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Abstract

The problem of jointly estimating the number as well as the parameters of two-

dimensional sinusoidal signals, observed in the presence of an additive colored

noise field is considered. We begin by establishing the strong consistency of the

non-linear least squares estimator of the parameters of two-dimensional sinusoids,

when the number of sinusoidal signals assumed in the field is incorrect. Based

on these results, we prove the strong consistency of a new family of model order

selection rules.
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1 Introduction

We consider the problem of jointly estimating the number as well as the parameters of two-

dimensional sinusoidal signals, observed in the presence of an additive colored noise field.

This problem is, in fact, a special case of a much more general problem, [8]: From the 2-D

Wold-like decomposition we have that any 2-D regular and homogeneous discrete random field

(analogous of the 1-D wide-sense stationary process) can be represented as a sum of two mutually

orthogonal components: a purely-indeterministic field and a deterministic one. In this paper

we consider the special case where the deterministic component consists of a finite (unknown)

number of sinusoidal components, while the purely-indeterministic component is an infinite order

non-symmetrical half plane, (or a quarter-plane), moving average (MA) field (colored noise field).

This modeling and estimation problem has fundamental theoretical importance, as well as various

applications in texture estimation of images (see, e.g. [7] and the references therein) and in

space-time adaptive processing of airborne radar data (see, e.g. [28] and the references therein).

Many algorithms have been devised to estimate the parameters of two-dimensional sinusoids

observed in the presence of an additive white noise field and only a small fraction of the derived

methods has been extended to the case where the noise field is colored (see, [6], [11], [14], [16],

[17], [25], and the references therein). Moreover, most of these algorithms assume the number of

sinusoids is a-priori known. However this assumption only rarely holds in practice.

In the past several decades the problem of model order selection for 1-D signals has received

considerable attention. In general, model order selection rules are based (directly or indirectly) on

three popular criteria: Akaike Information Criterion (AIC), [1], the Minimum Description Length

(MDL), [23] and the Bayesian Information Criterion (BIC) [24]. All these criteria have a common

form composed of two terms: a data term and a penalty term. The data term monotonically

decreases as the model order increases. The data term is usually taken to be the negative log-

likelihood for an assumed model order, or the variance of the residual component of the least-square

regression for an assumed model order. The penalty term is a function (usually linear or log-linear)

of the model order and the size of the a data sample. For example, AIC penalty is a linear function

of the model order only, while the MDL/BIC penalties are functions of both the model order and

the log of the size of the data sample. The penalties of MDL and BIC are identical.

In [26] and [27] Zhao et. al. proposed the Efficient Detection Criterion (EDC) for detecting

the number of signals observed in white or colored noise. In contrast to the fixed penalties of

AIC/MDL/BIC model order selection rules, the penalty term of EDC is not fixed, but rather a

family of penalties. The strong consistency of EDC has been proven for the case where the penalty
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term increase slower than the size of data, but faster than loglog of size of data. For example,

MDL/BIC penalty which increases with a rate of log of the size of the data is a member of EDC

penalty family.

Due to its theoretical and practical importance in many problems of statistics and signal

processing, the question of how to determine the number of 1-D sinusoids observed in the presence

of white or colored noises has been extensively investigated (see [5], [15], [16], [18], [19], [21], and

the references therein). Quinn, [21], has proved that in the case of 1-D sinusoids observed in white

noise AIC/MDL/BIC type model order selection rules lead to consistent order selection only if

the penalty function increases with a rate proportional to the log of the size of data and the

proportionality constant has a crucial role in the consistency of estimator [21].

The problem of model order selection for multidimensional fields in general, and multidimen-

sional harmonic fields in particular, has received much less attention. Usually one of the standard

penalties (MDL/BIC penalties are among the most popular) is applied to solve the model order

selection problem for 2-D sinusoids in noise (see, e.g. [20]) or other penalties which were derived

for the 1-D case are adopted for the 2-D case (see, e.g. [18]).

In [12], following ideas of [21], we proved the strong consistency of a large family of model order

selection rules specifically designed for the case of 2-D sinusoids observed in white Gaussian noise.

In the present paper we derive a strongly consistent model order selection rule, for jointly estimat-

ing the number of sinusoidal components and their parameters in the presence of colored noise.

This derivation extends the results of [12] to the case where the additive noise is colored, modeled

by an infinite order non-symmetrical half-plane or quarter-plane moving average representation.

Moreover, in the case considered in this paper, the noise field is not necessarily Gaussian.

The proposed criterion has the standard form of a data term and a penalty term, where the

data term is the variance of the residual of the least squares estimator evaluated for the assumed

model order (the loss function). It is well known that the non-linear least square estimator of the

parameters of 2-D sinusoids in noise is strongly consistent, [14]. However, this result was proven

only for a case when the number of sinusoids is a-priori known and correct. Since similarly to

AIC/MDL/BIC framework, we evaluate the data term for any assumed model order, including

incorrect ones, we should first address the meaning of consistency of least squares estimation of

the parameters of 2-D sinusoidal signals when the assumed number of sinusoids is incorrect.

Let P denote the true number of 2-D sinusoidal signals in the observed field and let k de-

note their assumed number by the least squares estimator of the model parameters. In the case

where the number of sinusoidal signals is under-estimated, i.e., k < P , we prove in the following

the almost sure convergence of the least squares estimates to the parameters of the k dominant

3



sinusoids. In the case where the number of sinusoidal signals is over-estimated, i.e., k > P , we

prove the almost sure convergence of the estimates obtained by the least squares estimator to the

parameters of the P sinusoids in the observed field. The additional k−P components assumed to

exist, are assigned by the least squares estimator to the dominant components of the periodogram

of the noise field. These results extend our previous results on the consistency of the least squares

estimator of complex exponentials observed in the presence of an additive white noise field [13].

The penalty term of the proposed model order selection rule is proportional to the logarithm

of the size of the data sample. Similarly to [12] and [21], the coefficient of proportion has a crucial

role in the consistency of estimator. We will prove the strong consistency of the new model order

selection criterion and will show how different assumptions regarding the noise field affect the

penalty term of the criterion. The proposed criterion completely generalized the previous results

[12], and provides a strongly consistent estimator of the number as well as of the parameters of

the sinusoidal components.

2 Notations, Definitions and Assumptions

We begin by formulating the general framework. Let {y(n,m)} be a real valued field,

y(n,m) =
P∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n, m), (1)

where 0 ≤ n ≤ N−1, 0 ≤ m ≤ M−1 and for each i, ρ0
i is non-zero. Due to physical considerations

it is further assumed that for each i, amplitude |ρ0
i | is bounded .

The noise field {w(n,m)} represents the purely-indeterministic component of the Wold decom-

position and is assumed to be an infinite order non-symmetrical half plane moving average (MA)

field.

Recall that the non-symmetrical half-plan total-order is defined by

(i, j) º (s, t) iff (i, j) ∈ {(k, l)|k = s, l ≥ t} ∪ {(k, l)|k > s,−∞ ≤ l ≤ ∞} . (2)

Let D be an infinite order non-symmetrical half-plane support, defined by

D =
{
(i, j) ∈ Z2 : i = 0, 0 ≤ j ≤ ∞} ∪ {

(i, j) ∈ Z2 : 0 < i ≤ ∞,−∞ ≤ j ≤ ∞}
. (3)

Hence the notations (r, s) ∈ D and (r, s) º (0, 0) are equivalent.
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We assume that {w(n,m)} is an infinite order non-symmetrical half-plane MA noise field, i.e.,

w(n,m) =
∑

(r,s)∈D

a(r, s)u(n− r,m− s), (4)

such that the following assumptions are satisfied:

Assumption 1: The field {u(n,m)} is an i.i.d. real valued zero-mean random field with

finite variance σ2, such that E[|u(n,m)|α] < ∞ for some α > 3 .

Assumption 2: The sequence a(i, j) is an absolutely summable deterministic sequence, i.e.,

∑

(r,s)∈D

|a(r, s)| < ∞. (5)

Let fw(ω, υ) denote the spectral density function of the noise field {w(n,m)}. Hence,

fw(ω, υ) = σ2

∣∣∣∣
∑

(r,s)∈D

a(r, s)ej(ωr+υs)

∣∣∣∣
2

. (6)

Assumption 3: The spatial frequencies (ω0
i , υ

0
i ) ∈ (0, 2π) × (0, 2π), 1 ≤ i ≤ P are pairwise

different. In other words, ω0
i 6= ω0

j or υ0
i 6= υ0

j , when i 6= j.

Let {Ψi} be a sequence of rectangles such that Ψi = {(n,m) ∈ Z2 | 0 ≤ n ≤ Ni − 1, 0 ≤ m ≤
Mi − 1}.

Definition 1: The sequence of subsets {Ψi} is said to tend to infinity (we adopt the notation

Ψi →∞) as i →∞ if

lim
i→∞

min(Ni,Mi) = ∞,

and

0 < lim
i→∞

(Ni/Mi) < ∞.

To simplify notations, we shall omit in the following the subscript i. Thus, the notation Ψ(N,M) →
∞ implies that both N and M tend to infinity as functions of i, and at roughly the same rate.

Definition 2: Let Θk be a bounded and closed subset of the 4k dimensional space Rk ×
((0, 2π)× (0, 2π))k × [0, 2π)k where for any vector θk = (ρ1, ω1, υ1, ϕ1, . . . , ρk, ωk, υk, ϕk) ∈ Θk the

coordinate ρi is non-zero and bounded for every 1 ≤ i ≤ k while the pairs (ωi, υi) are pairwise

different, so that no two regressors coincide. We shall refer to Θk as the parameter space.

From the model definition (1) and the above assumptions it is clear that

θ0
k = (ρ0

1, ω
0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
k, ω

0
k, υ

0
k, ϕ

0
k) ∈ Θk.
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Define the loss function due to the error of the k-th order regression model

Lk(θk) =
1

NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

k∑
i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)2

. (7)

A vector θ̂k ∈ Θk that minimizes Lk(θk) is called the Least Squares Estimate (LSE). For

the case where k = P , the asymptotic properties of this estimator are analyzed in detail in

[3], under slightly more restrictive assumptions on the properties of the purely-indeterministic

component of the observed field, than those made in Assumption 1 and Assumption 2, above.

More specifically, it is shown in [3] that if the purely-indeterministic field satisfies a combination

of conditions comprised of a strong mixing condition and a condition that it has uniformly bounded

4 + δ absolute moments for some δ > 0, the LSE is consistent asymptotically normal (CAN) and

asymptotically efficient if the purely-indeterministic field is further assumed to be Gaussian. In

[14] it is further shown that under weaker assumptions that those made in the present paper, the

LSE is a strongly consistent estimator of θ0
P and is consistent asymptotically normal.

3 Strong Consistency of the Over- and Under-Determined

LSE

As mentioned in the Introduction, it is well known that the least squares estimator of the param-

eters of 2-D sinusoids observed in the presence of colored additive noise field is strongly consistent

(see [14]). However, this result relies on the assumption that the correct number of sinusoids is

a-priori known. In this section we consider the asymptotic behavior of the LSE when the assumed

number of sinusoids is incorrect.

The first theorem establishes the strong consistency of the least squares estimator in the case

where the number of the sinusoidal regressors is lower than the actual number of sinusoids. The

second theorem establishes the strong consistency of the least squares estimator in the case where

the number of the regressors is higher than the actual number of sinusoids. These theorems extend

the results proved in [13] for the case where the additive noise field is white and complex-valued.

Let k denote the assumed number of observed 2-D sinusoids, where k < P , i.e. the number of

regressors is lower than the actual number of sinusoids.

In order to establish the next theorem we shall need an additional assumption:

Assumption 4: For convenience, and without loss of generality, we assume that the sinusoids
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are indexed according to a descending order of their amplitudes, i.e.,

ρ0
1 ≥ ρ0

2 ≥ . . . ρ0
k > ρ0

k+1 . . . ≥ ρ0
P > 0 , (8)

where we assume that for a given k, ρ0
k > ρ0

k+1 to avoid trivial ambiguities resulting from the case

where the k-th dominant component is not unique.

Theorem 1. Let Assumptions 1-4 be satisfied. Let k < P . Then, the k-regressor parameter

vector θ̂k = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂k, ω̂k, υ̂k, ϕ̂k) that minimizes (7) is a strongly consistent estimator

of θ0
k = (ρ0

1, ω
0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
k, ω

0
k, υ

0
k, ϕ

0
k) as Ψ(N, M) →∞. That is,

θ̂k → θ0
k a.s. as Ψ(N, M) →∞. (9)

Proof: See Appendix A

Theorem 1 implies that even in the case where the sinusoidal signals are observed in the

presence of additive colored noise, and the number of sinusoidal signals is under-estimated, the

least squares estimates converge to the parameters of the dominant sinusoids. This result can be

intuitively explained using the basic principles of least squares estimation: Since the least squares

estimate is the set of model parameters that minimizes the `2 norm of the error between the

observations and the assumed model (i.e. the variance of the residual component), it follows that

in the case where the model order is under-estimated the minimum error norm is achieved when

the k most dominant sinusoids are correctly estimated. In other words, the variance of the residual

component will be minimized if we will remove the k most dominant sinusoids from the data.

Remark: Actually, Theorem 1 remains valid even under less restrictive assumptions regarding

the noise field {w(n,m)}. If the field {u(n,m)} is an i.i.d. real valued zero-mean random field

with finite variance σ2, and the sequence a(i, j) is a square summable deterministic sequence, i.e.,∑
(r,s)∈D a2(r, s) < ∞, Theorem 1 holds.

Next, we consider the case where the number of the regressors is larger than the actual number

of sinusoids. Let k denote the assumed number of observed 2-D sinusoids, where k > P . Without

loss of generality, we can assume that k = P + 1, (as the proof for k ≥ P + 1 follows immediately

by repeating the same arguments). The parameter spaces ΘP , ΘP+1 are defined as in Definition

2. Let the periodogram (scaled by a factor of 2) of the field {w(n,m)} be given by

Iw(ω, υ) =
2

NM

∣∣∣∣∣
N−1∑
n=0

M−1∑
m=0

w(n,m)e−j(nω+mυ)

∣∣∣∣∣

2

. (10)

Let (ωper, υper) denote the pair of spatial frequencies that maximizes the periodogram of the
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observed realization of {w(n,m)}, i.e.,

(ωper, υper) = arg max
(ω,υ)∈(0,2π)2

Iw(ω, υ). (11)

Also let

ρ2
per =

2

NM
Iw(ωper, υper) , (12)

denote the squared amplitude of the periodogram at its maximum point. ϕper denotes the phase

at this point.

Theorem 2. Let Assumptions 1-4 be satisfied. Then, the parameter vector

θ̂P+1 = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P , ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1) ∈ ΘP+1 that minimizes (7) with

k = P + 1 regressors is a strongly consistent estimator of

(ρ0
1, ω

0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
P , ω0

P , υ0
P , ϕ0

P , ρper, ωper, υper, ϕper) as Ψ(N,M) →∞. That is:

θ̂P+1 → (θ0
P , ρper, ωper, υper, ϕper) a.s. as Ψ(N, M) →∞ (13)

Proof: See Appendix B.

Thus, in the case where the number of sinusoidal signals is over-estimated, the estimated

parameter vector obtained by the least squares estimator contains a 4P -dimensional sub-vector

that converges almost surely to the correct parameters of the sinusoidal components, while the

remaining k−P components assumed to exist, are assigned to the k−P most dominant spectral

peaks of the noise power to further minimize the norm of the estimation error.

4 Strong Consistency of a Family of Model Order Selec-

tion Rules

In this section, using the theorems derived in the previous section, we establish the strong consis-

tency of a new model order selection rule.

It is assumed that there are Q competing models, where Q is finite, Q > P , and that each com-

peting model k ∈ ZQ = {0, 1, 2, . . . , Q− 1} is equiprobable. Following the MDL/BIC framework,

define the statistic

χξ(k) = NM logLk(θ̂k) + ξk log NM, (14)

where ξ is some finite constant to be specified later, and Lk(θ̂k) is the minimal value of the error

variance of the least squares estimator. Note that in (14) we adopt the general from of the MDL
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and BIC rules, such that these rules become special cases of (14), where each was derived using

different formal reasoning. In this section we provide the conditions for this general form of model

order selection rules to be consistent, in the case of the problem of estimating the parameters of

2-D sinusoids in colored noise.

The number of 2-D sinusoids is estimated by minimizing χξ(k) over k ∈ ZQ, i.e.,

P̂ = arg min
k∈ZQ

{
χξ(k)

}
. (15)

Let

A :=

( ∑
(r,s)∈D |a(r, s)|

)2

∑
(r,s)∈D a2(r, s)

. (16)

Note that A is the ratio of the upper bound on the maximal value of the spectral density of the

purely-indeterministic field, and its variance. By Assumption 2, A is bounded.

The objective of the next theorem is to prove the asymptotic consistency of the model order

selection procedure in (15).

Theorem 3. Let Assumptions 1-4 be satisfied. Let P̂ be given by (15) with ξ > 14A. Then as

Ψ(N, M) →∞
P̂ → P a.s. (17)

Proof:

For k ≤ P ,

χξ(k − 1)− χξ(k)

= NM logLk−1(θ̂k−1) + ξ(k − 1) log NM −NM logLk(θ̂k)− ξk log NM

= NM log

(Lk−1(θ̂k−1)

Lk(θ̂k)

)
− ξ log NM. (18)

From Theorem 1 as Ψ(N,M) →∞

θ̂k → θ0
k a.s., (19)

and

θ̂k−1 → θ0
k−1 a.s. (20)
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From the definition of Lk(θ̂k), and (19)

Lk(θ̂k) = 1
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

k∑
i=1

ρ̂i cos(ω̂in + υ̂im + ϕ̂i)

)2

= 1
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n,m)−
k∑

i=1

ρ̂i cos(ω̂in + υ̂im + ϕ̂i)

)2

−→
Ψ(N,M)→∞

1
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=k+1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n,m)

)2

.

(21)

From Lemma 3 in Appendix C, we have that as Ψ(N, M) →∞

sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

w(n,m) cos(ωn + υm)

∣∣∣∣∣ → 0 a.s. (22)

Recall also that for ω ∈ (0, 2π) and ϕ ∈ [0, 2π)

N−1∑
n=0

cos(ωn + ϕ) =
sin

(
[N − 1

2
]ω + ϕ

)
+ sin

(
ω
2
− ϕ

)

2 sin
(

ω
2

) = O(1). (23)

Hence, from Assumption 3, (22), (23), and the Strong Law of Large Numbers, we conclude

that as Ψ(N,M) →∞

Lk(θ̂k) → σ2
∑

(r,s)∈D

a2(r, s) +
P∑

i=k+1

(ρ0
i )

2

2
a.s. (24)

and similarly

Lk−1(θ̂k−1) → σ2
∑

(r,s)∈D

a2(r, s) +
P∑

i=k

(ρ0
i )

2

2
a.s. (25)

Since log NM
NM

tends to zero, as Ψ(N, M) →∞, then as Ψ(N,M) →∞

(NM)−1(χξ(k − 1)− χξ(k)) → log

(
1 +

(ρ0
k)

2

2σ2
∑

(r,s)∈D a2(r, s) +
∑P

i=k+1(ρ
0
i )

2

)
a.s. (26)

Since log

(
1+

(ρ0
k)2

2σ2
∑

(r,s)∈D a2(r,s)+
∑P

i=k+1(ρ
0
i )2

)
is strictly positive, then χξ(k− 1) > χξ(k). Hence,

for k ≤ P , the function χξ(k) is monotonically decreasing with k.

We next consider the case where k = P + l for any integer l ≥ 1.

Employing Theorem 2 and by repeating the arguments made for l = 1 for the case of l > 1, it

is not difficult to show that a.s. as Ψ(N, M) →∞ (see the proof of Theorem 2 for the derivation)

LP+l(θ̂P+l) = LP (θ̂P )− Ul

NM
+ o

(
log NM

NM

)
, (27)
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where

Ul =
l∑

i=1

Iw(ωi, υi), (28)

is the sum of the l largest elements of the periodogram of the noise field {w(s, t)}. Clearly

Ul ≤ l sup
ω,υ

Iu(ω, υ). (29)

From [14] (or using Theorem 1 in the previous section),

θ̂P → θ0
P a.s. as Ψ(N, M) →∞. (30)

Hence, the strong consistency (30) of the LSE under the correct model order assumption implies

that as Ψ(N,M) →∞
LP (θ̂P ) → σ2

∑

(r,s)∈D

a2(r, s) a.s. (31)

Thus, almost surely as Ψ(N,M) →∞,

χξ(P + l)− χξ(P )

= NM logLP+l(θ̂P+l) + ξ(P + l) log NM −NM logLP (θ̂P )− ξP log NM

= ξl log NM + NM log

(
1− Ul

NMLP (θ̂P )
+ o

(
log NM

NM

))

= ξl log NM −
(

Ul

LP (θ̂P )
+ o(log NM)

)
(1 + o(1))

=

(
ξl − Ul

LP (θ̂P ) log NM
+ o(1)

)
log NM ≥

(
ξl −

l sup
ω,υ

Iw(ω, υ)

LP (θ̂P ) log NM
+ o(1)

)
log NM

= l

(
ξ −

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log NM

sup
ω,υ

fw(ω, υ)

LP (θ̂P )
+ o(1)

)
log NM, (32)

where the second equality is obtained by substituting LP+l(θ̂P+l) using the equality (27). The third

equality is due to the property that for x → 0, log(1 + x) = x(1 + o(1)), where the observation

that Ul

NMLP (θ̂P )
→ 0 a.s. is due to the boundedness of LP (θ̂P ) from (31) and Assumption 2. The

observation that Ul = O(log NM) follows from [25] (Theorem 1) where it is shown that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 14 a.s. (33)
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Finally, using the triangle inequality it is easy to show that for every pair (ω, υ)

fw(ω, υ) ≤ σ2

( ∑

(r,s)∈D

|a(r, s)|
)2

. (34)

Substituting (31), (33) and (34) into (32) we conclude that

χξ(P + l)− χξ(P ) ≥ l

(
ξ − 14A+ o(1)

)
log NM > 0 (35)

for any integer l ≥ 1 and ξ > 14A. Therefore, a.s. as Ψ(N, M) → ∞, the function χξ(k) has a

global minimum for k = P .

Note that the condition ξ > 14A implies that as the peaks of the spectral density of the colored

noise become higher, so is the penalty on adding more components to the assumed model.

The last result generalizes the results of [12] and is similar in its spirit to the result of [21]: On

the one hand we preserve the AIC/MDL/BIC form of the model order selection rule. On the other

hand, in contrast with the penalty function of AIC and BIC model selection rules, the penalty in

(15) is not fixed, but represents a family of penalties, such that they all induce strongly consistent

model selection rules. Moreover, it is obvious that the lower bound on ξ depends on the properties

of the distribution of the noise field, linearly reflected through the quantity A. It is easy to see

that A ≥ 1 and equality holds if and only if a(i, j) = 0 for all (i, j) 6= (0, 0), while a(0, 0) = 1. In

other words, the tightest bound is obtained in the case where the noise field is white.

In general, the problem of finding a tight bound for the parameter ξ remains open. Moreover,

we can easily show that by introducing some additional restrictions on the structure of the noise

field, we can establish a tighter bound of ξ. We thus modify our earlier Assumption 1, 2 regarding

the noise field as follows:

Assumption 1’ The noise field {w(n,m)} is an infinite order quarter-plane MA field, i.e.,

w(n,m) =
∞∑

r,s=0

a(r, s)u(n− r,m− s) (36)

where the field {u(n,m)} is an i.i.d. real valued zero-mean random field with finite variance σ2,

such that E[u(n,m)2 log |u(n,m)|] < ∞.

Assumption 2’ The sequence a(i, j) is a deterministic sequence which satisfied the condition

∞∑
r,s=0

(r + s)|a(r, s)| < ∞. (37)

12



In this case, based on [10], Theorem 3.2 and Assumption 1’, 2’ we have that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 8 a.s. (38)

The results of Theorem 1 and 2 are not affected by this assumption. The only change is in

Theorem 3. Therefore we can formulate the next theorem:

Theorem 4. Let Assumptions 1’, 2’, 3 and 4 be satisfied. Let P̂ be given by (15) with ξ > 8A.

Then as Ψ(N, M) →∞
P̂ → P a.s. (39)

The proof of the Theorem 4 is identical to the proof of Theorem 3, where instead of (33) we

employ the inequality in (38).

As we have shown, the correct model order is the one for which the global minimum of (15) is

obtained and this minimum is the only minimum of (15). Therefore in theory one can terminate the

model order selection procedure immediately after discovering the first minimum. Nevertheless,

since the LSE is highly non-linear in the sinusoids’ parameters and is implemented by non-convex

optimization methods which cannot guarantee that the global minimum of the LSE loss function

is found, it is advised to proceed with the model order selection procedure for a few more steps

after finding a first minimum to ensure that this minimum is indeed the global one. The final

result of the model order selection procedure will be the number of sinusoids and their parameters.

5 Finite Sample Results

In the following we shall numerically evaluate the performance of the proposed model order se-

lection rule for finite data dimensions. More specifically, we investigate the performance of the

proposed model order selection rule as a function of SNR, data dimensions, and for different

shapes of the spectral density of the noise field. In these experiments we evaluate the probability

of a correct decision by the proposed model order selection rule (14) for different values of ξ.

The probability of correct decision is defined as the ratio of the number of experiments in which

the proposed rule provided the correct model order, normalized by the number of experiments

conducted at the specific setting of the experiment. In each setting of the experiment we have

conducted 500 Monte-Carlo experiments, i.e. , every point in the graphs below was computed

by averaging the results over 500 independent trials. The colored noise component of the field

13
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Figure 1: The spectral density function of the “low-pass” (left) and “high-pass” (right) MA models.

is a NSHP MA field with support D(1, 1) (see Appendix C for the definition of a finite support

D(k, l)). To investigate the dependence of the performance of the proposed model order selec-

tion rule on the shape of the spectral density of the colored noise, the test is performed for both

“low-pass” type MA model and for a “high-pass” type MA model.

In the first example the noise field is a NSHP MA “high-pass” field. The MA model parameters

are a(0, 1) = −0.9, a(1,−1) = 0.1, a(1, 0) = −0.5, a(1, 1) = 0.4. In the second part of this example

the colored noise component of the field is a NSHP MA “low-pass” field. The MA model parameters

are a(0, 1) = 0.9, a(1,−1) = 0.4, a(1, 0) = 0.8, a(1, 1) = 0.6. Thus, A = 2.395 for the “high-pass”

MA noise field and A = 3.7005 for the “low-pass” field. The driving noise of the MA model, in

both cases, is a zero mean, white noise field with a unit variance. The spectral density functions

of these fields are depicted in Fig. 1. The harmonic component of the field has three (P = 3)

sinusoidal components with frequencies (0.1, 0.2), (−0.3, 0.4) and (0.1 + 1/N, 0.2 + 1/M) of equal

amplitudes. The SNR in the case of these examples in defined as the ratio of the sinusoidal power

to that of the driving noise of the MA model. We test the model order selection rule for different

data sizes such that N,M = 32, 64, 128, 256, 512.

Figure 2 provides the probability of correct order selection, (i.e. , P̂ = 3) as a function of

the data dimensions, for different values of ξ, and a fixed SNR of -15dB, for the two different

models of the colored noise component. It is concluded that for all values of ξ around the minimal

value determined by the consistency requirement, and for data dimensions that are higher than

128×128 the probability of correct decision is 1. Moreover, as shown in Fig. 3, and Fig. 4 already

for relatively small dimensions of the observed field (64× 64) and low SNR values, the probability

of correct decision is 1, for ξ values around the minimal value of 14A predicted by the consistency

constraint: For ξ = 8A to ξ = 20A we observe the same “threshold effect” as a function of both

SNR and the rate in which the penalty term increases as expressed by ξ: While increasing ξ for

14
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Figure 2: Probability of correct order selection, (i.e. , P̂ = 3) as a function of the data dimensions,

for different values of ξ, and a fixed SNR of -15dB.

a given SNR results in a larger number of underestimations, when we increase the SNR, or data

dimensions, for a fixed value of ξ there is a threshold point where the probability becomes 1 again.

In the case of low SNR incorrect model-order selection is due to overestimation of the model

order. Obviously, for extremely high values of ξ, the proposed rule results in underestimation

of the model order even for relativity high SNR’s, due to the extremely high weight given to

the penalty term. On the other hand, for low ξ values, such as where ξ = 2A the errors in

selecting the model order are due to overestimation. Note however, that as data dimensions

increase (we approach the asymptotic assumptions on data dimensions) the model order selection

rule is becoming consistent for lower SNR values and for all ξ values around the minimal value

of 14A predicted by the consistency constraint. Also note that for all data dimensions being

considered in these experiment, for ξ = 2A (which is far from the minimal value of ξ = 14A
required to guarantee consistency) the probability of correct order selection drops sharply as the

SNR is getting higher due to overestimation of the model order. This is clearly a result of the

lower significance of the penalty term.

Furthermore, the experimental results indicate that the performance of the proposed model

order selection rule is similar for both types of spectral density models being considered.

6 Conclusions

We have considered the problem of jointly estimating the number as well as the parameters of

two-dimensional sinusoidal signals, observed in the presence of an additive colored noise field.

We have established the strong consistency of the LSE when the number of sinusoidal signals

is under-estimated, or over-estimated. In the case where the number of sinusoidal signals is

15
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Figure 3: Probability of correct order selection, (i.e. , P̂ = 3) as a function of the SNR, for

different values of ξ. The observed field dimensions are (from left to right) 64× 64, 128× 128, and

256× 256 samples. The colored noise component of the field is a NSHP MA “high-pass” field.
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Figure 4: Probability of correct order selection, (i.e. , P̂ = 3) as a function of the SNR, for

different values of ξ. The observed field dimensions are (from left to right) 64× 64, 128× 128, and

256× 256 samples. The colored noise component of the field is a NSHP MA “low-pass” field.
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under-estimated we have shown the almost sure convergence of the least squares estimates to

the parameters of the dominant sinusoids. In the case where this number is over-estimated, the

estimated parameter vector obtained by the least squares estimator contains a sub-vector that

converges almost surely to the correct parameters of the sinusoids. Based on these results, we

proved the strong consistency of a new family of model order selection rules for the number of

sinusoidal components and their parameters. The applicability and validity of the asymptotic

results to finite dimensional observations is demonstrated using Monte-Carlo experiments.

Appendix A: Proof of Theorem 1

The proof of the Theorem 1 follows similar lines to those of the proof of Theorem 1 [13]

where we considered a less general case in which the observed field is composed of complex 2-D

exponentials in an additive white noise field.

In order to prove Theorem 1 we have to establish some auxiliary results.

Let k denote the assumed number of observed 2-D sinusoids, where k < P . For any δ > 0,

define the set ∆δ to be a subset of the parameter space Θk such that each vector θk ∈ ∆δ is

different from the vector θ0
k by at least δ, at least in one of its coordinates, i.e.,

∆δ =

[
k⋃

i=1

Riδ

]
∪

[
k⋃

i=1

Φiδ

]
∪

[
k⋃

i=1

Wiδ

]
∪

[
k⋃

i=1

Viδ

]
, (40)

where

Riδ =
{
θk ∈ Θk : |ρi − ρ0

i | ≥ δ; δ > 0
}

,

Φiδ =
{
θk ∈ Θk : |ϕi − ϕ0

i | ≥ δ; δ > 0
}

,

Wiδ =
{
θk ∈ Θk : |ωi − ω0

i | ≥ δ; δ > 0
}

,

Viδ =
{
θk ∈ Θk : |υi − υ0

i | ≥ δ; δ > 0
}

. (41)

The next lemma shows that the true parameters of the k dominant sinusoids of the model (1)

asymptotically minimize the kth-order least squares function (7).

Lemma 1.

lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

)
> 0 a.s. (42)

Proof: In the following we first show that on ∆δ the sequence Lk(θk) − Lk(θ
0
k) (indexed

in N, M) is uniformly lower bounded by a strictly positive constant as Ψ(N, M) → ∞. Since
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the sequence elements are uniformly lower bounded by a strictly positive constant, the sequence

of infimums, inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)), is uniformly lower bounded by the same strictly positive

constant as Ψ(N,M) →∞. Hence, lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)) is also lower bounded by the

same constat.

Thus, we first prove that the sequence Lk(θk)−Lk(θ
0
k) is uniformly lower bounded away from

zero on ∆δ as Ψ(N,M) →∞.

Lk(θk)− Lk(θ
0
k)

= 1
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

k∑
i=1

ρi cos(ωin + υim + ϕi)

)2

− 1
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

k∑
i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)2

= 1
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n,m)−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)2

− 1
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=k+1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i ) + w(n,m)

)2

= 1
NM

N−1∑
n=0

M−1∑
m=0

(
k∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)2

+ 2
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=k+1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)

(
k∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)

+ 2
NM

N−1∑
n=0

M−1∑
m=0

w(n,m)

(
k∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)

= I1 + I2 + I3.

(43)

Thus, to check the asymptotic behavior of L.H.S. of (43) we have to evaluate lim
Ψ(N,M)→∞

(I1+I2+I3)

for all vectors θk ∈ ∆δ:

lim
Ψ(N,M)→∞

I1 = lim
Ψ(N,M)→∞

1
NM

N−1∑
n=0

M−1∑
m=0

(
k∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)2

− lim
Ψ(N,M)→∞

[
2 1

NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1

k∑
j=1

ρiρ
0
j cos(ωin + υim + ϕi) cos(ω0

j n + υ0
j m + ϕ0

j)

]

+ lim
Ψ(N,M)→∞

1
NM

N−1∑
n=0

M−1∑
m=0

(
k∑

i=1

ρi cos(ωin + υim + ϕi)

)2

= T1 + T2 + T3.

(44)

Recall that for |ρ| < ∞ and ϕ ∈ [0, 2π)

lim
N→∞

1

N

N−1∑
n=0

ρ cos(ωn + ϕ) = 0, (45)
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uniformly in ω on any closed interval in (0, 2π). The same equality holds for the sine function.

Hence,

T3 = lim
Ψ(N,M)→∞

1
NM

N−1∑
n=0

M−1∑
m=0

(
k∑

i=1

ρi cos(ωin + υim + ϕi)

)2

=
k∑

i=1

(ρi)
2

2

+ lim
Ψ(N,M)→∞

1
NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1
i6=j

k∑
j=1

ρiρj cos(ωin + υim + ϕi) cos(ωjn + υjm + ϕj).
(46)

Since the pairs (ωi, υi) are pairwise different, then on any closed interval in (0, 2π) the sequence of

partial sums 1
NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1
i6=j

k∑
j=1

ρiρj cos(ωin + υim + ϕi) cos(ωjn + υjm + ϕj) converges uniformly

to zero as Ψ(N, M) →∞.

Hence,

T3 =
k∑

i=1

(ρi)
2

2
, (47)

as Ψ(N, M) →∞ uniformly on ∆δ. Similarly,

T1 = lim
Ψ(N,M)→∞

1

NM

N−1∑
n=0

M−1∑
m=0

( k∑
i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)2

=
k∑

i=1

(ρ0
i )

2

2
, (48)

independently of θk.

Leaving T2 unchanged we obtain

lim
Ψ(N,M)→∞

I1 =
k∑

i=1

(
(ρ0

i )2

2
+ (ρi)

2

2

)

− lim
Ψ(N,M)→∞

2
NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1

k∑
j=1

ρiρ
0
j cos(ωin + υim + ϕi) cos(ω0

j n + υ0
j m + ϕ0

j),
(49)

uniformly on ∆δ.

Using the similar considerations to those employed in the evaluation of (48) we obtain

lim
Ψ(N,M)→∞

I2 = lim
Ψ(N,M)→∞

[
2

NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=k+1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )

)

(
k∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)]

= − lim
Ψ(N,M)→∞

[
2

NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1

P∑
j=k+1

ρiρ
0
j cos(ωin + υim + ϕi) cos(ω0

j n + υ0
j m + ϕ0

j)

]
.

(50)

By Lemma 3 in Appendix C, we have that a.s. as Ψ(N,M) →∞ :

sup
θk∈∆δ

∣∣∣∣∣
2

NM

N−1∑
n=0

M−1∑
m=0

w(n, m)

( k∑
i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
k∑

i=1

ρi cos(ωin + υim + ϕi)

)∣∣∣∣∣ → 0.

(51)

19



Hence I3 → 0 a.s. as Ψ(N, M) → ∞ uniformly on ∆δ. Using (49), (50) and (51) we conclude

that a.s.

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) =

k∑
i=1

(
(ρ0

i )2

2
+ (ρi)

2

2

)

− lim
Ψ(N,M)→∞

2
NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1

P∑
j=1

ρiρ
0
j cos(ωin + υim + ϕi) cos(ω0

j n + υ0
j m + ϕ0

j).
(52)

To complete the evaluation of (52) we consider the vectors θk ∈ ∆δ. Let us first assume that

∆δ ≡ Rqδ for some q, 1 ≤ q ≤ k. Thus, the coordinate ρq of each vector in this subset is different

from the corresponding coordinate ρ0
q by at least δ > 0. Consider first the case where all the other

elements of the vector θk ∈ Rqδ are identical to the corresponding elements of θ0
k. Since by this

assumption ωj = ω0
j , υj = υ0

j , ϕj = ϕ0
j for 1 ≤ j ≤ k, and ρj = ρ0

j for 1 ≤ j ≤ k, j 6= q, on this set

we have

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)

)
=

(
ρ0

q√
2
− ρq√

2

)2

− lim
Ψ(N,M)→∞

2

NM

N−1∑
n=0

M−1∑
m=0

k∑
i=1
i6=j

P∑
j=1

ρiρ
0
j cos(ωin + υim + ϕi) cos(ω0

j n + υ0
j m + ϕ0

j)

=

(
ρ0

q√
2
− ρq√

2

)2

≥ δ2

2
> 0, (53)

uniformly in ρq, where the second equality is due to Assumption 3 and following the arguments

employed to obtain (47).

Assume next that θk ∈ Rqδ (i.e., the coordinate ρq is different from the corresponding coor-

dinate ρ0
q by at least δ > 0) and that in addition, there exists an element ρt of θk, such that

1 ≤ t ≤ k, t 6= q and |ρt− ρ0
t | ≥ λ, λ > 0 while all the other elements of the vector θk are identical

to the corresponding elements of θ0
k. Following a similar derivation to the one in (53) we conclude

that

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)

)
=

(
ρ0

q√
2
− ρq√

2

)2

+

(
ρ0

t√
2
− ρt√

2

)2

≥ δ2

2
+

λ2

2
>

δ2

2
, (54)

uniformly in ρq and ρt.

Consider the case where θk ∈ Rqδ while there exists an element ϕl of θk ∈ Rqδ, such that

|ϕl − ϕ0
l | ≥ η, η > 0 and all the other elements of the vector θk are identical to the corresponding

elements of θ0
k. Following a similar derivation to the one in (53) we conclude that

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)

)
=

{ (
ρ0

q√
2
− ρq√

2

)2

+ (ρ0
l )

2 − (ρ0
l )

2 cos(ϕl − ϕ0
l ), l 6= q

(ρ0
q)2

2
+ (ρq)2

2
− ρ0

qρq cos(ϕq − ϕ0
q), l = q

>
δ2

2
, (55)
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uniformly in ρq and ϕl.

Finally, consider the case where θk ∈ Rqδ while there exists an element ωl of θk ∈ Rqδ, such that

|ωl − ω0
l | ≥ η, η > 0 and all the other elements of the vector θk are identical to the corresponding

elements of θ0
k. Following a similar derivation to the one in (53) we conclude that

lim inf
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)

)
=

{ (
ρ0

q√
2
− ρq√

2

)2

+ (ρ0
l )

2, l 6= q

(ρ0
q)2

2
+ (ρq)2

2
, l = q

>
δ2

2
, (56)

uniformly in ρq and ωl.

From the above analysis it is clear that lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) is lower bounded by δ2

2

uniformly in Rqδ.

Following similar reasoning, the next subset we consider is Wqδ∪Vqδ. We first consider a subset

of this set:

Λ =
{
θk ∈ Wqδ ∪ Vqδ : ∃p, k + 1 ≤ p ≤ P, (ωq, υq) = (ω0

p, υ
0
p)

} ⊂ Wqδ ∪ Vqδ (57)

This subset includes vectors in Θk, such that their coordinate pairs (ωq, υq) are different from the

corresponding pairs of θ0
k and equal to some pair (ω0

p, υ
0
p) where p ≥ k+1. As above, the minimum

is obtained when all the other elements of θk are identical to the corresponding elements of θ0
k.

Hence, uniformly on Λ, we have

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) ≥ (ρ0

q)2

2
+ (ρq)2

2
− ρ0

pρq

=
(ρ0

q)2

2
− (ρ0

p)2

2
+

(
ρ0

p√
2
− ρq√

2

)2

≥ (ρ0
q)2

2
− (ρ0

p)2

2
= εΛ > 0,

(58)

where the last inequality is due to Assumption 4.

On the complementary set:

Λc = (Wqδ ∪ Vqδ) \Λ =
{
θk ∈ Wqδ ∪ Vqδ : (ωq, υq) 6= (ω0

p, υ
0
p), ∀p, k + 1 ≤ p ≤ P

}
(59)

we have
lim

Ψ(N,M)→∞
(Lk(θk)− Lk(θ

0
k)) ≥ (ρ0

q)2

2
+ (ρq)2

2
≥ (ρ0

q)2

2
= εΛc > 0.

(60)

Finally, on the set Φqδ, the coordinate ϕq of each vector in this subset is different from the

corresponding coordinate ϕ0
q by at least δ > 0. As in previous cases , the minimum is obtained
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when all the other elements of θk ∈ Φqδ are identical to the corresponding elements of θ0
k. Hence,

uniformly on Φqδ, we have

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) ≥ (ρ0

q)
2 − (ρ0

q)
2 cos(ϕq − ϕ0

q) ≥ (ρ0
q)

2(1− cos δ) = εΦqδ
> 0. (61)

Let εq = min( δ2

2
, εΛ, εΛc , εΦqδ

). Collecting (53),(58), (60) and (61) together we conclude that

the sequence Lk(θk) − Lk(θ
0
k) is lower bounded by εq > 0 uniformly on Rqδ ∪ Φqδ ∪Wqδ ∪ Vqδ as

Ψ(N, M) →∞.

By repeating the same arguments for every q, 1 ≤ q ≤ k, and by letting ε = min(ε1, . . . , εk), we

conclude that the sequence Lk(θk)−Lk(θ
0
k) (indexed in N,M) is lower bounded by ε > 0 uniformly

on ∆δ as Ψ(N, M) →∞.

Hence, it follows that sequence inf
θk∈∆δ

(Lk(θk)−Lk(θ
0
k)) (indexed in N, M) is also asymptotically

lower bounded by ε > 0, i.e.,

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

) ≥ ε, (62)

as Ψ(N, M) →∞.

Hence, by the definition of lim inf

lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

) ≥ ε > 0. (63)

Remark: Lemma 1 (and consequently Theorem 1) remain valid even under less restrictive

assumptions regarding the noise field {w(n,m)}. If the field {u(n,m)} is an i.i.d. real valued

zero-mean random field with finite variance σ2, and the sequence a(i, j) is a square summable

deterministic sequence, i.e.,
∑

(r,s)∈D a2(r, s) < ∞, then Lemma 1 and Theorem 1 hold.

To proceed to the proof of Theorem 1 we need the next result:

Lemma 2. Let {xn, n ≥ 1} be a sequence of random variables. Then

Pr{xn ≤ 0 i.o.} ≤ Pr{lim inf
n→∞

xn ≤ 0} (64)

Proof: See [13].

Combining the above lemmas we will be able to prove Theorem 1.

Proof: (Theorem 1) The proof follows an argument proposed by Wu [29], Lemma 1. Let

θ̂k = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂k, ω̂k, υ̂k, ϕ̂k) be a parameter vector that minimizes (7). Assume that the
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proposition θ̂k → θ0
k a.s. as Ψ(N, M) →∞ is not true. Then, there exists some δ > 0, such that

([2], Theorem 4.2.2, p. 69),

Pr(θ̂k ∈ ∆δ i.o.) > 0. (65)

This inequality together with the definition of θ̂k as a vector that minimizes Lk implies

Pr( inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

) ≤ 0 i.o.) > 0. (66)

Using Lemma 2 we obtain

Pr( lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

) ≤ 0) ≥ Pr( inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)

) ≤ 0 i.o.) > 0, (67)

which contradicts (42) from Lemma 1. Hence,

θ̂k → θ0
k a.s. as Ψ(N,M) →∞. (68)

Appendix B: Proof of Theorem 2

The proof of the Theorem 2 follows similar lines to those of the proof of Theorem 2 [13]

where we considered a less general case in which the observed field is composed of complex 2-D

exponentials in an additive white noise field.

Proof: Let θP+1 = (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP , ρP+1, ωP+1, υP+1, ϕP+1), be some vector

in the parameter space ΘP+1. We have,

LP+1(θP+1) = 1
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

P+1∑
i=1

ρi cos(ωin + υim + ϕi)

)2

= 1
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

P∑
i=1

ρi cos(ωin + υim + ϕi)

)2

+ 1
NM

N−1∑
n=0

M−1∑
m=0

(
ρP+1 cos(ωP+1n + υP+1m + ϕP+1)

)2

− 2
NM

N−1∑
n=0

M−1∑
m=0

(
y(n,m)−

P∑
i=1

ρi cos(ωin + υim + ϕi)

)(
ρP+1 cos(ωP+1n + υP+1m + ϕP+1)

)

= LP (θP ) +
ρ2

P+1

2
+ 1

2NM

N−1∑
n=0

M−1∑
m=0

ρ2
P+1 cos(2ωP+1n + 2υP+1m + 2ϕP+1)

− 2
NM

N−1∑
n=0

M−1∑
m=0

w(n,m)ρP+1 cos(ωP+1n + υP+1m + ϕP+1)

− 2
NM

N−1∑
n=0

M−1∑
m=0

(
P∑

i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
P∑

i=1

ρi cos(ωin + υim + ϕi)

)

(
ρP+1 cos(ωP+1n + υP+1m + ϕP+1)

)
= H1(θP+1) + H2(θP+1) + H3(θP+1)

(69)
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where, θP = (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP ) ∈ ΘP and,

H1(θP+1) = LP (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP ) = LP (θP ), (70)

H2(θP+1) =
ρ2

P+1

2
− 2

NM

N−1∑
n=0

M−1∑
m=0

w(n,m)ρP+1 cos(ωP+1n + υP+1m + ϕP+1), (71)

H3(θP+1) =
1

2NM

N−1∑
n=0

M−1∑
m=0

ρ2
P+1 cos(2ωP+1n + 2υP+1m + 2ϕP+1)

− 2

NM

N−1∑
n=0

M−1∑
m=0

( P∑
i=1

ρ0
i cos(ω0

i n + υ0
i m + ϕ0

i )−
P∑

i=1

ρi cos(ωin + υim + ϕi)

)

(
ρP+1 cos(ωP+1n + υP+1m + ϕP+1)

)
. (72)

Let θ̂P = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P ) be a vector in ΘP that minimizes H1(θP+1) =

LP (θP ). From [14] (or using Theorem 1 in the previous section),

θ̂P → θ0
P a.s. as Ψ(N, M) →∞. (73)

The function H2 is a function of ρP+1, ωP+1, υP+1, ϕP+1 only. Evaluating the partial derivatives

of H2 with respect to these variables, it is easy to verify that the extremum points of H2 are also the

extremum points of the periodogram of the realization of the noise field. Moreover, let ρe, ωe, υe, ϕe

denote an extremum point of H2. Then at this point

H2(ρ
e, ωe, υe, ϕe) = −Iw(ωe, υe)

NM
. (74)

Hence, the minimal value of H2 is obtained at the coordinates ρP+1, ωP+1, υP+1, ϕP+1 where

the periodogram of {w(n,m)} is maximal. Let ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1 denote the coordinates that

minimize H2. Then we have

(ω̂P+1, υ̂P+1) = arg min
(ω,υ)∈(0,2π)2

H2(ρP+1, ωP+1, υP+1, ϕP+1) = arg max
(ω,υ)∈(0,2π)2

Iw(ω, υ), (75)

and

ρ̂2
P+1 =

2

NM
Iw(ω̂P+1, υ̂P+1). (76)

By Assumption 1, 2 and Theorem 1, [25], we have

sup
ω,υ

Iw(ω, υ) = O(log NM). (77)
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Therefore,

H2(ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1) = O

(
log NM

NM

)
. (78)

Let θ̂P+1 ∈ ΘP+1 be the vector composed of the elements of the vector θ̂P ∈ ΘP and of

ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1, defined above, i.e.,

θ̂P+1 = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P , ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1).

We need to verify that this vector minimizes LP+1(θP+1) on ΘP+1 as Ψ(N,M) →∞ .

Recall that for ω ∈ (0, 2π) and ϕ ∈ [0, 2π)

N−1∑
n=0

cos(ωn + ϕ) =
sin

(
[N − 1

2
]ω + ϕ

)
+ sin

(
ω
2
− ϕ

)

2 sin
(

ω
2

) = O(1). (79)

Hence, as N →∞
1

log N

N−1∑
n=0

cos(ωn + ϕ) = o(1) , (80)

and consequently

1

N

N−1∑
n=0

cos(ωn + ϕ) = o

(
log N

N

)
. (81)

Next, we evaluate H3. Consider the first term in (72). By (81) we have

1

2NM

N−1∑
n=0

M−1∑
m=0

ρ2
P+1 cos(2ωP+1n + 2υP+1m + 2ϕP+1) = o

(
log NM

NM

)
, (82)

for any set of values ρP+1, ωP+1, υP+1, ϕP+1 may assume.

Consider the second term in (72). By (81) and unless there exists some i, 1 ≤ i ≤ P , such

that (ωP+1, υP+1) = (ω0
i , υ

0
i ), we have as Ψ(N, M) →∞,

1

NM

N−1∑
n=0

M−1∑
m=0

P∑
i=1

ρ0
i ρP+1 cos(ω0

i n + υ0
i m + ϕ0

i ) cos(ωP+1n + υP+1m + ϕP+1) = o

(
log NM

NM

)
, (83)

for any set of values ρP+1, ωP+1, υP+1, ϕP+1 may assume.

Assume now that there exists some i, 1 ≤ i ≤ P , such that (ωP+1, υP+1) = (ω0
i , υ

0
i ). Since by

assumption there are no two different regressors with identical spatial frequencies, it follows that

one of the estimated frequencies (ωi, υi) is due to noise contribution. Hence, by interchanging the

roles of (ωP+1, υP+1) and (ωi, υi), and repeating the above argument we conclude that this term
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has the same order as in (83). Similarly, for the third term in (72): By (81) and unless there exists

some i, 1 ≤ i ≤ P , such that (ωP+1, υP+1) = (ωi, υi), we have as Ψ(N,M) →∞,

1

NM

N−1∑
n=0

M−1∑
m=0

P∑
i=1

ρiρP+1 cos(ωin + υim + ϕi) cos(ωP+1n + υP+1m + ϕP+1) = o

(
log NM

NM

)
. (84)

However such i for which (ωP+1, υP+1) = (ωi, υi) cannot exist, as this amounts to reducing the

number of regressors from P + 1 to P , as two of them coincide. Hence, for any θP+1 ∈ ΘP+1 as

Ψ(N, M) →∞
H3(θP+1) = o

(
log NM

NM

)
. (85)

On the other hand, the strong consistency (73) of the LSE under the correct model order assump-

tion implies that as Ψ(N,M) →∞ the minimal value of LP (θP ) = σ2
∑

(r,s)∈D a2(r, s) a.s., while

from (78) we have for the minimal value of H2 that H2(θP+1) = O
(

log NM
NM

)
. Hence, the value

of H3(θP+1) at any point in Θp+1 is negligible even relative to the values LP (θP ) and H2(θP+1)

assume at their respective minimum points. Therefore, evaluating (69) as Ψ(N,M) →∞ we have

LP+1(θP+1) = LP (θP ) + H2(ρP+1, ωP+1, υP+1, ϕP+1) + H3(θP+1)

= LP (θP ) + H2(ρP+1, ωP+1, υP+1, ϕP+1) + o

(
log NM

NM

)
. (86)

Since LP (θP ) is a function of the parameter vector θP and is independent of ρP+1, ωP+1, υP+1, ϕP+1,

while H2 is a function of ρP+1, ωP+1, υP+1, ϕP+1 and is independent of θP , the problem of min-

imizing LP+1(θP+1) becomes separable as Ψ(N, M) →∞. Thus minimizing (86) is equivalent

to separately minimizing LP (θP ) and H2(ρP+1, ωP+1, υP+1, ϕP+1) as Ψ(N,M) →∞. Using the

foregoing conclusions, the theorem follows.

Appendix C: Proof of Lemma 3

The next lemma is essential in order to prove Theorem 1 and Theorem 3. It is an extension

for the 2-D case of a lemma originally proposed by Hannan, [9] for the case of 1-D signals.

Let D be an infinite order non-symmetrical half-plane support defined as in (3) and let D(k, l)

be a finite order non-symmetrical half-plane support, defined by

D(k, l) =
{
(i, j) ∈ Z2 : i = 0, 0 ≤ j ≤ l

} ∪ {
(i, j) ∈ Z2 : 0 < i ≤ k,−l ≤ j ≤ l

}
(87)

Lemma 3. Let the field {w(n,m)} be defined as in (4), and the field {u(n,m)} is an i.i.d. real

valued zero-mean random field with finite second order moment, σ2. The sequence a(i, j) is a
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square summable deterministic sequence, i.e.

∑

(r,s)∈D

a2(r, s) < ∞. (88)

Then,

sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

w(n,m) cos (ωn + νm)

∣∣∣∣∣ → 0 a.s. as Ψ(N,M) →∞ (89)

Proof:

First, it is easy to see that,

sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

w(n,m) cos (ωn + νm)

∣∣∣∣∣ ≤

sup
ω,υ

∣∣∣∣∣
1

2NM

N−1∑
n=0

M−1∑
m=0

w(n,m)ej(ωn+νm)

∣∣∣∣∣ + sup
ω,υ

∣∣∣∣∣
1

2NM

N−1∑
n=0

M−1∑
m=0

w(n,m)e−j(ωn+νm)

∣∣∣∣∣ . (90)

Hence it is sufficient to prove the lemma for exponentials, i.e., we wish to prove that

sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

w(n,m)ej(ωn+νm)

∣∣∣∣∣ → 0 a.s. as Ψ(N, M) →∞ (91)

Define the set D(k, l)C = D \D(k, l). Then,

w(n,m) =
∑

D(k,l)

a(r, s)u(n− r,m− s) +
∑

D(k,l)C

a(r, s)u(n− r,m− s) = v(n,m) + z(n,m). (92)

Then,

sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

z(n,m)ej(ωn+νm)

∣∣∣∣∣ ≤
1

NM

N−1∑
n=0

M−1∑
m=0

|z(n,m)| ≤
{

1

NM

N−1∑
n=0

M−1∑
m=0

z2(n,m)

} 1
2

. (93)

By the SLLN, the R.H.S. of the last inequality convergence, almost surely, to

E[z(0, 0)2]
1
2 =


σ2

∑

D(k,l)C

a2(r, s)




1
2

, (94)

which due to (88) may be made arbitrary small by taking k and l sufficiently large.

Hence it is sufficient to prove the lemma with w(n,m) replaced by v(n,m).
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sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

v(n,m)ej(ωn+νm)

∣∣∣∣∣ ≤
∑

D(k,l)

|a(r, s)| sup
ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n− r,m− s)ej(ωn+νm)

∣∣∣∣∣ . (95)

Since the summation is finite and {u(n,m)} is i.i.d., it is sufficient to prove the lemma with

w(n,m) replaced by u(n,m). Thus, we consider the mean square of the discussed supremum

E


sup

ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣

2



= E

[
sup
ω,υ

1

(NM)2

N−1∑
n=0

M−1∑
m=0

N−1∑

k=0

M−1∑

l=0

u(n,m)u(k, l)ej(ω(n−k)+ν(m−l))

]
. (96)

By letting,

n− k = p,

m− l = r,
(97)

we change the order of summation to that

N−1∑
n=0

N−1∑
k=0

=
∑
|p|<N

∑
n∈SN

,

M−1∑
m=0

M−1∑
l=0

=
∑
|r|<M

∑
m∈SM

,

(98)

where,

SN = {n ∈ Z : max(0, p) ≤ n ≤ min(N − 1, p + N − 1)},
SM = {m ∈ Z : max(0, r) ≤ m ≤ min(M − 1, r + M − 1)}. (99)

Therefore

∑
n∈SN

1 =

{
N − p, p ≥ 0

N + p, p < 0
= N − |p| ,

∑
m∈SM

1 =

{
M − r, r ≥ 0

M + r, r < 0
= M − |r| .

(100)

Rewriting (96) we have
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1

(NM)2
E


sup

ω,υ

∑

|p|<N

∑

|r|<M

∑
n∈SN

∑
m∈SM

u(n,m)u(n− p,m− r)ej(ωp+νr)




=
1

(NM)2
E




N−1∑
n=0

M−1∑
m=0

u(n,m)2 + sup
ω,υ

∑

|p|<N

p 6=0

∑

|r|<M

r 6=0

∑
n∈SN

∑
m∈SM

u(n,m)u(n− p,m− r)ej(ωp+νr)




≤ 1

(NM)2





NMσ2 +
∑

|p|<N

p 6=0

∑

|r|<M

r 6=0

E

[∣∣∣∣∣
∑

n∈SN

∑
m∈SM

u(n,m)u(n− p, m− r)

∣∣∣∣∣

]




, (101)

where we have employed the triangle inequality.

Let investigate the second term on the R.H.S. of (101). From the Cauchy-Schwartz inequality,

for any r.v. x, E [|x|] ≤ E
[|x|2]

1
2 , hence

E

[∣∣∣∣∣
∑

n∈SN

∑
m∈SM

u(n,m)u(n− p, m− r)

∣∣∣∣∣

]
≤ E




∣∣∣∣∣
∑

n∈SN

∑
m∈SM

u(n,m)u(n− p,m− r)

∣∣∣∣∣

2



1
2

=

( ∑
n∈SN

∑
m∈SM

∑

n′∈SN

∑

m′∈SM

E[u(n,m)u(n− p,m− r)u(n′,m′)u(n′ − p,m′ − r)]

) 1
2

=

( ∑
n∈SN

∑
m∈SM

σ4

) 1
2

= σ2(N − |p|) 1
2 (M − |r|) 1

2 . (102)

which follows from the observation that for p, r 6= 0, the fourth order moment of the field {u(n,m)}
equals zero for all n 6= n′ or m 6= m′.

Hence we can finally write

E


sup

ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣

2



≤ 1

(NM)2





NMσ2 +
∑

|p|<N

p6=0

∑

|r|<M

r 6=0

σ2(N − |p|) 1
2 (M − |r|) 1

2





≤ σ2

(NM)2
{NM + 4(NM)

3
2} ≤ K

(NM)
1
2

= O(N− 1
2 M− 1

2 ). (103)
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where K some finite positive constant.

Now following the ideas of Doob, [4]( ch. X, 6), let R and S be some positive integers such

that N > Rδ, and M > Sδ, for δ > 2. Hence, for any such choice of N and M , from (103),

E


sup

ω,υ

∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣

2

 ≤ K

(RS)
δ
2

. (104)

Hence, if we take N = N(R) and M = M(S) to be the smallest integers not smaller then Rδ

and Sδ, respectively, then (104) still holds.

Hence, by Chebyshev inequality for every ε > 0

P


sup

ω,υ

∣∣∣∣∣∣
1

N(R)M(S)

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
≥ ε




≤
E


sup

ω,υ

∣∣∣∣∣
1

N(R)M(S)

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣

2



ε2
≤ K

ε2(RS)
δ
2

(105)

and then since δ > 2

∞∑
R=1

∞∑
S=1

P


sup

ω,υ

∣∣∣∣∣∣
1

N(R)M(S)

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
> ε


 ≤

∞∑
R=1

∞∑
S=1

K

ε2(RS)
δ
2

< ∞.(106)

Hence, by the Borel-Cantelli lemma,

sup
ω,υ

∣∣∣∣∣∣
1

N(R)M(S)

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
→ 0 a.s. as Ψ(R, S) →∞. (107)
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Now,

sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

∣∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm) − 1

NM

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣

≤ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣∣∣∣∣∣

N(R)−1∑
n=0

M−1∑

m=M(S)

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣

+ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣∣∣∣∣∣

N−1∑

n=N(R)

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣

+ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣∣∣∣∣∣

N−1∑

n=N(R)

M−1∑

m=M(S)

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
= I1 + I2 + I3. (108)

Consider the first term in the previous equation. Using the triangle inequality

I1 ≤ 1

M(S)

M(S+1)−1∑

m=M(S)


sup

ω

1

N(R)

∣∣∣∣∣∣

N(R)−1∑
n=0

u(n,m)ejωn

∣∣∣∣∣∣


 . (109)

Let

ũ(m) = sup
ω

1

N(R)

∣∣∣∣∣∣

N(R)−1∑
n=0

u(n,m)ejωn

∣∣∣∣∣∣
. (110)

Since {u(n,m)} is i.i.d., it is clear that {ũ(m)} is an i.i.d. sequence of random variables. Moreover,

from [9] (or by repeating the derivation in (92)-(104) for the process u(n,m) with a fixed m) we

have

E
[
ũ(m)2

]
= E


sup

ω

1

N(R)

∣∣∣∣∣∣

N(R)−1∑
n=0

u(n,m)ejωn

∣∣∣∣∣∣

2
 ≤ K1

R
δ
2

. (111)

Taking the mean of the square of I1 we have

E
[|I1|2

] ≤ 1

M(S)2

M(S+1)−1∑

m=M(S)

M(S+1)−1∑

m′=M(S)

E [ũ(m)ũ(m′)]

≤ 1

M(S)2

M(S+1)−1∑

m=M(S)

M(S+1)−1∑

m′=M(S)

E
[
ũ(m)2

] 1
2 E

[
ũ(m′)2

] 1
2

≤ K1(M(S + 1)− 1−M(S))2

R
δ
2 M(S)2

≤ K

R
δ
2 S2

. (112)
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Using once again the Chebyshev inequality and the Borel-Cantelli lemma we have that I1 → 0

a.s. as Ψ(R,S) → ∞. Repeating the same consideration for I2 we have that I2 → 0 a.s. as

Ψ(R,S) →∞. Finally, for I3 we have

E[|I3|2] ≤ E




∣∣∣∣∣∣
1

N(R)M(S)

N(R+1)−1∑

n=N(R)

M(R+1)−1∑

m=M(S)

|u(n,m)|
∣∣∣∣∣∣

2


=
1

(N(R)M(S))2

N(R+1)−1∑

n=N(R)

M(S+1)−1∑

m=M(S)

N(R+1)−1∑

n′=N(R)

M(S+1)−1∑

m′=M(S)

E[|u(n,m)u(n′,m′)|]

≤ σ2 (N(R + 1)− 1−N(R))2(M(S + 1)− 1−M(S))2

(N(R)M(S))2
≤ K

(RS)2
. (113)

Using again the Chebyshev inequality and the Borel-Cantelli lemma we have that I3 → 0 a.s.

as Ψ(R, S) →∞.

Finally, we have that

sup
ω,υ

∣∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm) − 1

NM

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
→ 0 a.s. (114)

for all N(R) ≤ N < N(R + 1) and M(S) ≤ M < M(S + 1), as Ψ(R, S) → ∞, and hence as

Ψ(N, M) →∞.

Since N(R)
N(R+1)

→ 1 and M(S)
M(S+1)

→ 1 as Ψ(R,S) →∞ we can replace 1
NM

in the second term by
1

N(R)M(S)
. Therefore, we have

sup
ω,υ

∣∣∣∣∣∣
1

NM

N−1∑
n=0

M−1∑
m=0

u(n,m)ej(ωn+νm) − 1

N(R)M(S)

N(R)−1∑
n=0

M(S)−1∑
m=0

u(n,m)ej(ωn+νm)

∣∣∣∣∣∣
→ 0 a.s. (115)

From (115) and (107) the lemma follows.
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