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Geometry and Radiometry Invariant Matched
Manifold Detection

Ran Sharon, Joseph M. Francos, and Rami R. Hagege

Abstract— Consider a set of deformable objects undergoing
geometric and radiometric transformations. As a result of the
action of these transformations, the set of different realiza-
tions of each object is generally a manifold in the space of
observations. Assuming the geometric deformations an object
undergoes, belong to some finite dimensional family, it has been
shown that the universal manifold embedding (UME) provides
a set of nonlinear operators that universally maps each of
the different manifolds, where each manifold is generated by
the set all of possible appearances of a single object, into a
distinct linear subspace of an Euclidean space. In this paper,
we generalize this framework to the case where the observed
object undergoes both an affine geometric transformation, and
a monotonic radiometric transformation, and present a novel
framework for the detection and recognition of the deformable
objects. Applying to each of the observations an operator that
makes it invariant to monotonic amplitude transformations, but
is geometry-covariant with the affine transformation, the set of
all possible observations on that object is mapped by the UME
into a single linear subspace—invariant with respect to both the
geometric and radiometric transformations. The embedding of
the space of observations is independent of the specific observed
object; hence it is universal. The invariant representation of
the object is the basis of a matched manifold detection and
tracking framework of objects that undergo complex geometric
and radiometric deformations: the observed surface is tessellated
into a set of tiles such that the deformation of each one is
well approximated by an affine geometric transformation and a
monotonic transformation of the measured intensities. Since each
tile is mapped by the radiometry invariant UME to a distinct
linear subspace, the detection and tracking problems are solved
by evaluating distances between linear subspaces. Classification
in this context becomes a problem of determining which labeled
subspace in a Grassmannian is closest to a subspace in the
same Grassmannian, where the latter has been generated by
radiometry invariant UME from an unlabeled observation.

Index Terms— Distance learning, image analysis, matched
filters, object detection.

I. INTRODUCTION

ANALYZING and understanding different appearances
of an object is an elementary problem in various

fields. Since acquisition conditions vary (e.g., pose, illumi-
nation), the set of possible observations on a particular object
is immense. We consider a problem where, in general, we are
given a set of observations (for example, images) of different
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objects, each undergoing different geometric and radiometric
deformations. As a result of the action of the deformations,
the set of different realizations of each object is generally a
manifold in the space of observations. Therefore, the detection
and recognition problems are strongly related to the problems
of manifold learning and dimensionality reduction of high
dimensional data that have attracted considerable interest in
recent years, see e.g., [7]. The common underlying idea unify-
ing existing manifold learning approaches is that although the
data is sampled and presented in a high-dimensional space, for
example because of the high resolution of the camera sensing
the scene, in fact the intrinsic complexity and dimensionality
of the observed physical phenomenon is very low.

The problem of characterizing the manifold created by
the multiplicity of appearances of a single object in some
general setting is studied intensively in the field of non linear
dimensionality reduction. As indicated in [6], linear methods
for dimensionality reduction such as PCA and MDS generate
the desired projections when the observations are mainly
confined to a single low dimensional linear subspace, while
they fail in case the inputs lie on a low dimensional non-
linear manifold. Hence, a common approach among existing
non-linear dimensionality reduction methods is to expand the
principles of the linear spectral methods to low-dimensional
structures that are more complex than a single linear subspace.
This is achieved, for example, by assuming the existence of
a smooth and invertible locally isometric mapping from the
original manifold to some other manifold which lies in a lower
dimensional space, [1]–[3].

An additional family of widely adopted methods aims at
piecewise approximating the manifold or a set of manifolds,
as a union of linear subspaces, in what is known as the
subspace clustering problem, see [20], [13], and the references
therein. The challenge here is to simultaneously cluster the
data into multiple linear subspaces and to fit a low-dimensional
linear subspace to each set of observations. A different
assumption, namely that the data has a sufficiently sparse
representation as a linear combination of the elements of an
a-priori known basis or of an over-complete dictio-
nary [8], [12] leads to the framework of linear dictionary
approximations of the manifolds. Geometrically, this assump-
tion implies that the manifold can be well approximated
by its tangent plane, with the quality of this approximation
depending on the local curvature of the manifold.

Indeed, there are many cases where no prior knowledge on
the reasons for the variability in the appearances of an object
is available. On the other hand, there are many scenarios in
which such information is inherently available, and hence can
be efficiently exploited. In [29], we presented an alternative
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to the direct methods for learning the manifold, that is both
natural to the problem as it exploits the available a-priori
knowledge of the type of expected deformations, and is
computationally highly efficient. We concentrated on the case
where the geometric deformations are the major source for
the variability in the appearances of the object. Assuming the
geometric deformations an object undergoes, are invertible
and belong to some known finite dimensional family, it has
been shown, that the universal manifold embedding (UME)
universally maps each of the different manifolds, where each
manifold is generated by the set all of possible appearances
of a single object, into a distinct linear subspace of a low
dimensional vector space. The universal manifold embedding
is implemented by constructing a set of non linear functionals.
As such, the mapping itself is nonlinear, and no local linear
approximations of the manifold are involved. The universal
manifold embedding provides an exact characterization of the
manifold in contrast with existing dimensionality reduction
methods in which local approximations of the manifold struc-
ture are produced. The evaluation of the universal manifold
embedding for each object requires the knowledge of the group
of transformations it undergoes and a single observation on the
object.

In this paper we expand the framework of the universal
manifold embedding, [29], to the more general case where
the observed object undergoes not only geometric transfor-
mations, but also radiometric transformations. More precisely,
in [29] it is assumed that the only source for the variability
in the object appearance is the geometric deformations the
object undergoes, while the measured image intensities remain
unchanged. In practice, this is rarely the case. Therefore in this
paper we consider the more realistic case where the observed
object undergoes both an affine geometric transformation,
and a monotonic radiometric transformation and prove by
construction the existence of a radiometry invariant universal
manifold embedding (RIUME). This approach is motivated by
the observation that almost any observed surface can be tessel-
lated into a set of tiles such that the deformation of each one is
well approximated by an affine geometric transformation and
a monotonic transformation of the measured intensities.

As could be expected from the fundamental properties of the
UME operator, in the presence of radiometric transformations
the geometry-induced low-dimensional manifold model for
the set of possible observations on an object, [29], becomes
over simplified. Thus, in order to ensure the applicability
of the geometry-induced manifold model, the observations
must be projected onto some “canonic” manifold by finding a
transformation that makes the observation invariant to radio-
metric deformations while being covariant with the geometric
transformation. (This “canonic” manifold can be thought of as
the manifold spanned by the set of all possible observations
generated by the action of the affine group on some template
observation of the object). The resulting framework provides
an exact description of the manifold despite using as low as a
single observation. Hence the need for using large amounts of
observations in order to learn the manifold or a corresponding
dictionary is eliminated. This in turn, makes the method
especially attractive for tracking problems, where in general,

no prior observations of the object are available. Moreover, the
proposed radiometry invariant universal manifold embedding
does not involve any discretization of the model, nor local
approximations of the manifold, as the parametrization of the
manifold remains in the continuum. These new results lead
to the derivation of a radiometry-geometry invariant matched
manifold detector and consequently of a radiometry-geometry
invariant matched manifold tracker.

It is shown in this paper that employing the RIUME
provides a different type of information than existing point
matching algorithms on the one hand, or global registration
algorithms, on the other hand. Point matching algorithms aim
at finding key points in the observed image and characterize
them through the properties of small regions around them.
These inherently local approaches use relatively small amounts
of information (small patches) in generating the descriptor
of a key point. As a consequence they frequently result in
ambiguous descriptors, which in turn lead to high rates of
false matches that need to be eliminated before any further
processing can take place. Such verification procedures require
knowledge of the global geometric transformation model (e.g.,
RANSAC) and are computationally demanding. Moreover,
such global geometric transformation model is often unknown,
or difficult to estimate. On the other end, global registration
algorithms may be applied only when the family of expected
geometric deformations is a-priori known, and the radiometric
deformations between the two observations are minimal. The
RIUME based matched manifold detection scheme provides
a method for efficiently combining the advantages of the
local, key point based methods, and the global methods. This
is achieved by employing the above mentioned observation
that almost any surface can be well approximated by its
tessellation into tiles, such that two observations on the same
tile are related by simultaneous affine transformation of coor-
dinates and a monotonic mapping of the intensities. Thus,
the combinatorial complexity of RANSAC-like methods is
eliminated by efficiently testing larger patches, defined by the
triangulation procedure between key points, to their similarity
to the assumed matching triangular tiles in the other image
using the RIUME induced distance metric between linear sub-
spaces. Since each such triangle is much larger than the small
neighborhoods used to extract the key point descriptors, the
matching procedure of triangular tiles is much more accurate
than any procedure for matching local key point descriptors.

In [30] an early and short description of the concept of
radiometry-geometry invariant matched manifold detection is
presented.

The structure of this paper is as follows: In Section II we
provide the basic definitions and the scope of the proposed
radiometry invariant universal manifold embedding. Then, in
Section III we extend the previously developed framework of
the UME, [29], and prove by construction the existence of a
radiometry invariant universal manifold embedding in the case
where the set of possible geometric transformations the objects
may undergo is the set of affine transformations, and the radio-
metric deformations are monotonic. In Section IV we employ
the geometry and radiometry invariance provided by the
radiometry invariant universal manifold embedding in order
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Fig. 1. The Radiometry Invariant Universal Manifold Embedding framework (from left to right): The physical model that generates the observations -
applying the set of possible radiometric and geometric deformations to some object g produces S̃g which is the set of all possible observations on g. S̃g is a
subset of the space of observations O . The operator R maps each manifold to a radiometry normalized manifold, Sg . The UME - all observations in Sg are
nonlinearly mapped by T to a single linear subspace Hg = T (Sg).

to define and evaluate distances between object manifolds.
In Section V we detail several experiments that illustrate
the strength of the radiometry invariant universal manifold
embedding and help understand the interplay between its
different parameters. Finally, in Section VI the derived RIUME
is employed as the basis of a matched manifold detection and
tracking framework of objects that undergo complex geometric
and radiometric deformations: The observed surface is tessel-
lated into a set of tiles such that the deformation of each one
is approximated by an affine geometric transformation and a
monotonic transformation of the measured intensities.

II. PROBLEM DEFINITION

Let us begin by informally stating the problem studied in
this paper. Suppose we are given two observations g and h,
on the same object. The two observations are related by an
affine transformation of the geometry of the object and a
monotonic transformation of the measured amplitudes, i.e.,

h(x) = U(g(A(x))), (1)

where U is strictly monotonic and A is affine. The right-hand
composition of g with A represents the spatial affine defor-
mation, while the left-hand composition with U represents the
radiometric transforation applied to the signal’s amplitude.

More precisely, let O be the space of observations
(for example, images), let Ã be the set of possible affine
deformations of the object geometry, U the set of monotonic
one-dimensional transformations, and let S be a set of known
objects, where each object is modeled as a compact sup-
port, bounded, and Lebesgue measurable (or more simply,
integrable) function from R

n to R.
We assume that the observations are the result of the

following procedure: We choose an object g ∈ S and some
geometric-radiometric transformation pair (A,U) in Ã×U . An
operator ψ : S×Ã×U → O acts on the chosen object g such
that it jointly undergoes an affine geometric deformation A,
and a monotonic radiometric transformation U , producing an
observation such as h (or g, in case both the radiometric and
geometric deformations are the identity transformation) above.
For a specific object g ∈ S we will denote by ψg the restriction
of the map to this object. For any object (function) g ∈ S
the set of all possible observations on this particular function
is denoted by S̃g . We refer to this subset as the orbit of g

under the direct product Ã × U . In general, this subset is a
non linear manifold in the space of observations. The orbit of
each function forms a different manifold.

The space O has a very high dimension (e.g., the number of
pixels in an image). It is composed of the union of orbits, S̃g ,
of the different objects g in S such that each orbit S̃g is the
result of the action of Ã × U on the object g. As indicated
earlier, existing non-linear dimensionality reduction methods
rely on dense sampling of S̃g to obtain its description using
local linear approximations, or alternatively, provide only an
approximate description of the manifold.

In this paper we show, by construction, that under the above
assumptions there exists a linear space H which we call the
reduced space, and a pair of maps R : O → O and
T : O → H such that the composite map T ◦ R ◦ ψg :
Ã × U → H is invariant to the action of U and is linear
in the parameters defining Ã. This construction holds for
every object g ∈ S, and any monotonic transformation of its
amplitudes. The maps T and R are independent of the object.
We call the map L = T ◦ R, radiometry invariant universal
manifold embedding (RIUME) as it universally maps each of
the different manifolds, where each manifold corresponds to a
single object, into a different linear subspace of H . The map
ψg : Ã × U → O maps Ã × U non-linearly and represents
the physical relation between the object and the observations
on it. For any fixed pose of an object, the map R projects
the entire set of observations related by monotonic amplitude
transformations, to a unique point on the canonic manifold
which represents the orbit of geometry-only deformations of
the object. The map T then maps the result non-linearly so
that the overall map L ◦ ψg : Ã × U → H is such that all
observations from S̃g are mapped to the same distinct linear
subspace Hg of H . We next provide a formal definition of the
RIUME:

Definition 1: A radiometry invariant universal manifold
embedding L : O → H is a map from the space of
functions (observations) into a low dimensional Euclidean
space, H , such that the set L(S̃g) is a linear subspace of H
for any g, and invariant w.r.t. any monotonic transformation
of the amplitudes of g.

Figure 1 schematically illustrates the concept of the radiom-
etry invariant universal manifold embedding. Our aim is to find
a map L such that L(S̃g) is a linear subspace of some linear
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space H ⊂ R
M, universally for every g ∈ S, such that the

map is independent of the deformation parameters.
The existence of the radiometry invariant universal embed-

ding L : O → H implies that many problems concerning
the multiplicity of appearances of an object can be directly
solved in H using classical linear theory, eliminating the need
to employ nonlinear analysis. Thus for example, in order to
characterize the mapped manifold of some object in the linear
space H all that is required is a single sample from the set
of appearances of the object so that the linear subspace in H
can be evaluated.

III. RADIOMETRY INVARIANT UNIVERSAL MANIFOLD

EMBEDDING FOR MULTI-DIMENSIONAL

AFFINE TRANSFORMATIONS

In this section we extend the framework of the universal
manifold embedding, [29], to the more general case where the
observed object undergoes not only geometric transformations,
but also radiometric transformations. More precisely, in [29] it
is assumed that the variability in the object appearance is only
due the geometric deformations the object undergoes, while
the measured image intensities remain unchanged. In practice,
this is rarely the case. Therefore in this section we generalize
the previous results and consider the more realistic case
where the observed object undergoes both an affine geometric
transformation, and a monotonic radiometric transformation.
We prove by construction the existence of a radiometry
invariant UME.

More specifically let R
n be the n-dimensional Euclidean

space and let A : R
n → R

n be an affine transformation of
coordinates, that is, y = A(x) where x, y ∈ R

n , i.e., x =
[x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T such that y = A(x) =
Ax + c and x = A−1y + b, where A ∈ GLn(R), b, c ∈ R

n .
Let ỹ = [1, y1, . . . , yn]T . Thus, x = Dỹ where D is an
n × (n + 1) matrix given by D = [

b A−1
]

that represents
the geometric deformation. Hence, in this case the set of
possible geometric transformations A is parameterized by D
(or equivalently by A and c). Let U : R → R be an invertible
function, representing the monotonic radiometric deformation.

The manifold of the function g ∈ S is given by S̃g = {U ◦
g ◦ A|A ∈ Ã,U ∈ U} and our aim is to find a map L such
that L(S̃g) is a linear subspace of some linear space H ⊂ R

M,
universally for every g ∈ S, such that the map is independent
of the parameters of U and A.

A. Radiometry-Invariant, Geometry-Covariant Representation
Consider the following mapping R : O → O of an

observation g(x) to a new and “normalized” observation G(x),
such that

G(u) = λ[x : g(x) ≤ g(u)]
λ[supp{g(x)}] (2)

where λ is the Lebesgue measure on R
n , and supp{g} denotes

the support of the function g, i.e., the closure of the set where
g does not vanish. Since h = U ◦g◦A we have following [11]
that applying R to both h and g, the remapped observations
G(x) and H(x) are related by the affine relation

H(x) = [G ◦ A](x) = G(A(x)). (3)

Thus, (3) represents an affine, geometric only, relation between
the induced transformations of h and g by the operator R.
In other words by applying the operator R, the dependence
of the relation between h and g in the unknown radiometric
deformation U , has been removed, while the resulting obser-
vations, H(x) and G(x) are two “new” observations related by
an affine transformation A. Thus, the operator R provides a
radiometry-invariant representation of the manifold, and hence
a radiometry-invariant-geometry-covariant relation between
the products of applying it to any two objects h, g ∈ S̃g .
We next derive new representations for H(x) and G(x) that
are invariant to the unknown affine transformation.

B. Radiometry Invariant Universal Manifold Embedding
Define an auxiliary function space, W , such that every

function w : R → R in W is bounded, Lebesgue measurable,
and vanishes at zero. Next, we define the mapping from
the space of observations to itself induced by the functions
in W . More specifically, we define a mapping such that a
function g(x) is mapped by w ∈ W to some function w(g(x)).
This operator is, in general, non linear.

Lemma 1 [10]: Let G,H ∈ Sg be two observations on the
same object such that H = G ◦ A (i.e., U, the radiometric
transformation, is the identity transformation). Let M ∈ N

and let w� ∈ W � = 1, . . . ,M be a set of bounded, Lebesgue
measurable functions w� : R → R, where w�(0) = 0.
Let Dk denote the kth row of the matrix D. Then, linear
constraints (up to a scale factor) on the parametrization of
A are found by applying functionals of the forms

∫

Rn
xkw� ◦

H(x)dx for some w� ∈ W. These constraints take the form
∫

Rn

xkw� ◦ H(x)dx =
∣
∣
∣A−1

∣
∣
∣
∫

Rn

(Dk ỹ)w� ◦ G(ỹ)d ỹ . (4)

Inspecting equation (4) we conclude that application of
each of the non linear functionals to the known relation
H(x) = G(A(x)) amounts to obtaining a linear constraint
(up to a constant scale factor) on the affine transformation
A between the centers of mass of the functions w�(H(x)) and
w�(G(x)) obtained by an identical nonlinear operation on the
amplitudes of H and G. Thus, the proposed method employs
stable “features” (centers of mass) rigorously extracted such
that the correspondence between them is explicitly known.

Let f be some observation on a deformable object and let

T f,1

=

⎡

⎢
⎢
⎢
⎣

∫

Rn
w1 ◦ f (y)

∫

Rn
y1 w1 ◦ f (y) · · · ∫

Rn
ynw1 ◦ f (y)

...
. . .

...∫

Rn
wM ◦ f (y)

∫

Rn
y1 wM ◦ f (y) · · · ∫

Rn
ynwM ◦ f (y)

⎤

⎥
⎥
⎥
⎦

(5)

where in general, the notation T f, j indicates that only
moments of order less or equal to j , of w� ◦ f are employed.
Since in this subsection we consider only moments up to the
first order, in the following we shall use the shorter notation T f

instead of T f,1, when we refer to T f,1.
We next provide a constructive proof of existence of the

RIUME:
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Theorem 1: Let g ∈ S̃g and let {1, x1, . . . , xn} be the set
of basis functions spanning the space of n-dimensional affine
transformations. Let h be some other function in S̃g such that
h = U ◦ g ◦ A, and A ∈ Ã, U ∈ U . Then, there exist a
linear space H ⊂ R

M and a pair of maps R : O → O and
T : O → H such that the restriction of the composite map
to S̃g, denoted by Lg : Ã × U → H , where Lg = L ◦ ψg =
T ◦R◦ψg, is such that Lg = T ◦R◦ψg is a linear map (up to a
fixed scale factor) from Ã to H , invariant of U . Denote by TG
the restriction of T to R ◦ψg. Then, TG is a linear map (up to
a fixed scale factor) from Ã to H . As a linear operator on the
parametrization of Ã, T G admits a matrix representation, TG
of the form (5). The operator Lg is invertible up to a monotonic
amplitude transformation, if and only if TG is of rank n + 1.
The operator Lg is independent of the parameters of A and U.

Proof: Since h = U ◦ g ◦A, we first apply the operator R
defined in (2) to the observations h and g in order to obtain
their radiometry-invariant-geometry-covariant representations
H(x) and G(x), respectively. Following (3) we have that these
representations are related by the affine relation H(x) =
G(A(x)).

Since the vectors in H are M-dimensional and since
L = T ◦ R, then in order to satisfy the required properties
of L, we have that T has to be composed of M components
{T�}M

�=1, where the �-th component of T is such that the
�-th component of T G , T G

� = T� ◦ (R ◦ ψg) is a linear map
from Ã to R. In this case, Lg is also a linear map from Ã to R.
Since by the previous step we have that H = G ◦ A, we are
looking for functionals T�(H) that are linear expressions (up to
a scale factor) in the entries of D for any G. We next construct
T� and T G

� . Using the notation of Lemma 1, we have by
fixing k and by taking � = 1, . . . ,M , that T�(H) = ∫

Rn
xkw� ◦

H(x)dx. Hence, (4) can be rewritten in the following form

TG
� DT

k = |A| TH
�,k (6)

where TG
� is the �th row of TG and TH

�,k is the (�, k + 1)
element of TH. Thus, we have that by choosing a family
of linearly independent functions {w�}M

�=1 ∈ W , we can
construct an operator T G , identical for all k, that for every k
imposes linear constraints on the elements of Dk , which are
the parameters defining Ã. The operator T is constructed by
stacking a sequence of M components {T�}M

�=1, and similarly
T G is constructed by stacking a sequence of M components
{TG
� }M

�=1. Since each operator T� is such that the composed

map T G
� = T� ◦ (R ◦ ψg) is linear in our parametrization of

Ã by the elements of Dk , T G is also linear in the elements
of Dk , for every k = 1, . . . , n, and hence also Lg . Moreover,
using (6) we have that since T G is a linear operator from
Ã to R

M it admits an M × (n + 1) matrix representation,
given by TG . Thus, T G is invertible if and only if TG is of
rank n + 1. Therefore, Lg is invertible up to a monotonic
amplitude transformation, if and only if Tg is invertible.

Finally, L has the required properties to be a radiometry
invariant universal manifold embedding, as it is independent
of the specific parameters of A and U , while its structure is
identical for every g.

Remark 1: The proof of Theorem 1 shows by construction
that there exists a linear space H which we call the reduced
space, and a pair of maps R : O → O and T : O → H
such that the overall map T ◦ R ◦ ψg : Ã × U → H is
invariant to the action of U and is linear in the parameters
defining Ã. This construction holds for every object g ∈ S,
and any monotonic transformation of its amplitudes. The maps
T and R are independent of the object. We call the map
L = T ◦ R radiometry invariant universal manifold embedding
(RIUME) as it universally maps each of the different mani-
folds, where each manifold corresponds to a single object, into
a different linear subspace of H . The map ψg : Ã × U → O
maps Ã×U non-linearly and represents the physical relation
between the object and the observations on it. For any fixed
pose of an object, the map R projects the entire set of
observations related by monotonic amplitude transformations,
to a unique point on the canonic manifold which represents the
orbit of geometry-only deformations of the object. The map T
then maps the result non-linearly so that the composite map
L ◦ ψg : Ã × U → H is such that all observations from S̃g

are mapped to the same distinct linear subspace Hg of H .
Denote D̃ = [e1 DT ] where e1 = [1, 0, . . . , 0]T .
Corollary 1: Let g ∈ S̃g and let h be some other function

in S̃g such that h = U ◦ g ◦ A, where A ∈ Ã, U ∈ U . Then
rewriting (6) in a matrix form we have

TG
∣
∣
∣A−1

∣
∣
∣ D̃ = TH (7)

Since A is invertible, so is its matrix representation D̃,
and hence the column space of TG and the column space
of TH are identical subspaces of H . Hence all choices of the
representative function of S̃g (g, or h, or any other function
in the manifold) are equivalent.

Remark 2: Corollary 1 implies that the functions in the
manifold S̃g form an equivalence class (with respect to produc-
ing the linear subspace by the radiometry invariant universal
manifold embedding). Hence, any function from the manifold
can be chosen as its representative. Any such arbitrary selec-
tion would yield the same linear subspace to which the entire
manifold is mapped by the radiometry invariant universal
manifold embedding.

C. Radiometry Invariant Universal Manifold
Embedding Using High Order Moments

We next extend the results of the previous section where
zero- and first-order moments of the result of applying the non-
linear operators {wk}M

k=1, to the radiometry normalized obser-
vations were considered, and employ higher order moments.
As we show next, these high order moments yield linear con-
straints on corresponding higher order moments of the trans-
formation parameters, and hence provide a more detailed linear
representation of the linear subspace onto which the manifold
is projected. We begin by providing a detailed analysis of
the results when second-order moments are employed. The
extension to higher orders is immediate, along the same lines.

Let di, j denote the (i, j) element of D. Thus, using the
previously defined notations we have xk = ∑n

i=0 dk,i ỹi .
Following a procedure similar to the one in (4), linear
constraints (up to a scale factor) on the moments of the
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parametrization of A are found by applying functionals of
the forms

∫

Rn
xkxpw�(H(x))dx for some w� ∈ W . These

constraints take the form∫

Rn

xkxpw�(G(x))dx

=
∣
∣∣A−1

∣
∣∣
∫

Rn

n∑

i=0

dk,i ỹi

n∑

j=0

dp, j ỹ jw�(G(ỹ))d ỹ

=
∣∣
∣A−1

∣∣
∣

n∑

i=0

n∑

j=0

dk,i dp, j

∫

Rn

ỹi ỹ jw�(G(ỹ))d ỹ . (8)

Thus let

TG,2

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

∫

Rn
y1y1 w1(G(ỹ))d ỹ · · · ∫

Rn
yn ynw1(G(ỹ))d ỹ

TG,1 ...
...

∫

Rn
y1 y1 wM (G(ỹ))d ỹ · · · ∫

Rn
yn ynwM (G(ỹ))d ỹ

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(9)

Let us denote by Q2 the set of the (inverse) affine trans-
formation parameters and their distinct pairwise products,
i.e., Q2 = {d1,1, . . . , dn,n+1, d1,1d1,1, . . . , d1,1d1,n+1, . . . ,
dn,n+1dn,n+1}.

Theorem 2: Let {1, x1, . . . , xn, x1 x1, x1 x2, . . . xnxn} be a
set of basis functions. Let g ∈ S̃g and let h be some other
function in S̃g such that h = U ◦ g ◦A, where A ∈ Ã,U ∈ U .
Let M be some positive integer. Then, there exists a linear
space H ⊂ R

M and a pair of maps R : O → O and
T 2 : O → H , such that the restriction of the overall map
Lg,2 = T 2 ◦ R ◦ ψg : Ã × U → H to S̃g, is such that
the composed map Lg,2 is a linear map (up to a fixed scale
factor) from Q2 to H . As a linear operator on the parame-
trization Q2, T G,2 admits a matrix representation, TG,2 of the
form (9).
The proof follows the same lines as the proof of Theorem 1,
and hence is omitted.

Corollary 2: Let g, h ∈ S̃g and A ∈ Ã. Then rewriting (8)
in a matrix form we have

TG,2
∣
∣
∣A−1

∣
∣
∣ D̃2 = TH,2 (10)

where the elements of D̃2 are obtained by rearranging the
elements of Q2. Assuming D̃2 is invertible, the column space
of TG,2 and the column space of TH,2 are identical subspaces
of H .

Note that the procedure yielding (8) and Theorem 2 can be
extended to employ higher order moments by repeating the
same methodology. This implies that by increasing the order
of the moments from order one in (4), to order two in (8), and
to higher orders, a more detailed characterization of the object
manifold is obtained by projecting it onto a linear subspace
spanned by the columns of TG,1, TG,2, to TG,K for K -th order
moments.

IV. THE DISTANCE BETWEEN MANIFOLDS

Measuring the distance between two subspaces of a larger
subspace is a well explored problem, [23, p. 584], [24]–[26].
More formally, this problem is that of measuring the distance
on the Grassmann manifold of subspaces of dimension n + 1
in an ambient space of dimension M . One way of measur-
ing distance between subspaces is by principal angles. Let
A ∈ R

m×p and B ∈ R
m×q be real matrices with the same

number of rows and assume for convenience that A,B have
full column rank and that p ≥ q . We denote the range (column
space) of A by range (A).
The q principal angles θk ∈ [

0, π2
]

between range (A) and
range (B) are recursively defined for k = 1, 2, . . . , q as

cos (θk) = max
x∈R

p

y∈Rq

∣
∣x T AT By

∣
∣

‖Ax‖2 ‖By‖2

=
∣∣x T

k AT Byk
∣∣

‖Axk‖2 ‖Byk‖2
(11)

subject to xT
i AT Axk = 0 and yT

i BT Byk = 0 for i =
1, . . . , k − 1. Note that all of the principal angles are in the
interval [0, π2 ].

An alternative method for measuring the distance between
subspaces is using the property that projection matrices have
one-to-one correspondence to subspaces. That is, given two
matrices A,B whose column spaces are the same, the orthogo-
nal projection theorem implies that the projection matrix onto
the column space of A is identical to the projection matrix
onto the column space of B. This enables us to measure the
distance between subspaces by measuring the Frobenius norm
of the difference between the projection matrices onto the
different object subspaces: Let PA denote the projection matrix
onto the column space of A. PB is similarly defined. Then,
the relation between the Frobenius norm of the difference
between the projection matrices onto the two subspaces, and
the principal angles between the two subspaces, is given by

2−1/2||PA − PB ||F = || sin θ ||2 (12)

Let P f denote the projection matrix onto the n+1 dimensional
column space of T f defined in (5). Assume g and h are two
observations on the same object, such that they are related
by both an affine geometric transformation, and a monotonic
radiometric transformation of their amplitudes, i.e., h(x) =
U(g(A(x))). Using (3) we have that H(x) = G(A(x)).
Applying (7) we have proved the following theorem:

Theorem 3: Let g ∈ S̃g and let h be some other function
in S̃g such that h = U ◦ g ◦ A, where A ∈ Ã, U ∈ U . Then
PH = PG .

Theorem 3 provides the basis for matched manifold detec-
tion in the presence of both radiometry and geometry transfor-
mations between observations. It is concluded that as long as
two observations on the same object differ by an affine trans-
formation of coordinates and some monotonic transformation
of the pixel amplitudes, the corresponding projection matrices
PH and PG will be identical, while projection matrices that
result from observations on other objects will be different
and hence will yield non-zero distances form PG . The entire
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Algorithm 1 Generation of RIUME Invariant Representation

procedure for generating a RIUME representation of a function
h is summarized in Algorithm 1.

V. PERFORMANCE EVALUATION EXAMPLES

In this section, we detail several synthetic experiments
aimed at investigating the basic properties and parameters of
choice in the UME and RIUME framework. The synthetic set-
up and the knowledge of the experimental parameters enable
a better understanding of the interplay between the different
parameters in generating the UME/RIUME descriptor of the
manifold. In the next section (Section VI) we demonstrate,
on real-world scenarios, the performance of detection and
tracking algorithms which are based on the properties of the
RIUME. In all the presented experiments image intensities are
normalized to the interval [0, 1] .

A. Identification of Object Manifolds

In this example, we demonstrate that the UME can indeed
provide a robust representation of the object manifold. It is
shown that the UME maps different manifolds to corre-
sponding different subspaces, and that these subspaces are
distinguishable using standard methods of subspace classifi-
cation, such as principal angles. In this example 250 object
templates were used, and different observations on them were
synthesized using random affine deformations. Sample images
from the data set are depicted in Fig. 2. Next, the UME was
applied in order to map each observation to an affine-invariant
subspace. The chosen family of nonlinear operators {wi }M

i=1
is of the form

wi (x) =
{

1

0

i−1
M < x ≤ i

M

else
. (13)

For each observation, we computed the principal angles
between its UME representation and the representations of
both its corresponding template and non-matching templates.
Figure 3 shows the distributions of the angles between an
object’s observations and its matching and non-matching
templates. The principal angles between UME representations
provide an equivalent metric to that of the Frobenius norm of
the difference between the corresponding projection matrices,
as given in (12).

One can readily observe that these distributions are very
different and hence easily separable. It is therefore concluded
that the principal angles between the UME representations of
different object manifolds form a highly informative statistic
for discriminating between the manifolds of different objects.
This example shows that the UME indeed provides an efficient

Fig. 2. Sample images from the data set of 250 images used for the examples
in this section.

Fig. 3. Distributions of the principal angles between the UME representations
of an object template and observations, where the observations are on different
deformations of the same object (blue), in comparison with the case where
the observations are on different objects (red).

affine-invariant representation of the possible observations in
the manifold. This result is achieved although the uniform and
universal choice of the nonlinear operators according to (12)
made here (M = 10 was used), implies that no data driven
training procedure is applied in order to optimize the choice
of the nonlinear operators to the empirical statistics of some
training set.

It should be further emphasized that the in-class distribu-
tions contain distances from observations on multiple different
objects and their respective templates. In fact, when building
a classifier which tells apart only a single specific object from
the others, the resulting distributions are even further apart.
Thus, in optimal conditions, the UME is shown to be a reliable
method for evaluating the distances between the manifolds of
different objects.

B. The Choice of Nonlinear Operators {wi }M
i=1 and Its

Effects on the Detector Performance

In this experiment we concentrate on the family of nonlinear
operators {wi }M

i=1 defined in (13), where we compare the
UME based classification for M = 10 and M = 255 in the
presence of additive observation noise. More specifically, for
each choice of M we estimate the distributions of the distances
of the UME representations of differently deformed observa-
tions taken from the same object manifold in comparison with
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Fig. 4. Comparison of the distributions of the distances of the UME
representations of differently deformed observations taken from the same
object manifold (blue), in comparison with the distances of the UME
representations of observations taken from different object manifolds (red).
The upper two graphs show the distributions for the high SNR case, where
relatively little noise is present, the middle and lower pairs show the middle
and low SNR cases, respectively.

the distances of the UME representations of observations taken
from different object manifolds. Figure 4 depicts the distance
distributions for the high-, mid-, and low-SNR scenarios,
respectively. To generate the noisy observations required for
this example, pixel intensity values were normalized to the
interval [0, 1] and Gaussian noise with a standard deviations
of 0.05, 0.12 and 0.2 was added to generate the high-,
mid-, and low-SNR cases, respectively. The distance between
the manifolds of two objects is evaluated as the Frobenius
norm of the difference between their corresponding UME
projection matrices, as given in (12). The results indicate that
the performance when M = 10 shows higher robustness in
the presence of noise than in the case where M = 255.
In addition, using a smaller number of operators results in
a computationally more efficient procedure. We note that the
uniform and universal choice of the nonlinear operators made
in this paper implies that no data driven training procedure
is applied in order to optimize the choice of the nonlinear
operators to the empirical statistics of a training set. It is
therefore guaranteed that the performance of the classification
scheme is not biased towards any specific data set. On the other
hand, this universal, data-independent choice of the nonlinear
operators is clearly suboptimal in the case where the statics
of the data can be learned from a training set.

C. Sampling Resolution

In this example we explore how limitations encountered
in real-world scenarios affect the performance of the UME.
Problems such as low resolution and incorrect segmentation
may be unavoidable in many applications, and it is desirable
to understand how robust the UME is to these issues. The
next experiment demonstrates how the performance of the
UME in identifying different manifolds behaves as a function
of the sampling resolution of the observations. Note that
in the previous sections images are described as functions
from R

2 to R. In practice however, the intensity samples
are available only on some finite grid. Approximating the

Fig. 5. ROC graphs based on UME representations constructed from images
of different resolutions. The numbers in the legend provide the number of
samples (pixels) per object.

integrals given in the description of the UME by summations
causes an error in the computation of the matrix, which in
turn causes a perturbation of the subspace. Yet, sampling is
unavoidable, so we must analyze the performance of the UME
with different resolutions to determine its operational range
and limitations. In this experiment a data set of 250 objects
was chosen and new observations on these objects were
generated using random affine geometric deformations and
at different resolutions of the observations. The aim here
is to detect and identify a given object that has undergone
an unknown affine deformation. The distance between the
manifolds of two objects is evaluated as the Frobenius norm
of the difference between their corresponding UME projection
matrices, as given in (12). Figure 5 depicts the results of this
experiment: an ROC graph is generated for each resolution,
illustrating the detector’s performance. For every point in the
ROC the PD coordinate is evaluated as the integral from −∞
to the chosen threshold level of the in-class distribution, while
the PF A coordinate is evaluated as the integral from −∞
to the same threshold level of the out-of-class distribution.
It is evident that while at high sampling rates we observe the
expected near perfect ROC, as the resolution deteriorates so
does the performance.

D. Performance as a Function of the
Number of Moments Used

In this set of examples, we wish to test how the number
of moments taken when calculating the UME representation
affects performance in the presence of noise. Theoretically,
using more moments means extracting a more detailed repre-
sentation of the manifold. Thus, from an information-theoretic
perspective, the more moments taken, the easier it becomes to
distinguish between manifolds. On the other hand, employing
higher order moments in order to characterize each object
manifold, results in a higher dimension UME subspace for
each object, which leaves less room in the ambient space
to separate different object classes. The experiments are per-
formed in the presence of additive noise, the affine transfor-
mation parameters are selected at random, and the order of
moments used to calculate the RIUME representation in (9)
is modified from zero to four. The RIUME representation of
the object in then employed to evaluate the corresponding
projection matrix PG .

The results of evaluating the distances between the projec-
tion matrices are depicted in Figure 6. From these results,
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Fig. 6. In-class (blue) and out-of-class (red) distance distribution using
moments of different orders.

it is concluded that in the presence of noise the best repre-
sentation of the object is achieved by the subspace created
by the vector of the histogram, since the zero order moment
using the choice of nonlinear operators defined in (13) is
effectively the histogram of the image. However, we note
that this experiment was performed in a scenario where it is
a-priori known that illumination is constant (except for the
noise effects). Since application of the operator R in order
to achieve radiometric invariance in the practical case where
illumination changes are present, reduces the discriminative
power of the image histograms, it is concluded that the best
detection and recognition performance is achieved by employ-
ing the zero and first order moments, as defined by TG,1 and
Theorem 1.

E. On the Difference Between the RIUME and the UME

We bring several examples that illustrate the advantage of
using the RIUME over the UME. First, the point is illustrated
in a synthetic setting. Using a setup similar to that used
in previous synthetic experiments in this paper, observations
were generated on 250 different objects. This time, however,
each observation was created using both a random affine
geometric deformation and a monotonic radiometric defor-
mation. RIUME and UME representations were computed
from the observations and the undeformed templates. Then,
we calculated the distance of each observation representation,
given by the projection matrix PH, from its corresponding
template representation, given by the projection matrix PG ,
(the in-class) and the distance of each observation repre-
sentation from unrelated templates (the out-class). Figure 7
depicts the distributions of the in- and out- classes using the
RIUME and the UME representations. It can be seen that in
the presence of illumination changes, applying the radiometric
normalization operator that is part of the RIUME is crucial
to the success of the identification task. Note that following
the application of the operator R to each of the observations,
the distributions of the intensities of the resulting images
become more similar.

Fig. 7. In-class and out-of-class distributions - Performance comparison of
the UME and RIUME.

Fig. 8. The two images used to demonstrate the performance of the UME vs.
RIUME. The patches used in the example are marked with a dashed red line.

We now proceed to show the importance of using the
RIUME in real-world scenarios. The next example involves
two images taken by a camera (as opposed to the previously
presented synthetically deformed examples). Figure 8 depicts
two images of the same object taken from different angles
and at different times such that the amplitude levels of
identical features in the scene are significantly different. In this
experiment we have extracted two corresponding patches out
of the images (the triangular patches are marked with a dashed
line in both images). Using the previously defined notations,
we shall denote them g and h. Since locally, the geometric
homography transformation between the two patches can be
approximated by an affine transformation, a natural choice
based on the geometric argument would be to evaluate the
UME representations of both patches (i.e., Tg and Th) and
to verify that indeed the Frobenius norm of the difference
between the projection matrices on the column spaces of
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the UME representations of both patches is close to zero.
However, it turns out that the Frobenius distance between
the two projection matrices is approximately 1.87, which is
well within the range of distances from the UME representa-
tions of unrelated objects. On the other hand, the distance
between the RIUME representations of the two triangular
patches TG and TH yields a distance of 0.46, which is small
enough to allow the identification of both patches as being
observations on the same object in the world.

F. The RIUME in Comparison to SIFT as Descriptors

In the following we provide a comparison between
the RIUME based projection matrix (denoted by PH in the
notation of Algorithm 1) as the descriptor of a patch h and the
SIFT descriptor [31], chosen as a typical representative of the
large family of local key-point descriptors (that includes meth-
ods such as SURF, GLOH, HOG). The goal of this comparison
is to analyze using a comparative study the discriminative
power of each of the descriptor types, when applied in similar
conditions.

In this experiment, a data set of 250 objects was chosen and
new observations on these objects were generated using ran-
dom affine geometric deformations and monotonic radiometric
deformations. Then, the SIFT feature detector was applied and
the SIFT descriptor was attached to each detected key-point in
both the template and the observation. Since the deformation
is known, we were able to consider only pairs of features
which were correctly matched and for these, we calculated
the distances between their descriptors. Since SIFT features are
extracted from a fixed size neighborhood at any given scale, we
chose only pairs of features for which SIFT’s scale selection
was correct, in order to neutralize the deterioration in the
SIFT performance related to the fact that SIFT uses fixed size
neighborhoods at all scales. We compared these distances to
distances between non-matching SIFT descriptors in order to
produce the ROC graphs in Figure 10. To further illustrate the
advantage of using the RIUME over SIFT, we controlled the
amount of skew in the geometric deformations (See Fig 9 for
typical examples). The results demonstrate that the SIFT per-
formance deteriorates as the skew becomes more significant.
The ROC curves of SIFT are compared to the corresponding
ROC curve generated by the RIUME on 10 × 10 patches
(in the original observation, before transformation) undergoing
the same type of deformations. The RIUME performance is
not affected by introducing skew, so only the results under
maximal skew conditions are displayed. It is shown that
in all the scenarios considered, the RIUME provides better
performance than the SIFT. When patches are allowed to be
bigger than 10 × 10, as is the typical case in the scenarios
in which the RIUME should be employed, an even better
classification on synthetic examples is achieved.

Finally, it is emphasize that the RIUME and SIFT are
entirely different methods of extracting descriptors, which as
explained in detail in the next section are aimed at different
detail levels of characterizing the patch, and hence for different
purposes. While the RIUME advantage is that it is designed
to extract information from larger patches than SIFT does,

Fig. 9. Examples of the deformations used to produce comparison with SIFT.
The left image represents the hard skew case, and the right image represents
the medium skew case. The no skew case is simply a rotation and is not
shown here.

Fig. 10. Comparison with SIFT. ROC curves generated using the SIFT
descriptor are displayed in yellow, orange and red. The corresponding
ROC curve for RIUME is in blue.

and has better invariance to a larger class of deformations,
it requires its input patches to be properly segmented. On the
other hand, SIFT is designed to detect and characterize local
key-point. As explained in the next section, the RIUME based
matched manifold detection scheme provides a method for
efficiently combining the advantages of the local, key point
based methods, and the global registration methods.

VI. LOCAL MATCHED MANIFOLD

DETECTION AND TRACKING

In general, the observed surface is not a single plane
undergoing an affine transformation, and the radiometric vari-
ations across observations are not necessarily monotonic.
Nevertheless, almost any surface can be well approximated
by its tessellation into tiles, such that two observations on the
same tile are related by simultaneous affine transformation of
coordinates and a monotonic mapping of the intensities. In this
scenario the modeling assumptions of the above derivation
hold and hence the proposed detection scheme becomes highly
practical as we explain in detail in the sequel.

A. Matched Manifold Detection

1) The Principles of Operation: Given two observations that
contain an object to be detected, the first step in constructing
the radiometry-geometry invariant matched manifold detection
framework, is to apply some point matching algorithm in
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Fig. 11. Example of the operation of the matched manifold detector.
A Delaunay triangulation is calculated on tentatively matched points in the
upper image. This triangulation is projected onto the lower image. The
irregular triangles seen in the lower image are due to both matching errors
from the point-matching initializer, and severe geometric deformations. The
distance between the RIUME representations of the tentatively matching
triangular tiles in both images is color coded on the triangles themselves,
from green indicating small distance to red indicating large distance.

order to find tentatively corresponding scene points in the
two images. Given the two sets of tentatively corresponding
points, the Delaunay triangulation is applied to tessellate one
of the images into a set of disjoint tiles. Each of these tiles
is assumed to be a planar surface, such that if the set of
three points defining a triangular tile in one image indeed
matches a set of three points on the other image, then the
resulting triangular surfaces will be related by simultaneous
affine transformation of coordinates and a monotonic mapping
of the intensities.

Fig. 11 depicts an example illustrating a single stage of the
process: The tentatively corresponding points from the point-
matching algorithm are dilated in order to control the size
of tessellation tiles, and a Delaunay triangulation is calcu-
lated on the reduced set of points to obtain the tessellation.
Next, the distance between the RIUME representation of
each tentatively corresponding pair of triangles is calculated.
This procedure is repeated with various choices of reduced

sets of tentatively corresponding points, in varying density,
in order to increase the probability of choosing correctly
matched tiles at the “right” scale. The optimal scale is one
that yields triangular tiles, large enough to contain enough
information and yet small enough so that the assumption that
each of these tiles represents a planar surface, related to its
corresponding tile by a simultaneous affine transformation
of coordinates and a monotonic mapping of the intensities,
holds. In Fig. 11, the distance between each pair of tentatively
matching triangular tiles in both images is color coded on
the triangles themselves, from green indicating small distance
to red indicating large distance. Note that triangular tiles
that result from false initial point matches, yield projection
matrices that cannot be matched with projection matrices of
tiles in the other image. Hence, they are excluded from the set
of matching tiles (and hence are not green shaded). Following
the completion of the described test, the affine deformations
computed from each pair of matching triangles are used to
provide a mapping and dense matching for all the pixels in
the area covered by the matched triangles.

In general, the proposed algorithm can work on top of
any state-of-the-art point matching algorithm. Since any given
tile pair (source and target) in our tessellation is created
by vertices that constitute point matches, it is successfully
matched only if this entire set of matches is correct (e.g., in
case of triangulation, all 3 matches have to be correct).

Thus the RIUME is employed in order to provide a different
type of information than existing point matching algorithms
on the one hand, or global registration algorithms, on the
other hand. Point matching algorithms aim at finding key
points in the observed image and characterize them through
the properties of small regions around them. These inherently
local approaches use relatively small amounts of information
(small patches) in generating the descriptor of a key point.
As a consequence they result in non distinctive descriptors,
which in turn lead to high rates of false matches that need
to be eliminated before any further processing can take
place. Such verification procedures require knowledge of the
global geometric transformation model. A prominent example
is the usage of the RANSAC algorithm [27] to eliminate
faulty matches. However, such global geometric transforma-
tion model is often unknown, or difficult to estimate. On the
other end, global registration algorithms may be applied
only when the family of expected geometric deformations is
a-priori known, and the radiometric deformations between the
two observations are minimal. The RIUME based matched
manifold detection scheme provides a method for efficiently
combining the advantages of the local, key point based meth-
ods, and the global methods. This is achieved by employing the
observation that almost any surface can be well approximated
by its tessellation into tiles, such that two observations on the
same tile are related by simultaneous affine transformation
of coordinates and a monotonic mapping of the intensities.
Thus, the combinatorial complexity of RANSAC-like methods
is eliminated by using the RIUME for directly testing large
patches defined by key points for their similarity. Since each
such triangle is much larger than the small neighborhoods used
to extract the key point descriptors, the matching procedure of



4374 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Fig. 12. Two images, taken from different view points but contain objects
in common. The green shaded areas in both images were identified by the
matched manifold detector as identical objects in both images.

triangular tiles is much more accurate than any procedure for
matching local key point descriptors.

2) Matched Manifold Detection in Natural Scenes: The
probability for a successful tile matching naturally increases
with the precision of the point matches. Thus, the pro-
posed matched manifold detector achieves significantly faster
results when employed on top of more accurate point match-
ing algorithm that produces lower rates of false matches.
In this work, we used the expansion based matching approach
introduced in [32], where matches are extracted with a low
rate of false matches, and thus provide successful matches
of many object tiles. Using the metric (12) for the distance
between subspaces, false matches between triangular surfaces
are efficiently rejected.

Figure 12 provides an example of the results obtained by
applying the radiometry-geometry invariant matched manifold
detector. The two images, although taken from different view
points and at different times, contain objects in common. The
green shaded areas in both images were identified as identical
objects in both images. A decision that a pixel belongs to
identical objects in both images is made only if it is identified
to belong to matching triangles in both images, for at least
two different tessellations obtained by the procedure described
in the previous subsection.

Fig. 13. Sistine Chapel Image A.

Fig. 14. Sistine Chapel Image B.

3) The RIUME in Comparison with the UME in Match-
ing Natural Scenes: We next elaborate on an example that
demonstrates the difference in the effectiveness of employing
the RIUME and the UME as detection building blocks of
the matching-and-registration framework, built on top of the
matched manifold detector as described in the previous subsec-
tion. Two images of the Sistine Chapel (Fig. 13 and Fig. 14),
taken at different times, by different cameras and from
different positions were used as inputs to the matching-and-
registration process. The matching-and-registration process
was performed twice, once with the RIUME based projection
matrix (denoted by PH in the notation of Algorithm 1) as the
descriptor of the manifold of each triangle and once with
the UME based projection matrix, Ph , as the descriptor of
the manifold of each triangle. Figures 15 and 16 depict the
pixels successfully mapped to their corresponding counterparts
using each method. It can be observed that application of
the RIUME based projection matrix as the descriptor of the
manifold of each triangle yields much better performance,
successfully mapping more pixels from one image to the
other. This improved performance is highly important in tasks
that are to follow that of matching-and-registration of the
individual triangles of the tessellation result. These include
tasks like detection, tracking (demonstrated below), structure
from motion, and recognition of complex objects. As we have
seen, applying the RIUME is a key factor in the ability to iden-
tify images undergoing illumination changes. In conclusion,
applying the composed operator T ◦ R allows for successful
object identification in the presence of significant variability
in the illumination conditions.
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Fig. 15. Registration with RIUME, mapped pixels are colored.

Fig. 16. Registration with UME, mapped pixels are colored.

B. Matched Manifold Tracking

Next, we demonstrate an application in tracking a complex
object. Following a pre-segmented object of interest along
a video sequence is a task of great importance in many
applications, including video summarization, security-related
products, and automated video photography using robots. The
proposed matched manifold detector framework, well fits as a
building block of a tracking scheme after complex objects, as it
provides stable information on the pose of the object of interest
in each frame of the video sequence. While the proposed
matched manifold tracker can be incorporated in a more
complete and robust tracking mechanism that includes for
example a Kalman filter or a particle filter, we employ in this
example the most basic version, that utilizes only the matched
manifold detector with no additional feedback or correction
mechanisms, to produce the presented results.

The matched manifold tracker employs the tessellation
based matched manifold detection-and-registration method
proposed earlier in this section, to each consecutive pair of

Fig. 17. Tracking application: Marking of the object of interest.

Fig. 18. Tracking application: Estimated object location after 2s.

Fig. 19. Tracking application: Estimated object location after 4s.

Fig. 20. Tracking application: Estimated object location after 6s.

frames, thus advancing the prediction of the pose of the object
of interest along the video sequence. More specifically, each



4376 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

pair of consecutive frames is tesselated into tiles, and the
matching of the tiles is tested using the matched manifold
detector. Once a pair of tiles has been verified to match,
the affine transformation between the tiles is evaluated and
hence the transformation of their interior points is known from
each frame to the next one. Points in the object of interest are
considered to be reliably tracked only if they were identified
to belong to matching triangles in both images, for at least
two different tessellations of the pair of images. In this way,
each of the points of the object of interest is tracked from
frame to frame. Figures 17-20 depict frames along the progress
of the video sequence, with a temporal separation of 2 second
between each frame (the video sequence itself is sampled
at 10 frames per second). The green mask represents the
successfully tracked pixels in the object of interest. The reader
can observe that the object is tracked with high precision
throughout the video despite the large changes in the viewing
angle and illumination along the sequence. It should be noted
that the algorithm uses no assumptions whatsoever on the
camera, the deformations caused by the lens, or any side
information on the object other than the initial marking in
the first frame of the object to be tracked.

VII. CONCLUSIONS

We presented a novel approach for solving the problem
of manifold learning, estimation, and detection for the case
where the manifold is comprised of the set of all possible
observations resulting from the simultaneous action of affine
geometric deformations and monotonic radiometric transfor-
mations, on some object. Applying to each of the observa-
tions the radiometry invariant universal manifold embedding
operator, the set of all possible observations on that object is
mapped into a single linear subspace - invariant with respect
to both the geometric and radiometric transformations. The
derivation enables the representation of the object classifica-
tion and detection problems in a linear subspace matching
framework. Since the embedding of the space of observations
in the linear space is independent of the specific observed
object, it is universal. The derived RIUME provides an exact
description of the manifold despite using as low as a single
observation, and hence the need for using large amounts of
observations in order to learn the manifold or a corresponding
dictionary, is eliminated. Moreover, the proposed RIUME
does not involve any discretization of the model, nor local
approximations of the manifold, as the parametrization of the
manifold remains in the continuum.

The invariant representation of the object by the RIUME
is the basis of a matched manifold detection and tracking
framework of objects that undergo complex geometric and
radiometric deformations: The observed surface is tessellated
into a set of tiles such that the deformation of each one
is well approximated by an affine geometric transformation
and a monotonic transformation of the measured intensities.
Since each tile is mapped by the radiometry invariant UME
to a distinct linear subspace, the detection and tracking
problems are solved by evaluating distances between linear
subspaces. Classification in this context becomes a problem of
determining which labeled subspace in a Grassmannian is

closest to a subspace in the same Grassmannian, where the
latter has been generated by the RIUME from an unlabeled
observation.
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