n T3 (am) )

where TI (o) 210 (hy . o) and TS () 20 (£, Q. ).
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The illumination estimation problem is therefore reduced to
the solution of a linear set of equations. The set of equations
can only be singular in cases, where the intensity image does
not change when increasing the size of the ellipse and the object
is circular symmetric up to an affine transformation. However,
such cases are isoteric.

In the absence of noise, using m = n equations provides
a linear system with n equations and n unknowns that can
be solved by matrix inversion. In the presence of noise, using
m > n equations leads to a linear regression problem. Once
ai, ..., ay, are known, the illumination changes can be compen-
sated for and the problem is reduced to a strictly geometric form
h = f o ¢, where f is known and is given by f = Z?Zl a; .
The remaining, strictly geometric, problem can then be solved
by any global (eg., [12] and [24]) or local-feature-based (eg.,
[5]and [6]) affine registration method.

A. Linear Estimation Framework for the Illumination
Coefficients

The quantities in (17) are subject to noise due to quantization,
interpolation errors, and model mismatches. In addition, the il-
lumination coefficients that represent the object’s illumination
share a joint statistics that represents the probable illuminations
of the object. Hence, we adopt a Bayesian framework to derive a
linear estimator for the illumination coefficients. Rewriting the
noisy version of (17) in a matrix form, we have

B-a=r+w (18)
where B and r are the products of the transformation on the
basis images and the observation, a is a vector of the illumina-
tion coefficients, and w is the “error” vector. Assuming that the
noise is uncorrelated with the illumination coefficients, by [26],

the best linear estimator for the illumination coefficients is given
by

a= E[a]+(C'+BTC,B) ! (BTCy)-(r—BEJa]) (19)

where Cy and C,, are the covariance matrices of the illumina-
tion coefficients a and of the noise term w, respectively. The
statistics of a are learned from the variation of the illumination
coefficients over a training set, as explained in the experiments
in the following. The statistics of w are learned by performing
random affine transformations on the training set and measuring
the difference r — Ba.

B. Implementation and Runtime of the Proposed Solution

The quantities described earlier can be calculated rapidly on a
digital computer. Given a discrete image f(u,v), discretization
of (15) leads to the form

1

Qp ) =
to(f, Q. @) e, L, u,v

f(u,v) - 1q,  (u,v).

Assume that we use IV scaling parameters «. It seems that we
need to perform N summations of the image. However, we can
calculate the sums for all « values in a single pass on the image.
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Fig. 3. Illumination estimation time as a function of the number of image
pixels.

We set a fixed scaling increment «, = k/N. Let Ay be the
summation of f on Q¢ 4, /¢ .a,_, - The following is performed
for each pixel (u, v):

1) Calculate d, the minimum scaling of the ellipse con-

taining (u, v). Therefore, k = [Nd] is the smallest el-
lipse that contains (u,v).

2) Increment Ay by the value of the pixel-f(u, v).
Finally, the required quantities are obtained by o (f, Qf, ) =
Zf:l A

The resulting implementation is linear time O(n), where n is
the number of pixels in the image and does not depend on the
number of scaling parameters. Runtime results of full illumina-
tion estimation process are displayed in Fig. 3. The results are
an average of 100 runs. The algorithm was implemented as a
MATLAB script on an Intel Core 2 Duo, 2.54 Ghz laptop. The
summation phase is implemented as a MEX file.

In the following examples, 50 values of o are used for
calculating the linear constraints. The acquired images are 8-b
grayscale images with values in the range of 0-255.

V. EXPERIMENTS—-ILLUMINATION ESTIMATION

In the following experiments, we test the performance of the
proposed linear solution for the estimation of object’s illumina-
tion in the presence of combined affine geometric deformation
and spatially varying illumination changes. We use an array of
14 light sources to illuminate an object from 14 directions, as
illustrated in Fig. 4.

A set of 75 training images taken at a fixed pose, using a
random illumination power from each light source, is used to
learn the possible illuminations of a doll head. A PCA [27], per-
formed on the differently illuminated images, shows that 98% of
the variation in the illumination can be represented by the mean
image and the first five basis images. We note the mean image
as fp, and the basis functions as f1,..., f5.

An additional set of 74 images illuminated randomly with the
14 light sources is used as a test set. Pseudorandom affine trans-
formations are applied to the test images to produce 296 obser-
vations. The transformations consist of a uniformly distributed
scale factor of 1 to 2, a rotation of 0°-360° and off-diagonal
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TR

Fig. 5. Affine-transformed images with varying illumination from the test
images.

skew terms of —0.3 to 0.3. Fig. 5 displays example images from
the test set.

A. Illumination Changes Compensation in the Presence of a
Geometric Affine Transformation

The experiment described here tests the accuracy of the il-
lumination estimation in the presence of an affine transforma-
tion. Given only the affine-transformed image h = f o ¢, we
wish to estimate the illumination coefficients a1, . .., a5 so that
f = fm~+Y_._; a; fi will be similar to f. The distance measure
of the illumination error is the square root of the mean square
error between f and f.

A histogram of the illumination estimation error is shown in
Fig. 6. An example of the distance measure between different
observations is shown in Fig. 7. The results show that illumi-
nation compensation using the proposed method is capable of
estimating the change in illumination, and produces a template
image that differs from the observation by the geometric change
and low noise only. The average standard deviation on all im-
ages is 6.26 gray levels.
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Fig. 6. Illumination estimation error between the unknown template and the
estimated template from an affine-transformed observation.
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Fig. 8. Robustness to extreme affine transformations (a) Illumination estima-
tion error with increasing skew. (b) Affine-transformed image with 0.7 skew.

B. Robustness of the Illumination Estimation to Extreme
Deformations

Although the theoretical analysis shows that the deforma-
tion is invariant to affine deformations, quantization and inter-
polations error are not taken into account. We therefore test
the amount of distortion that the method can handle. We mea-
sure the growth of the average illumination estimation error as
a function of the skew (the relation between the off-diagonal
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(@) (b)

Fig. 9. Observations with noise, blur, and occlusion. (a) Added noise with standard deviation of 40 gray levels. (b) Blurred image, Gaussian kernel with standard

deviation of 20. (c) Occlusion of 8%.
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Fig. 10. Average illumination estimation error: with noise, blur, and occlusion. (a) Registration with additive noise. (b) Illumination estimation with blur.

(c) Registration with occlusion.

terms and the diagonal terms) of the affine transformation em-
ployed. The matrix becomes singular when the skew is 1. The
results are shown in Fig. 8. The method is stable for a skew
factor of up to 0.7.

C. Effect of Noise Blur and Occlusion on the Illumination
Estimation

In this set of experiments, we test the effects of noise, blur,
and occlusion on the registration result. We conduct the same
illumination estimation experiment, as in Section V-A, with the
exception that the observation h is replaced by an image h that
reflects the phenomenon. The measured score is, as in the pre-
vious experiment, the standard deviation of the pixels differ-
ence image f — f (notice that the unknown template f re-
mains unchanged and only the affine-transformed observation
is degraded).

1) Effect of Noise: To simulate the added noise, the observa-
tion h is added with a white Gaussian noise N so that h = h+N.
Fig. 10(a) displays the average illumination estimation error as
a function of the standard deviation of the noise. Fig. 9(a) dis-
plays an image with the maximal noise level that was tested in
this experiment (added noise with standard deviation of 40 gray
levels). The results demonstrate high robustness of the illumi-
nation estimation process to noise.

2) Effect of Blur: To simulate blur, we use a Gaussian con-
volution kernel K so thath = hx K. Fig. 10(b) displays the av-
erage illumination estimation error as a function of the standard

deviation (width) of the Gaussian kernel. Fig. 9(b) displays an
image with the maximal blur. The results show that it is still pos-
sible to compensate for most of the illumination changes when
the observation is highly blurred. However, the quality of the
estimation degrades from the nonblurred case.

3) Effect of Partial Occlusion: An occlusion of the image is
simulated by a black circle covering parts of the image. The lo-
cation of the circle is selected randomly inside the object, as
shown in Fig. 9(c). Fig. 10(c) displays the average illumina-
tion estimation error as a function of the percentage of the oc-
cluded image area. The method can handle small occlusions of
the image; however, it fails for large occlusions since the em-
ployed operator is based on integration on the entire image.

D. Illumination Estimation With a Small Training Set

In many applications, a large training set for illumination esti-
mation does not exist. However, we show here that illumination
estimation can be performed using a small number of images.
We manually chose four images from the original training set.
In each of the images, the light comes from different direction:
frontal, right, left, and upward illumination. We trained the illu-
mination estimator using only the 4 images and tested the illu-
mination estimation on the test set of 296 images.

The estimation results and the four images are shown in
Fig. 11. The average error is 10.1 gray levels. The results show
that although there is a small degradation in the performance,
the method can still compensate for most of the illumination
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Fig. 11. Estimation with four images as a training set. (a) Illumination estima-
tion error. (b) Training set.

TABLE I
AVERAGE REGISTRATION ERROR (PIXELS) WITH AND
‘WITHOUT PRIOR ILLUMINATION ESTIMATION

SIFT 2.61
SIFT + Illumination 1.37
MSER 2.35
MSER + Illumination | 1.31

changes, even when only a very restricted set of training images
is available.

VI. MSER- AND SIFT-BASED REGISTRATION WITH
ILLUMINATION CHANGES COMPENSATION

In the following experiment, we test the effect of decoupling
the problems of estimating the geometric and radiometric trans-
formations on the performance of commonly used methods for
estimating geometric deformations. The experiment described
here uses the same basis images and test images as in Section V.

Two experiments to estimate the affine transformation be-
tween an observation h = f o ¢ and the (unknown) template
f are conducted. The first experiment is performed without il-
lumination estimation using the mean image f,, as a template.
In the second experiment, the estimation of the affine trans-
formation employs the proposed affine invariant illumination
compensation method and performs the registration using f =
fm + Z?:l a; f; as a template.

In order to emphasize the significant gain in decoupling the
problems of estimating the geometric and radiometric trans-
formations and in employing the proposed method for affine
invariant illumination estimation, estimation of the geometric
deformation is performed using two local-feature-based affine
registration methods: SIFT [5] + random sample consensus
RANSAC [28], and MSER [6] + RANSAC. In theory, local-fea-
ture-based methods gain the lowest benefit from estimating the
radiometric deformation as they normalize the illumination to
local changes in a generic way. The accuracy of the registration
is measured in pixels as an average distance from the location
of each pixel, as determined by the known simulated affine
transformation, to the estimated location. The average error of
each method with and without illumination compensation is
described in Table I. The average registration time (feature ex-
traction + matching) using VLFeat [29] is about 0.8 s, whereas
the average illumination estimation time using the proposed
method is 0.012 s. Therefore, the prior illumination estimation
did not result in a noticeable runtime increase.
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Fig. 12. Tilt and rotation of the plane.

The results show that a prior illumination compensation im-
proves the registration accuracy by a factor of 2 and that even
though local-feature-based methods normalize the illumination
to local changes in a generic way, estimation of the illumination
model considerably improves the accuracy of the registration.

VII. LAB EXPERIMENT—REGISTRATION OF A MOVING OBJECT
WITH PRIOR ILLUMINATION ESTIMATION

The final experiment tests the robustness of the illumination
estimation process, as many of the assumptions made in the
derivation are violated by the experimental setting. Since the
object is not flat, the tilt of the object hides and unveils parts of
the object to the camera. The finite distance between the object
and the camera adds a perspective nature to the geometric trans-
formation. The illumination model is also more complex since
the object is not Lambertian.

The goal of the experiment is to register images of the moving
object in the presence of varying illumination. A glossy toy air-
plane is connected to a two-axis motorized stage for rotation and
tilt. We wish to register an airplane image taken without rotation
and tilt to images taken at varying rotation, tilt, and illumination
conditions.

A. Experiment

We use the same illumination settings as in Section V. The
training set consists of 200 images taken without rotation and
tilt. PCA analysis of the training set shows that ten images rep-
resent 97.2% of the illumination variation of the object. The
increase in the number of basis images from the previous ex-
periment is caused by the non-Labmertian nature of the plastic
object.

The test data set is obtained by rotating the airplane in an-
gles of 0°—80° in increments of 20°, while the tilt of the plane
changes in the range —30° to 30° in increments of 10°. Ten
images are taken at each pose of the airplane. The same illu-
mination estimation process, as in Section V, is applied to pro-
duce the estimated template that differs from the observation by
a geometric change only. We test the improvement to the reg-
istration accuracy of SIFT and MSER gained by performing a
prior illumination compensation. A ground-truth homography is
obtained by manually selecting very localized patterns on each
pose and estimating the homography from the selected points.
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Fig. 13. Registration with and without illumination estimation. An observation and a template image compensated for the illumination change using the estimated
illumination model are displayed in each column. The registration error in pixels using MSER and SIFT is given below each image in the form (registration
error without illumination estimation/registration error using illumination estimation). (a) Observation—rotation 60, tilt 10. (b) Observation—rotation 40, tilt 20.
(c) Observation—rotation 80, tilt 30. (d) Template with estimated illumination. MSER (6.79/4.75) and SIFT (3.62/2.93). (e) Template with estimated illumination.
MSER (6.31/3.89) and SIFT (10.86/5.65). (f) Template with estimated illumination. MSER (12.87/4.30) and SIFT (13.38/5.11).

TABLE II
REGISTRATION RESULTS ON THE AIRPLANE SET

Method Accuracy | Number of failed registration
SIFT 5.31 14
SIFT + Illumination 4.54 0
MSER 5.45 6
MSER + Illumination 4.44 3

B. Results

Examples of the observations and estimated templates in var-
ious poses is displayed in Fig. 13. In each column, the obser-
vation h is shown on the top oW, while the estimated illumina-
tion-compensated template f is shown below. Ideally, the dif-
ference between the two images is the geometric deformation
alone. Table II displays the average error in pixels using MSER
and SIFT, with and without prior illumination estimation. The
proposed method yields a smaller improvement than in the case
of the doll head; however, the prior illumination estimation sig-
nificantly reduces the number of failed registrations (a registra-
tion with an error of more than 200 pixels).

VIII. CONCLUSION

This paper presents a novel approach for handing a com-
plex radiometric—geometric deformation model in registering
two observations on the same object. More specifically, the ob-
servations differ due to a combined effect of an affine geometric
transformation and a radiometric transformation that is location
dependent. In this framework, we derive a method for obtaining

linear and affine invariant constraints for estimating the illumi-
nation model. Thus, the joint problem of illumination estimation
and geometric transformation estimation is decoupled by this
operation into two separate phases. On the first phase, the illu-
mination model is estimated in an invariant manner to the geo-
metric transformation. The problem is then reduced to a strictly
geometric problem, which can be solved by any conventional
affine registration method.

The proposed affine invariant illumination estimation method
is shown to improve both the accuracy and the failure rate of
local-feature-based registration methods. In cases, where the
template and the observation are related by an affine geometric
transformation, the accuracy of the registration improved by a
factor of 2. The prior illumination estimation procedure also
improved the failure rate of the feature-based registration by a
factor of more than 2.

The global nature of the transform and the fact that all the sta-
tistics required in the solution are computed by integration on
areas in the image provide robustness such that the illumination
estimation process is highly insensitive to noise. The proposed
method is very fast as it requires only summation of nested re-
gions in the image and solving a linear set of equations.
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